polyte: n’.r’
..\L-.-:n\.\ TEcy, B \ a’é,“ \ s, ;
() Rensscier), =
QamsY |EEE Student Branch

GBM Attendance

Digital Design &
Computer Architecture

Abdul Muizz

General Updates

« Albany Nanotech Complex Tours

* Mini-Colloquium on Advanced Packaging and Heterogeneous Integration

Albany Nanotech Complex Tour

* Albany Nanotech Complex

« A state-of-the-art campus that brings together industry
leaders, academia and international partners to develop
next-generation chips and chip fabrication processes.

* Major Companies:

* IBM, Applied Materials, Tokyo Electron, Wolfspeed

* Tour Dates:

o February 26th (Wednesday), 11:30 AM - 1:30 PM
o March 12th (Wednesday), 11:30 AM — 1:30 PM
More tours are coming in the future!

Tour attendees must be IEEE EPS members!

Mini-Colloquium on Advanced Packaging and Heterogeneous Integration

* Mini-Colloquium Details IEEE EPS Mini-Colloquium,2025
o Located in Albany Nanotech Complex

o Feb 18th (Tuesday) from 12pm - 3pm

o Transportation Provided

Presented by

o Opento all students 2025 IEEE EPS Mid-Hudson Valley Chapter
Date:
* Schedule: 16 Feb 2025
12 pm to 3 pm X
. R Ad d Substrat f Chiplet
O 12pm — Pizza LunCh If\-ltlzga/::x%li‘t'orium, allzilakll‘ecteerog:n:o';laselflteglr-'atio‘:? -~
. Albany Natiotecu Camplex églr:i'c‘)rl-g;:ecial Project Assistant
@) 1 pm— WeIcome/E PS Overview Free Registration for Unimicron
ALL!
o 1:10pm - John Lau, Unimicron Technologies Froa Pleca, drinks and
esserts served to a

o 155pm — Break registered attendees!

To reserve your spot,

o ZOOpm _ Prof |noue Yokoha ma Nationa| University please REGISTER at: Key Technologies and Mechanism
: : ! https://events.vtools.ieee.or Analysis for Next-Generation
2 45 Cl . C t g/m/455513 Hybrid/Fusion Bonding ’
. - Fumihiro Inoue -
O : pm osl ng omments Reg/str using QR code: Associate Professor and vice-director

* Please register on VTools!

for Semiconductor and Quantum
Integrated Electronics Research Center,
Yokohama National University

What are we covering today? - Overview

* Most of the topics covered in EPS focus on the
transistor-level and device packaging but rarely
move to more abstract topics, such as computer
architecture or digital logic.

* How do processors build upon transistor-
based circuits to execute complex tasks?
Where is the connection between device

physics and computer science? SRR
77 KB JPG
 This lecture will delve into these topics, unveiling >get a rock
the immense complexity of our highly-organized >melt rock

>turn rock into powder

>turn rock into a crystal

>turn it back into a rock

>inscribe ancient runes with powerful magic onto
rock

>trick rock into thinking

electronic devices.

What are we covering today? - Meet the Abstraction Layers

The computer abstraction
layer diagram shows

the sophisticated path it
takes to get from physics to
applicate software.

Starting from the bottom, we
will move up the layers of
abstraction.

Application |>"hello
Software world!”

Operating
Systems

<

) T
Architecture = —

Micro-
architecture

Logic

Analog
Circuits

Devices

Physics

b
T)
e
9
ey

Programs

Device
Drivers

Instructions
Reqisters

Datapaths
Controllers

Adders
Memories

AND Gates
NOT Gates

Amplifiers
Filters

Transistors
Diodes

Electrons

The higher you go,
the more
"abstract" each
layer becomes, i.e,,
rooted further
away from device
physics.

Physics & Devices

Application |>"hello

Software world!”
Operating
Systems

{1 J |

Architecture =

Micro-
architecture

Logic

Analog
Circuits

Devices

Physics

P
=
e
@
&

Programs

Device
Drivers

Instructions
Registers

Datapaths
Controllers

Adders
Memories

AND Gates
NOT Gates

Amplifiers
Filters

Transistors
Diodes

Electrons

Review — CMOS Transistors

« CMOS (Complementary Metal-Oxide NMGS PHOS
Semiconductor) is a type of MOSFET - o o
technology that uses a complementary pair
of p-type (PMOS) and n-type (NMOS)
MOSFETS.

« Transistors work by regulating
current (Source-Drain or Drain-Source) by
using a "Gate". Based on the received input, NMOS D PMOS D
current can be turned on or off. c——s c—d—s

NMOS and PMQOS Behavior

MOS:
MOS: P
T E‘ L w4
L L
s——lr—d “ sjr—d s__l'fr_::l s _J] L_d
ground Voo
a switch a switch
0 OFF Logic 0 = OV 0 ON Logic 0 = OV

{ ON Logic 1 = Vpp i OFF Logic 1 = Vpp

Analog & Digital Circuits

Application |>"hello

Software world!”
Operating
Systems

) I
Architecture =

Micro-
architecture

Logic O O

Digital
Circuits 3.0

Devices

I —
O O

Analog

Circuits

Physics C%)

Programs

Device
Drivers

Instructions
Registers

Datapaths
Controllers

Adders
Memories

AND Gates
NOT Gates

Amplifiers
Filters

Transistors
Diodes

Electrons

10

Linked Transistors can form Digital Logic Gates

CMOS Logic Gates

Inverter AV

Vobp

:.o- NAND gate

Voo

Note the Pull-Up Network (PUN) and Pull-Down Network (PDN)

Buffer Input | Output
0 0

Pl
AND A B | Output
0 0 0

) 1 0 0

0 1 0

1 1 1

OR A B | Output
0 0 0

1 0 1

1 1 1

A B | Output

XOR 5 10 0
P
0 1 1

1 1 0

Inverter Input | Output
D EE
1 0
A B | Output
NAND ol o 1
1 0 1
j) 0 1 1
1 1 0
A B | Output
NOR o o 1
T e
0 i 0
1 1 0
A B | Output
XNOR 5 [o 1
1 0 0
) > i
1 1 ik

11

VT("/ne2):VT("/net3”) Sun Mar 17 13:07:01 1
Name 2024

I VT inet2")

Understanding the Analog in Digital RS | I)

* Moving up the abstraction chart, these gates are viewed
simply as digital logic blocks (1's and 0's)

0.6 =

* Under the hood, these are still analog circuits. Rise and
fall times are influenced by parasitic capacitances and
noise.

0.2 5

- Putting these gates together, along with registers and Inverter Output with 0.01 pF Load Parasitic
busses, can create function units, logic blocks, and S
control systems.

P
P

Inverter Output with 0.5 pF Load Parasitic

12

Logic

Application |>"hello

Software world!”
Operating
Systems
) I
Architecture =
I I .

Micro-
architecture

Digital
Circuits 3.0

Analog
Circuits

Physics

Feo
Devices @
0

Programs

Device
Drivers

Instructions
Registers

Datapaths
Controllers

Adders
Memories

AND Gates
NOT Gates

Amplifiers
Filters

Transistors
Diodes

Electrons

13

Full Adder

A full adder can take three inputs, A, B, and Cin

(carry-in) and produce two outputs, S and carry-

out.

Extends on from the half-adder (2 inputs, 1 output),
and can be chained for multinle bits.

A

0
0
0
0
1

Cin Sum(S)
0 0

1 1

0 1

1 0

0 1

1 0]

0 0

1 1

Full Adder Truth Table

Cout Cin

}

)
-

i Full Adder (Complete)

r Zz
L

Sum’

s

I
ki
[]

14

Full Subtractor

« Similarly, there is a full subtractor for
subtracting bit values.

B

C

FULL SUBTRACTOR

AT
/ 'AlB|c|D|BO
y. olo|o|o|oO
YZ o[o|1|1]1
ol1]lo0]1]1
} o(1|1|0]1
BorROW | 1| 0 0 10
1/0|1]|0/|0
1|1|lo|a]|o
} I ENEREET

DIFF=A@PBP C

B ORREW A B A http://vlsi-asic-soc.blogspot.com/

15

Dynamic Random Access Memory - DRAM

Row Address Strobe (RAS)
0—14 Q Q (@] o

e e
Column = —— == _:]I—D
Add . 1 1
i [ALy s paars o TS T2 15 1% -
-k Storage (A3 Hi H; “'51__ Hi ‘
Capacitor _:]'_D
_I
| At
- J—o
Ground |
—

Single Memory Cell Memory Cell Array

Micro-Architecture

Micro-

Logic

Application |>"hello
Software world!”
Operating
Systems
) I
Architecture mmm m—
{1 J |

architecture D:::[I

Digital
Circuits

Analog
Circuits

Devices

Physics

@
&

Programs

Device
Drivers

Instructions
Registers

Datapaths
Controllers

Adders
Memories

AND Gates
NOT Gates

Amplifiers
Filters

Transistors
Diodes

Electrons

17

Arithmetic Logic Unit (ALU)

* By combining several arithmetic
circuits (such as adders and
subtractors), logic units, an
accumulator, several registers,
busses and control systems, you
can create an ALU.

« Thisis the heart of a CPU and
performs mathematical and
logical operations.

« How do we interface with the
ALU to execute a set of
instructions?

Integer Integer
Operand Operand
A \/ B
Status
Status

Opcode v

Integer

Result

18

Von Neumann Architecture

Computer design philosophy that calls for
storing instructions and data in memory

and execute them sequentially.

This design would include components,
such as an arithmetic processing unit, a
control unit, a memory for instructions,
external mass storage, and 1/O
mechanisms

Proposed in 1945 by Hungarian-American

physicist and mathematician John von
Neumann.

Input
Device

Central Processing Unit

Control Unit

Arithmetic/Logic Unit

Memory Unit

Output
Device

19

The RISC-V Single Cycle Processor — Data path

* RISC-V is an open-source . ’
Instruction set architecture (ISA) - “(.'
that's used to design processors. sl Ji
« The data path illustrates how an /\Y g%izj;ad
instruction (32-bit) can be fetched reetor D128 ool oo
from memory, be broken down e
into control signals, pass through Regive
ALU and Write module to modify ~ Upclb/Resd —|¢====20 e
data, and then call the next T || et =S - W ’Fr
instruction. struction || Insmucionis-tm | H S coues MET-(G0) [remutl] Adess e @
ey " |wie x X
data Registers R Z‘;?;emgﬂgry

Instruction [15-0] 16 @ 32 I
~ w ~ ([

Instruction [5-0]

Instruction Types within the RISC-V ISA

R-type (Register) Perform arithmetic and logical operations that work entirely on registers
(Ex: add, sub, and, or)

I-type (Immediate) Handle operations that use an immediate (constant) value along with a register.
They are also used for load instructions. (Ex: addi, Ib, lw)

S-type (Store) Used for storing data from a register into memory.
(Ex: sb, sh, sw)

B-type (Branch) Enable conditional branching based on comparison between registers.
(Ex: beq, bne)

U-type (Upper Immediate) Load a 20-bit immediate into the upper 20 bits of a register. This is useful for
constructing larger constants or addresses (Ex: lui, auipc)

J-type (Jump) Facilitate jump operations, where a larger inmediate value is needed to compute
a jump target relative to the current program counter (ex: jal) ”

Short Clip following the data path for an R-Type Instruction (5:19-10:00)

Single Cycle is slow, can we speed it up? - Multicycle

« Breaks an instruction down into multiple
steps for execution.

» Useful when different stages of an s
instruction have different latencies. — [

« Beneficial for shortening the clock period
and performing instructions incrementally
across multiple cycles.

Single,-—c lfcfe,

* Provides some level of perfromance
increase, but not typically used today.

—- OJOo0O0n—

Muf‘ticyde,

23

Single Cycle is slow, can we speed it up? - Pipelining

* Yes! Through pipelining! 4 >\|_AUNDRY TIME ¢

* Laundry analogy, rather than performing all laundry steps for N STEP 1: SORT A
one load at a time (Sort, Wash, Dry, Fold), we can accelerate ~ Separate the clothes into i
the process by starting the next load while the previous load is A ¥ htes~igniGoleuts ~DarkiCololrs
still drying. " =

. STEP 2: WASH oo/
Load machine, Add soap & softener
WHITES LIGHT COLOURS DARKCOLOURS . .
i (hot water) (warm water) (cold water) |

"L

: «
TEP 4. FOLD / |RON
7 == Sort & fold garments according to type,
v (eg. shirts, pants) & owner

—

STEP 3: HANG / DRY }}

Pipelined RISC-V Datapath

Instruction ! Instr. Decode : Execute 3 Memory : Write
Fetch ' Reg. Fetch ' Addr. Calc : Access '+ Back
Next PC] __Neaseapc [T] Nextseapc [T i
RS1
RS MUX3
N =
§ o m g (| ZERO? P
)
— W MUX1
Z S
- [-6“" ~ > E g MUX4
i z
m
18
g Imm MUX2
2
a @
- o
B - > 5

Each pipeline stall segment requires some form of control logic to prevent pipelining hazards

The 3 Hazards with Pipelining

Pipeline Hazards

v

v

:

Data Hazards

Control Hazards

Structural
Hazards

26

1. Structural Hazard

Structural hazards — Occurs when two or
more instructions in different pipeline stages
simultaneously require the same hardware
resource, but the resource is not available for
them at the same time. Can be addressed
with scheduling.

o Ex: Fetch and Data Memory stages may
need to access memory concurrently.

< |nstruction

Resource clash “95'3":"':9 clash
likely likely
cycle ——— >

i1 t2 | 13 t4 t5 | t6 | t7 | 18
Instr. 1 IF 0 IE RWA __ _ __ __
Instr. 2 | IF ID IE Rw"h _ _ .
Instr.3 | —— | — | IF D ENl AW | __ | _
Instr. 4 | __ . _ IF W| D IE RW | __
Instr.5 | - _— - - IFW| D IE RW

- Memary access required

- Memory access may be required

27

2. Data Hazard

Data hazards — Occur when an instruction
depends on the result of the previous
Instruction that has not yet completed its

execution in the pipeline. Can be addressed

with stalling.

O

Ex: Read after write, write after read, or
write after write.

ADD
forwardin;
IF ID IE VIE) R s e s i
- IF ID R3 | IE Q\ME RW - i =
- - IF ID R3 E EM RW - -
Za P o2 IF ID R3 IE MEM RW -
s s o - IF ID R3 IE MEM | RW

28

3. Control Hazard (aka Branch Hazard)

» Control Hazards — aka Branch Hazards, occur
when the pipeline makes wrong assumptions
about the path of a branch or jump
instruction. Until the branch outcome is
determined, the pipeline may have already
fetched incorrect instructions. Can be
addressed by discarding whatever is in the
pipeline (flushing).

o Ex: When reaching a conditional branch
(if, for, while), a wrong prediction could
lead to incorrect execution.

400: |,

PC=404 404: 1,

408: |,

|

This AND instruction is not
going to be executed at all

ADD
JMP
AND

R3,R4, R6
640
R6, R7, R5

Because of the unconditional IMP
instruction, the next PC will be

at the end of execution of JIMP
instruction

640., which gets loaded onto the PC

29

Why are GPUs better at Pipelining than CPUs?

* GPUs have
o many more cores and threads,

o can split instructions onto multiple
threads,

o have simplified execution units and
specialized pipelines,

o are optimized for throughput over latency.

Other ways to improve performance outside of
pipelining include out-of-order execution,
forwarding, and branch prediction.

* * * *

* ¥

CPU

Control ’ ALU ‘ ALU ‘

IALU ‘ ALY ‘
Low compute density
Complex control logic

Large caches (L1$/L2$, etc.)

Optimized for serial operations
* Fewer execution units (ALUs)
* Higher clock speeds

Shallow pipelines (<30 stages)
Low Latency Tolerance
Newer CPUs have more parallelism

* High compute density
* High Computations per Memory Access
* Built for parallel operations

* Ok * ok

* Many parallel execution units (ALUs)
* Graphics is the best known case of parallelism

Deep pipelines (hundreds of stages)
High Throughput

High Latency Tolerance

Newer GPUs:

* Better flow control logic (becoming more CPU-like)
* Scatter/Gather Memory Access
* Don't have one-way pipelines anymore

30

Architecture

Application |>"hello
Software world!”

Operating Device
Systems Drivers
HENE— | |nstructions

Architecture i — :
] Registers

Programs

Micro-
architecture

Logic - Adders

9 Memories
Digital AND Gates
Circuits 3.0

Datapaths
Controllers

Analog
Circuits

Transistors

Devices Diodes

I
O O
.
O
NOT Gates
Amplifiers
Filters

Physics Electrons

The RISC-V ISA Reference Card

RISC-V Instruction Set :
https://www.cs.sfu.ca/~ashriram/Courses/CS
Core Instruction Formats ﬁ 295/assets/notebooks/RISCV/RISCV_CARD.p
31 27 26 35 24 20 19 15 14 12 11 7 o
Fnc7 | _©2 51| funcs3 rd opeode] Retype df <- Full reference card for RISC-V ISA
imm|11:0] rsl funet3 rd opcode I-type
imm[11:5] rs2 rsl funct3 imm([4:0] opcode S-type
imm[12]10:5] rs2 rsl funct3 | imm[4:1]11] opcode B-type
imm[31:12] rd opcode U-type
imm[20]10:1[11[19:12] rd opcode J-type

» |ISA needs to be consistent and organized in order to support a wide variety of instructions.
» The 32-bit instruction can be broken down into several critical pieces (Ex: for an R-type Instruction).

funct7 rs2 (Src. Reg. 2) |rs1 (Src. Reg. 1) rd (Dest. Reg.) Opcode
7 bits, [31:25] 5 bits, [24:20] 5 bits, [19:15] 5 bits, [11:7] 7 bits, [6:0]

This field is used to This field indicates the The value from this This secondary In instructions that This field identifies
further distinguish second source register is typically opcode field further write results to a the broad class of the
between variants of register operand for one of the inputs to refines the operation register (like R-type instruction (for
an instruction. operations that the operation. defined by the and I-type example, whether it's
require two registers primary opcode. instructions), these an arithmetic
(like many R-type bits specify the operation, a
operations). destination register load/store, or a

(rd). branch).

32

https://www.cs.sfu.ca/~ashriram/Courses/CS295/assets/notebooks/RISCV/RISCV_CARD.pdf
https://www.cs.sfu.ca/~ashriram/Courses/CS295/assets/notebooks/RISCV/RISCV_CARD.pdf
https://www.cs.sfu.ca/~ashriram/Courses/CS295/assets/notebooks/RISCV/RISCV_CARD.pdf

Let's convert a simple program into a set of instructions (machine code)

addi te, zero, 5

addi ti, zero, ©

slti t2, t1, 5 #Set t2 =11f Y < 5, else 0
beq t2, zero, end # If t2 == 0 (i.e. Y >= 5), exit the loop

addi te, te, 10 #X=X+ 10
addi t1, t1, 1 #FY=Y+1

j loop # Jump back to the start of the loop

A good start, but a processor still can't read this. Let's visit: https://venus.kvakil.me/

33

https://venus.kvakil.me/

Let's convert a simple pro

gram into a set of instructions (machine code

Machine Code
0x00500293
0x00000313
0x00532393
0x00038863
0x00a28293
0x00130313
Ox££1££06E

0x00628e33

console output

Basic Code

addi x5 x0

I

addi x6 =0 0

slti x7 x6 5
beg x7 x0 16
addi x5 x5 10
addi x6 x6 1
jal =0 -16

add x28 x5 x€

Prev

Editor Simulator

Reset Dump

original Code
addi t0, zero, 5 # X =5

addi tl, zero, 0 # ¥ =0

loop: slti t2, tl, 5 # Set t2 = 1 if ¥ < 5, else O

beq t2, zero, end # If t2 = 0 (i.e. ¥ >= 5), exit the loop
addi t0, t0, 10 # X = X + 10

addi tl, tl, 1 # ¥ =Y + 1

j locp # Jump back to the start of the loop

add t3, t0, t1 $# 2 =X+ Y

to

t1

t2

s0

s1

a0

al

a2

a3

a4

ab

a6

a7

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

t3

(x8)

(x9)

(x10)

(x11)

(x12)

(x13)

(x14)

(x15)

(x16)

(x17)

(x18)

(x19)

(x20)

(x21)

(x22)

(x23)

(x24)

(x25)

(x26)

(x27)

(x28)

Display Settings

[

Decimal

34

Other ISAs

X86, incredibly widespread platform used on
almost all Intel and AMD builds

ARM, another "reduced instruction set" [SA,
but not open source like RISC-V

Apple switched to an ARM based ISA in 2020
(the switch from Intel to Apple Silicon in
Macs)

B

X6 Ecosystem Agviso

\ i
Y Group

=
" I
] '
T o= i
L= I)
ke s i
- : - H l
.= i

35

x86 vs ARM, Pros for both

« Higher raw performance for * Increased power efficiency, due
Intensive tasks (video editing, to low power consumption
gaming, data analysis) (ideal for mobile devices and

« Wide software compatibility embedded systems with limited
(large software ecosystem) battery life).

« Wide and flexible instruction Cost-effective

sets, allowing for greater
customization and optimization

Apple Rosetta

* A dynamic binary translator for macOS.

* Released in 2006 with new Intel Macs to allow
applications to run from previous Macs using PowerPC
processors (Dropped in 2011).

« Rosetta 2 released in 2020 with Apple Silicon, allowing Roseta 2

Intel applications to run on Apple silicon-based Macs.

» Uses Ahead-of-Time (AOT) Translation to pre-translate
parts of the application into Arm code (Cost of time).
Also uses Just-In-time (JIT) Dynamic Translation on the
fly (Efficient enough to not notice performance ‘ |
degradation). THE. ROSETTX STONE
KEX O DECIPHERING HEROGLIPKICS

« Low-level or Kernal level features might still encounter (R S RS AR b A RS

issues and still comes with a performance cost.

HIEROGLYPHI C
AN(|@ren) § 54

PEMoTI\C
- IQRBRT, 125 e rive

« "Whisky" is similar in concept and allows games to run |
on macOS. ;

GREEK,
ZOSTOYINAITA

.............

37

Operating Systems & Application Software

Application
Software

Operating
Systems

) I
Architecture =
I I .
Micro-
architecture
O O
Logic o 0

Digital
Circuits 3.0

Analog
Circuits

Devices

Physics C%)

Programs

Device
Drivers

Instructions
Registers

Datapaths
Controllers

Adders
Memories

AND Gates
NOT Gates

Amplifiers
Filters

Transistors
Diodes

Electrons

38

Operating Systems

« Operating Systems exist to hide the complexities of
underlying hardware (e.g., registers, memory
management, 1/O operations)

« Provide a simpler interface for applications.

« Operating systems will look at process and thread

management, memory management, contain a file e
system and storage management, and manage I/O f .
d evices System Application

Software Software

* Modern OS will also consider Networking protocols,
security and user management, and virtualization
(multiple instances on one machine)

 Current OS include Windows (evolved from MS-
DOS), Linux, MacOS, ChromeOS. Mobile devices
include Android and iOS.

39

Application Software

« Written in programming languages that vary in complexity and features

« High level languages (C, Java, Python, Rust) can allow developers to write code without worrying about
the intricate details of the underlying hardware. Features include structured programming, object-
oriented programming, garbage collection, standard libraries.

« A compiler will translate high level code (C, Java, Rust) into low level code (assembly), which the
computer can understand. An assembler can than translate assembly into machine code (binary).

* Interpreted languages (Python) use an interpreter rather than following the compiling chain, meaning
source code is Interpreted at runtime rather than being pre-compiled.

* Modern Java environments may use Just-In-Time (JIT) which compiles code on the fly during execution.

'S .
0110011000100010011000111

1100000001111111110000001
1111000110101010001100011
0011000100010011000111110

int main() 0000001111111110000001111

{ H 1000110101010001100011001
T (ST World!\o™); Compller 1000100010011000111110000
S T - ! 0001111111110000001111100
return 0;

b

0110101010001100011001100
0100010011000111110000000
1111111110000001111100011

\ PROGRAMMING hello_world.c -
" JavaScript = LANGUAGE hello_world.o 40

N Rensselaer

IEEE Student Branch

g ﬁ,rwh\%’%z
& €=

Application |[>"hello

Software worlq!~| | Programs
Operating Device
Systems Drivers
NN NN | |nstructions GBM Attendance

Architecture .
e n mmmmmmmm | Registers
Micro- Datapaths
architecture Controllers

Thanks for listening! oge of 2o | Adders
Memories
Digital AND Gates
Circuits Z.O NOT Gates

Analog Amplifiers
Circuits Filters

Transistors
Diodes

Physics C%) Electrons

Devices

	Slide 1: Digital Design & Computer Architecture
	Slide 2: General Updates
	Slide 3: Albany Nanotech Complex Tour
	Slide 4: Mini-Colloquium on Advanced Packaging and Heterogeneous Integration
	Slide 5: What are we covering today? - Overview
	Slide 6: What are we covering today? - Meet the Abstraction Layers
	Slide 7: Physics & Devices
	Slide 8: Review – CMOS Transistors
	Slide 9: NMOS and PMOS Behavior
	Slide 10: Analog & Digital Circuits
	Slide 11: Linked Transistors can form Digital Logic Gates
	Slide 12: Understanding the Analog in Digital
	Slide 13: Logic
	Slide 14: Full Adder
	Slide 15: Full Subtractor
	Slide 16: Dynamic Random Access Memory - DRAM
	Slide 17: Micro-Architecture
	Slide 18: Arithmetic Logic Unit (ALU)
	Slide 19: Von Neumann Architecture
	Slide 20: The RISC-V Single Cycle Processor – Data path
	Slide 21: Instruction Types within the RISC-V ISA
	Slide 22: Short Clip following the data path for an R-Type Instruction (5:19-10:00)
	Slide 23: Single Cycle is slow, can we speed it up? - Multicycle
	Slide 24: Single Cycle is slow, can we speed it up? - Pipelining
	Slide 25: Pipelined RISC-V Datapath
	Slide 26: The 3 Hazards with Pipelining
	Slide 27: 1. Structural Hazard
	Slide 28: 2. Data Hazard
	Slide 29: 3. Control Hazard (aka Branch Hazard)
	Slide 30: Why are GPUs better at Pipelining than CPUs?
	Slide 31: Architecture
	Slide 32: The RISC-V ISA Reference Card
	Slide 33: Let's convert a simple program into a set of instructions (machine code)
	Slide 34: Let's convert a simple program into a set of instructions (machine code)
	Slide 35: Other ISAs
	Slide 36: x86 vs ARM, Pros for both
	Slide 37: Apple Rosetta
	Slide 38: Operating Systems & Application Software
	Slide 39: Operating Systems
	Slide 40: Application Software
	Slide 41: The End

