
Digital Design &

Computer Architecture

Abdul Muizz

General Updates

• Albany Nanotech Complex Tours

• Mini-Colloquium on Advanced Packaging and Heterogeneous Integration

2

Albany Nanotech Complex Tour

• Albany Nanotech Complex

• A state-of-the-art campus that brings together industry

leaders, academia and international partners to develop

next-generation chips and chip fabrication processes.

• Major Companies:

• IBM, Applied Materials, Tokyo Electron, Wolfspeed

• Tour Dates:

o February 26th (Wednesday), 11:30 AM – 1:30 PM

o March 12th (Wednesday), 11:30 AM – 1:30 PM

• More tours are coming in the future!

• Tour attendees must be IEEE EPS members!

3

Mini-Colloquium on Advanced Packaging and Heterogeneous Integration

• Mini-Colloquium Details

o Located in Albany Nanotech Complex

o Feb 18th (Tuesday) from 12pm - 3pm

o Transportation Provided

o Open to all students

• Schedule:

o 12pm – Pizza Lunch

o 1pm – Welcome/EPS Overview

o 1:10pm – John Lau, Unimicron Technologies

o 1:55pm – Break

o 2:00pm – Prof. Inoue, Yokohama National University

o 2:45pm – Closing Comments

• Please register on VTools!

4

What are we covering today? - Overview

• Most of the topics covered in EPS focus on the

transistor-level and device packaging but rarely

move to more abstract topics, such as computer

architecture or digital logic.

• How do processors build upon transistor-

based circuits to execute complex tasks?

Where is the connection between device

physics and computer science?

• This lecture will delve into these topics, unveiling

the immense complexity of our highly-organized

electronic devices.

5

What are we covering today? - Meet the Abstraction Layers

• The computer abstraction

layer diagram shows

the sophisticated path it

takes to get from physics to

applicate software.

• Starting from the bottom, we

will move up the layers of

abstraction.

The higher you go,

the more

"abstract" each

layer becomes, i.e.,

rooted further
away from device

physics.

6

Physics & Devices

7

Review – CMOS Transistors

• CMOS (Complementary Metal-Oxide

Semiconductor) is a type of MOSFET

technology that uses a complementary pair

of p-type (PMOS) and n-type (NMOS)

MOSFETS.

• Transistors work by regulating

current (Source-Drain or Drain-Source) by

using a "Gate". Based on the received input,

current can be turned on or off.

8

NMOS and PMOS Behavior

9

Analog & Digital Circuits

10

Linked Transistors can form Digital Logic Gates

Note the Pull-Up Network (PUN) and Pull-Down Network (PDN)

11

Understanding the Analog in Digital

• Moving up the abstraction chart, these gates are viewed
simply as digital logic blocks (1's and 0's)

• Under the hood, these are still analog circuits. Rise and
fall times are influenced by parasitic capacitances and
noise.

• Putting these gates together, along with registers and
busses, can create function units, logic blocks, and
control systems.

Inverter Output with 0.5 pF Load Parasitic

Inverter Output with 0.01 pF Load Parasitic

12

Logic

13

Full Adder

• A full adder can take three inputs, A, B, and Cin

(carry-in) and produce two outputs, S and carry-

out.

• Extends on from the half-adder (2 inputs, 1 output),

and can be chained for multiple bits.

14

Full Subtractor

• Similarly, there is a full subtractor for

subtracting bit values.

15

Dynamic Random Access Memory - DRAM

16

Micro-Architecture

17

Arithmetic Logic Unit (ALU)

• By combining several arithmetic

circuits (such as adders and

subtractors), logic units, an

accumulator, several registers,

busses and control systems, you

can create an ALU.

• This is the heart of a CPU and

performs mathematical and

logical operations.

• How do we interface with the

ALU to execute a set of

instructions?

18

Von Neumann Architecture

19

• Computer design philosophy that calls for

storing instructions and data in memory

and execute them sequentially.

• This design would include components,

such as an arithmetic processing unit, a

control unit, a memory for instructions,

external mass storage, and I/O

mechanisms

• Proposed in 1945 by Hungarian-American

physicist and mathematician John von

Neumann.

The RISC-V Single Cycle Processor – Data path

• RISC-V is an open-source

instruction set architecture (ISA)

that's used to design processors.

• The data path illustrates how an

instruction (32-bit) can be fetched

from memory, be broken down

into control signals, pass through

ALU and Write module to modify

data, and then call the next

instruction.

20

Instruction Types within the RISC-V ISA

Type Description

R-type (Register) Perform arithmetic and logical operations that work entirely on registers

(Ex: add, sub, and, or)

I-type (Immediate) Handle operations that use an immediate (constant) value along with a register.

They are also used for load instructions. (Ex: addi, lb, lw)

S-type (Store) Used for storing data from a register into memory.

(Ex: sb, sh, sw)

B-type (Branch) Enable conditional branching based on comparison between registers.

(Ex: beq, bne)

U-type (Upper Immediate) Load a 20-bit immediate into the upper 20 bits of a register. This is useful for

constructing larger constants or addresses (Ex: lui, auipc)

J-type (Jump) Facilitate jump operations, where a larger immediate value is needed to compute

a jump target relative to the current program counter (ex: jal) 21

Short Clip following the data path for an R-Type Instruction (5:19-10:00)

22

Single Cycle is slow, can we speed it up? - Multicycle

23

• Breaks an instruction down into multiple

steps for execution.

• Useful when different stages of an

instruction have different latencies.

• Beneficial for shortening the clock period

and performing instructions incrementally

across multiple cycles.

• Provides some level of perfromance

increase, but not typically used today.

Single Cycle is slow, can we speed it up? - Pipelining

• Yes! Through pipelining!

• Laundry analogy, rather than performing all laundry steps for

one load at a time (Sort, Wash, Dry, Fold), we can accelerate

the process by starting the next load while the previous load is

still drying.

24

Pipelined RISC-V Datapath

Each pipeline stall segment requires some form of control logic to prevent pipelining hazards 25

The 3 Hazards with Pipelining

26

1. Structural Hazard

• Structural hazards – Occurs when two or

more instructions in different pipeline stages

simultaneously require the same hardware

resource, but the resource is not available for

them at the same time. Can be addressed

with scheduling.

o Ex: Fetch and Data Memory stages may

need to access memory concurrently.

27

2. Data Hazard

28

• Data hazards – Occur when an instruction

depends on the result of the previous

instruction that has not yet completed its

execution in the pipeline. Can be addressed

with stalling.

o Ex: Read after write, write after read, or

write after write.

3. Control Hazard (aka Branch Hazard)

29

• Control Hazards – aka Branch Hazards, occur

when the pipeline makes wrong assumptions

about the path of a branch or jump

instruction. Until the branch outcome is

determined, the pipeline may have already

fetched incorrect instructions. Can be

addressed by discarding whatever is in the

pipeline (flushing).

o Ex: When reaching a conditional branch

(if, for, while), a wrong prediction could

lead to incorrect execution.

Why are GPUs better at Pipelining than CPUs?

• GPUs have

o many more cores and threads,

o can split instructions onto multiple

threads,

o have simplified execution units and

specialized pipelines,

o are optimized for throughput over latency.

Other ways to improve performance outside of

pipelining include out-of-order execution,

forwarding, and branch prediction.

30

Architecture

31

The RISC-V ISA Reference Card

https://www.cs.sfu.ca/~ashriram/Courses/CS

295/assets/notebooks/RISCV/RISCV_CARD.p

df <- Full reference card for RISC-V ISA

• ISA needs to be consistent and organized in order to support a wide variety of instructions.

• The 32-bit instruction can be broken down into several critical pieces (Ex: for an R-type Instruction).

funct7

7 bits, [31:25]

rs2 (Src. Reg. 2)

5 bits, [24:20]

rs1 (Src. Reg. 1)

5 bits, [19:15]

funct3

3 bits, [14:12]

rd (Dest. Reg.)

5 bits, [11:7]

Opcode

7 bits, [6:0]

This field is used to

further distinguish
between variants of
an instruction.

This field indicates the

second source
register operand for
operations that

require two registers
(like many R-type

operations).

The value from this

register is typically
one of the inputs to
the operation.

This secondary

opcode field further
refines the operation
defined by the

primary opcode.

In instructions that

write results to a
register (like R-type
and I-type

instructions), these
bits specify the

destination register
(rd).

This field identifies

the broad class of the
instruction (for
example, whether it’s

an arithmetic
operation, a

load/store, or a
branch).

32

https://www.cs.sfu.ca/~ashriram/Courses/CS295/assets/notebooks/RISCV/RISCV_CARD.pdf
https://www.cs.sfu.ca/~ashriram/Courses/CS295/assets/notebooks/RISCV/RISCV_CARD.pdf
https://www.cs.sfu.ca/~ashriram/Courses/CS295/assets/notebooks/RISCV/RISCV_CARD.pdf

Let's convert a simple program into a set of instructions (machine code)

A good start, but a processor still can't read this. Let's visit: https://venus.kvakil.me/

33

https://venus.kvakil.me/

Let's convert a simple program into a set of instructions (machine code)

34

Other ISAs

• X86, incredibly widespread platform used on

almost all Intel and AMD builds

• ARM, another "reduced instruction set" ISA,

but not open source like RISC-V

• Apple switched to an ARM based ISA in 2020

(the switch from Intel to Apple Silicon in

Macs)

35

x86 vs ARM, Pros for both

x86 ARM

• Higher raw performance for

intensive tasks (video editing,

gaming, data analysis)

• Wide software compatibility

(large software ecosystem)

• Wide and flexible instruction

sets, allowing for greater

customization and optimization

• Increased power efficiency, due

to low power consumption

(ideal for mobile devices and

embedded systems with limited

battery life).

• Cost-effective

36

Apple Rosetta

• A dynamic binary translator for macOS.

• Released in 2006 with new Intel Macs to allow
applications to run from previous Macs using PowerPC
processors (Dropped in 2011).

• Rosetta 2 released in 2020 with Apple Silicon, allowing
Intel applications to run on Apple silicon-based Macs.

• Uses Ahead-of-Time (AOT) Translation to pre-translate
parts of the application into Arm code (Cost of time).
Also uses Just-In-time (JIT) Dynamic Translation on the
fly (Efficient enough to not notice performance
degradation).

• Low-level or Kernal level features might still encounter
issues and still comes with a performance cost.

• "Whisky" is similar in concept and allows games to run
on macOS.

37

Operating Systems & Application Software

38

Operating Systems

• Operating Systems exist to hide the complexities of
underlying hardware (e.g., registers, memory
management, I/O operations)

• Provide a simpler interface for applications.

• Operating systems will look at process and thread
management, memory management, contain a file
system and storage management, and manage I/O
devices

• Modern OS will also consider Networking protocols,
security and user management, and virtualization
(multiple instances on one machine)

• Current OS include Windows (evolved from MS-
DOS), Linux, MacOS, ChromeOS. Mobile devices
include Android and iOS.

39

Application Software

• Written in programming languages that vary in complexity and features

• High level languages (C, Java, Python, Rust) can allow developers to write code without worrying about
the intricate details of the underlying hardware. Features include structured programming, object-
oriented programming, garbage collection, standard libraries.

• A compiler will translate high level code (C, Java, Rust) into low level code (assembly), which the
computer can understand. An assembler can than translate assembly into machine code (binary).

• Interpreted languages (Python) use an interpreter rather than following the compiling chain, meaning
source code is interpreted at runtime rather than being pre-compiled.

• Modern Java environments may use Just-In-Time (JIT) which compiles code on the fly during execution.

40

The End
Thanks for listening!

	Slide 1: Digital Design & Computer Architecture
	Slide 2: General Updates
	Slide 3: Albany Nanotech Complex Tour
	Slide 4: Mini-Colloquium on Advanced Packaging and Heterogeneous Integration
	Slide 5: What are we covering today? - Overview
	Slide 6: What are we covering today? - Meet the Abstraction Layers
	Slide 7: Physics & Devices
	Slide 8: Review – CMOS Transistors
	Slide 9: NMOS and PMOS Behavior
	Slide 10: Analog & Digital Circuits
	Slide 11: Linked Transistors can form Digital Logic Gates
	Slide 12: Understanding the Analog in Digital
	Slide 13: Logic
	Slide 14: Full Adder
	Slide 15: Full Subtractor
	Slide 16: Dynamic Random Access Memory - DRAM
	Slide 17: Micro-Architecture
	Slide 18: Arithmetic Logic Unit (ALU)
	Slide 19: Von Neumann Architecture
	Slide 20: The RISC-V Single Cycle Processor – Data path
	Slide 21: Instruction Types within the RISC-V ISA
	Slide 22: Short Clip following the data path for an R-Type Instruction (5:19-10:00)
	Slide 23: Single Cycle is slow, can we speed it up? - Multicycle
	Slide 24: Single Cycle is slow, can we speed it up? - Pipelining
	Slide 25: Pipelined RISC-V Datapath
	Slide 26: The 3 Hazards with Pipelining
	Slide 27: 1. Structural Hazard
	Slide 28: 2. Data Hazard
	Slide 29: 3. Control Hazard (aka Branch Hazard)
	Slide 30: Why are GPUs better at Pipelining than CPUs?
	Slide 31: Architecture
	Slide 32: The RISC-V ISA Reference Card
	Slide 33: Let's convert a simple program into a set of instructions (machine code)
	Slide 34: Let's convert a simple program into a set of instructions (machine code)
	Slide 35: Other ISAs
	Slide 36: x86 vs ARM, Pros for both
	Slide 37: Apple Rosetta
	Slide 38: Operating Systems & Application Software
	Slide 39: Operating Systems
	Slide 40: Application Software
	Slide 41: The End

