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General Updates

• Albany Nanotech Complex Tours

• Mini-Colloquium on Advanced Packaging and Heterogeneous Integration
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Albany Nanotech Complex Tour

• Albany Nanotech Complex

• A state-of-the-art campus that brings together industry 

leaders, academia and international partners to develop 

next-generation chips and chip fabrication processes. 

• Major Companies:

• IBM, Applied Materials, Tokyo Electron, Wolfspeed

• Tour Dates: 

o February 26th (Wednesday), 11:30 AM – 1:30 PM

o March 12th (Wednesday), 11:30 AM – 1:30 PM

• More tours are coming in the future!

• Tour attendees must be IEEE EPS members!
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Mini-Colloquium on Advanced Packaging and Heterogeneous Integration 

• Mini-Colloquium Details

o Located in Albany Nanotech Complex

o Feb 18th (Tuesday) from 12pm - 3pm

o Transportation Provided

o Open to all students

• Schedule:

o 12pm – Pizza Lunch

o 1pm – Welcome/EPS Overview

o 1:10pm – John Lau, Unimicron Technologies

o 1:55pm – Break

o 2:00pm – Prof. Inoue, Yokohama National University

o 2:45pm – Closing Comments

• Please register on VTools!
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What are we covering today? - Overview

• Most of the topics covered in EPS focus on the 

transistor-level and device packaging but rarely 

move to more abstract topics, such as computer 

architecture or digital logic.

• How do processors build upon transistor-

based circuits to execute complex tasks? 

Where is the connection between device 

physics and computer science?

• This lecture will delve into these topics, unveiling 

the immense complexity of our highly-organized 

electronic devices.
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What are we covering today? - Meet the Abstraction Layers

• The computer abstraction 

layer diagram shows 

the sophisticated path it 

takes to get from physics to 

applicate software.

• Starting from the bottom, we 

will move up the layers of 

abstraction.

The higher you go, 

the more 

"abstract" each 

layer becomes, i.e., 

rooted further 
away from device 

physics.

6



Physics & Devices
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Review – CMOS Transistors

• CMOS (Complementary Metal-Oxide 

Semiconductor) is a type of MOSFET 

technology  that uses a complementary pair 

of p-type (PMOS) and n-type (NMOS) 

MOSFETS.

• Transistors work by regulating 

current (Source-Drain or Drain-Source) by 

using a "Gate". Based on the received input, 

current can be turned on or off.
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NMOS and PMOS Behavior
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Analog & Digital Circuits
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Linked Transistors can form Digital Logic Gates

Note the Pull-Up Network (PUN) and Pull-Down Network (PDN)
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Understanding the Analog in Digital

• Moving up the abstraction chart, these gates are viewed 
simply as digital logic blocks (1's and 0's)

• Under the hood, these are still analog circuits. Rise and 
fall times are influenced by parasitic capacitances and 
noise.

• Putting these gates together, along with registers and 
busses, can create function units, logic blocks, and 
control systems.

Inverter Output with 0.5 pF Load Parasitic

Inverter Output with 0.01 pF Load Parasitic

12



Logic
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Full Adder

• A full adder can take three inputs, A, B, and Cin 

(carry-in) and produce two outputs, S and carry-

out.

• Extends on from the half-adder (2 inputs, 1 output), 

and can be chained for multiple bits.
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Full Subtractor

• Similarly, there is a full subtractor for 

subtracting bit values.
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Dynamic Random Access Memory - DRAM
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Micro-Architecture
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Arithmetic Logic Unit (ALU)

• By combining several arithmetic 

circuits (such as adders and 

subtractors), logic units, an 

accumulator, several registers, 

busses and control systems, you 

can create an ALU.

• This is the heart of a CPU and 

performs mathematical and 

logical operations.

• How do we interface with the 

ALU to execute a set of 

instructions?
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Von Neumann Architecture
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• Computer design philosophy that calls for 

storing instructions and data in memory 

and execute them sequentially.

• This design would include components, 

such as an arithmetic processing unit, a 

control unit, a memory for instructions, 

external mass storage, and I/O 

mechanisms

• Proposed in 1945 by Hungarian-American 

physicist and mathematician John von 

Neumann.



The RISC-V Single Cycle Processor – Data path

• RISC-V is an open-source 

instruction set architecture (ISA) 

that's used to design processors. 

• The data path illustrates how an 

instruction (32-bit) can be fetched 

from memory, be broken down 

into control signals, pass through 

ALU and Write module to modify 

data, and then call the next 

instruction.
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Instruction Types within the RISC-V ISA

Type Description

R-type (Register) Perform arithmetic and logical operations that work entirely on registers

(Ex: add, sub, and, or)

I-type (Immediate) Handle operations that use an immediate (constant) value along with a register. 

They are also used for load instructions. (Ex: addi, lb, lw)

S-type (Store) Used for storing data from a register into memory.

(Ex: sb, sh, sw)

B-type (Branch) Enable conditional branching based on comparison between registers.

(Ex: beq, bne)

U-type (Upper Immediate) Load a 20-bit immediate into the upper 20 bits of a register. This is useful for 

constructing larger constants or addresses (Ex: lui, auipc)

J-type (Jump) Facilitate jump operations, where a larger immediate value is needed to compute 

a jump target relative to the current program counter (ex: jal) 21



Short Clip following the data path for an R-Type Instruction (5:19-10:00)
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Single Cycle is slow, can we speed it up? - Multicycle
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• Breaks an instruction down into multiple 

steps for execution.

• Useful when different stages of an 

instruction have different latencies.

• Beneficial for shortening the clock period 

and performing instructions incrementally 

across multiple cycles.

• Provides some level of perfromance 

increase, but not typically used today.



Single Cycle is slow, can we speed it up? - Pipelining

• Yes! Through pipelining!

• Laundry analogy, rather than performing all laundry steps for 

one load at a time (Sort, Wash, Dry, Fold), we can accelerate 

the process by starting the next load while the previous load is 

still drying.
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Pipelined RISC-V Datapath

Each pipeline stall segment requires some form of control logic to prevent pipelining hazards 25



The 3 Hazards with Pipelining

26



1. Structural Hazard

• Structural hazards – Occurs when two or 

more instructions in different pipeline stages 

simultaneously require the same hardware 

resource, but the resource is not available for 

them at the same time. Can be addressed 

with scheduling.

o Ex: Fetch and Data Memory stages may 

need to access memory concurrently.
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2. Data Hazard
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• Data hazards – Occur when an instruction 

depends on the result of the previous 

instruction that has not yet completed its 

execution in the pipeline. Can be addressed 

with stalling.

o Ex: Read after write, write after read, or 

write after write.



3. Control Hazard (aka Branch Hazard)
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• Control Hazards – aka Branch Hazards, occur 

when the pipeline makes wrong assumptions 

about the path of a branch or jump 

instruction. Until the branch outcome is 

determined, the pipeline may have already 

fetched incorrect instructions. Can be 

addressed by discarding whatever is in the 

pipeline (flushing).

o Ex: When reaching a conditional branch 

(if, for, while), a wrong prediction could 

lead to incorrect execution.



Why are GPUs better at Pipelining than CPUs?

• GPUs have 

o many more cores and threads, 

o can split instructions onto multiple 

threads, 

o have simplified execution units and 

specialized pipelines, 

o are optimized for throughput over latency.

Other ways to improve performance outside of 

pipelining include out-of-order execution, 

forwarding, and branch prediction.
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Architecture
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The RISC-V ISA Reference Card

https://www.cs.sfu.ca/~ashriram/Courses/CS

295/assets/notebooks/RISCV/RISCV_CARD.p

df <- Full reference card for RISC-V ISA

• ISA needs to be consistent and organized in order to support a wide variety of instructions.

• The 32-bit instruction can be broken down into several critical pieces (Ex: for an R-type Instruction).

funct7

7 bits, [31:25]

rs2 (Src. Reg. 2)

5 bits, [24:20]

rs1 (Src. Reg. 1)

5 bits, [19:15]

funct3

3 bits, [14:12]

rd (Dest. Reg.)

5 bits, [11:7]

Opcode

7 bits, [6:0]

This field is used to 

further distinguish 
between variants of 
an instruction.

This field indicates the 

second source 
register operand for 
operations that 

require two registers 
(like many R-type 

operations).

The value from this 

register is typically 
one of the inputs to 
the operation.

This secondary 

opcode field further 
refines the operation 
defined by the 

primary opcode.

In instructions that 

write results to a 
register (like R-type 
and I-type 

instructions), these 
bits specify the 

destination register 
(rd).

This field identifies 

the broad class of the 
instruction (for 
example, whether it’s 

an arithmetic 
operation, a 

load/store, or a 
branch).
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Let's convert a simple program into a set of instructions (machine code)

A good start, but a processor still can't read this. Let's visit: https://venus.kvakil.me/
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Let's convert a simple program into a set of instructions (machine code)
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Other ISAs

• X86, incredibly widespread platform used on 

almost all Intel and AMD builds

• ARM, another "reduced instruction set" ISA, 

but not open source like RISC-V

• Apple switched to an ARM based ISA in 2020 

(the switch from Intel to Apple Silicon in 

Macs)
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x86 vs ARM, Pros for both

x86 ARM

• Higher raw performance for 

intensive tasks (video editing, 

gaming, data analysis)

• Wide software compatibility 

(large software ecosystem)

• Wide and flexible instruction 

sets, allowing for greater 

customization and optimization

• Increased power efficiency, due 

to low power consumption 

(ideal for mobile devices and 

embedded systems with limited 

battery life).

• Cost-effective
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Apple Rosetta

• A dynamic binary translator for macOS.

• Released in 2006 with new Intel Macs to allow 
applications to run from previous Macs using PowerPC 
processors (Dropped in 2011).

• Rosetta 2 released in 2020 with Apple Silicon, allowing 
Intel applications to run on Apple silicon-based Macs.

• Uses Ahead-of-Time (AOT) Translation to pre-translate 
parts of the application into Arm code (Cost of time). 
Also uses Just-In-time (JIT) Dynamic Translation on the 
fly (Efficient enough to not notice performance 
degradation).

• Low-level or Kernal level features might still encounter 
issues and still comes with a performance cost.

• "Whisky" is similar in concept and allows games to run 
on macOS.
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Operating Systems & Application Software
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Operating Systems

• Operating Systems exist to hide the complexities of 
underlying hardware (e.g., registers, memory 
management, I/O operations)

• Provide a simpler interface for applications.

• Operating systems will look at process and thread 
management, memory management, contain a file 
system and storage management, and manage I/O 
devices

• Modern OS will also consider Networking protocols, 
security and user management, and virtualization 
(multiple instances on one machine)

• Current OS include Windows (evolved from MS-
DOS), Linux, MacOS, ChromeOS. Mobile devices 
include Android and iOS.
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Application Software

• Written in programming languages that vary in complexity and features

• High level languages (C, Java, Python, Rust) can allow developers to write code without worrying about 
the intricate details of the underlying hardware. Features include structured programming, object-
oriented programming, garbage collection, standard libraries.

• A compiler will translate high level code (C, Java, Rust) into low level code (assembly), which the 
computer can understand. An assembler can than translate assembly into machine code (binary).

• Interpreted languages (Python) use an interpreter rather than following the compiling chain, meaning 
source code is interpreted at runtime rather than being pre-compiled.

• Modern Java environments may use Just-In-Time (JIT) which compiles code on the fly during execution.
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The End
Thanks for listening!
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