
Chip Level
Integration

David King

IEEE EPS @ EPS

How are chips designed?

• Today we’ll be focusing in on

• Functional Design and Logic Design

• Physical Design

Hardware Description Language

We need a language that knows how to

model digital circuits.

• How can we describe hardware behavior

without fully implementing it

• How can we describe hardware behavior

without overwhelming ourselves

Today we’re using Verilog

We’re going to do a short primer on Verilog

We will not be doing a deep dive

This section is to help you understand how

HDL differs from a typical programming

language.

Verilog VHDL

This is my personal opinion

Data Types

• Verilog uses for valued logic

• Reasons for “X”:

• Uninitialized value

• Conflicting drivers / assignments

Value Meaning

0 Logic zero, “low”

1 Logic one, “high”

Z or ? High impedance (tri-
state buses)

X Unknown value

Numeric Constants

By default, constant values are specific with

specific width and radix.

All values by default are unsigned.

Value Description

123 Default: Decimal, unspecified
width

‘d123 ‘d = Decimal radix

‘h7B ‘h = Hexadecimal radix

‘o173 ‘o = Octal radix

‘b111_1011 ‘b = binary radix, “_” are
ignored

‘hxx Can include X, Z, or ? In non-
decimal constants

16’d5 16 bit constant with a decimal
assignment of 5.

11’h1 11-bit constant with a
hexadecimal assignment

Modules

Modules are the primary way we abstract

logical primitives and other modules.

All modules declare directional ports, which

are used for inter-module communication.

module mux2(input a,b,sel, output z,zbar);

 assign z = sel ? b : a;assign zbar = ~z;

endmodule

Wires and Registers

We need to declare all named wires (nets)

We can also produce buses, indexed

collections of wires.

If you want a register just replace wire with

reg

Net Description

wire a, b, z; Three 1-bit busses

wire [31:0] memdata; A 32-bit bus

wire [7:0] b1, b2, b3,
b4

Four 8-bit busses

wire [W-1:0] input; Parameterized bus

Wire Reg

Use it if you want a
continuous assignment

• Holds a value across
procedural
assignments

• Used for sequential
logic

Wires vs Registers

Feature reg wire

Purpose
Holds values assigned within
procedural blocks (always, initial)

Used for continuous assignments
and connecting module
outputs/inputs

Continuous Assignment Not allowed Allowed using assign statements

Procedural Assignment
Can be assigned in always or initial
blocks

Cannot be assigned in procedural
blocks

Non-blocking
Assignments

Allowed (for sequential logic) Not allowed

Blocking Assignments Allowed (for combinational logic) Not allowed

Synthesis
May synthesize to flip-flops, latches,
or combinational logic depending on
use

Synthesizes to combinational
connections only

Assignment Types

Blocking: Values assigned sequentially in

order

• Used in combinatoric logic

Non-Blocking: Values assigned in parallel

• Used in sequential logic

Sensitivity Lists

There is a keyword called always

Ensures that logic executes appropriately to

signal change in a module.

always @(posedge clk or negedge reset)

begin

 if (!reset)

 q <= 0;

 else

 q <= d;

end

Operators

Logical operators similar to other

programming languages

Verilog-Specific:

• Concatenation

• Replication

Abstraction and Hierarchy

Verilog is capable of operating on different

levels of abstraction

Modules are instantiated hierarchically

allowing for another form of abstraction

Structural Level Dataflow Level
module full_adder (input a, input b, input cin,
output sum, output cout);
 assign sum = a ^ b ^ cin; // XOR for
sum
 assign cout = (a & b) | (cin & (a ^ b)); //
Carry-out calculation
endmodule

module adder_structural (input [3:0] a, input
[3:0] b, output [4:0] sum);
 wire c1, c2, c3;

 // Instantiate 1-bit adders to build the 4-bit
adder
 full_adder fa0 (a[0], b[0], 1'b0, sum[0], c1);
 full_adder fa1 (a[1], b[1], c1, sum[1], c2);
 full_adder fa2 (a[2], b[2], c2, sum[2], c3);
 full_adder fa3 (a[3], b[3], c3, sum[3],
sum[4]);
endmodule

module adder_dataflow (input [3:0] a, input
[3:0] b, output [4:0] sum);
 assign sum = a + b; // Dataflow description
of addition
endmodule

Test Benches and Verification

Hardware verification is crucial in ensuring
your behavioral model is accurate.

Pass inputs, get outputs, compare with
expected outputs.

Add randomness to check all cases.

Test bench can be made in the HDL or in
python through CoCoTB

OpenLANE

OpenLANE is an RTL to GDSII flow made up

of many open-source tools.

RTL: Register transfer level

GDSII: Graphic Design System 2

It turns hardware models into photomasks,

which is called hardening.

Stage 1 - Linting

Objective: Check HDL syntax for errors.

• Ensures code follows best practices

• Ideally this shouldn’t be a stage, all HDL

must be verified before you even think of

hardening.

Stage 2 - Synthesis

Objectives:

1. Create netlist

2. Do static timing analysis on created

netlist

Stage 2 – Synthesis - Yosys

We want to bring the abstraction down as

much as possible.

Acts as starting point for defining:

1. Static Timing Analysis

2. Floor plan

3. Placement

4. Routing

Behavioral:

assign Out = S? B:A;

Netlist/Structural:

module mux2to1 (

 input S, A, B,

 output Out

);

 wire S_, Ans_, Bns;

 not (S_,S);

 and (AnS_, A, S_);

 and (BnS, B, S);

 or (Out, AnS_, BnS);

endmodule

Stage 2 – Synthesis - OpenSTA

Takes Verilog Netlist and performs Static

Timing Analysis.

• We don’t know where anything is

• We must make estimations with wire load

models

• Global WLM

• Hierarchical WLM

• Fan-Out WLM

Two Types:
• Single Corner
• Multi Corner

Stage 3 – Floor Planning

Objectives:

1. Define chip dimensions

2. Define placement rows and route tracks

3. Place input output ports.

4. Generate power distribution network

5. Insert well tap and end cap cells

Building Blocks

Standard Cells:

• Smallest functional blocks used to create

digital circuits (inverters, AND, OR, flip-

flops)

• They are predefined in the standard cell

library or PDK.

Macros:

• Pre-designed blocks with fixed

functionality that are already hardened.

Stage 3 – Floor Planning – Row and Track
Creation

Placement Rows: Defines size and possible

locations of macros and standard cells

Routing Tracks: Defines grid at which

interconnects can be placed

Typically defined in the PDK.

Stage 3 – Floor Planning – Place IO

Space around edges of CORE_AREA is

reserved for IO

Typically a floor planning utility randomly

assigns IO

If you want specific locations, use a DEF file

to define this.

Stage 3 – Floor Planning – Power Distribution
Network

Aligned with the placement rows

Wider pitch to allow for more current

carrying capacity

Diodes placed between V_dd and V_ss to

prevent ESD.

Stage 3 – Floor Planning – Well Tap and Cap
Cells

DeCap Cells:

• Electrically stabilize power rails

• Fill in empty space maintaining density

Well Tap Cell:

Stage 4 - Placement

Objectives:

1. Find optimal location for standard cells
while considering:

1. Area, timing, and power optimizations

2. Route Feasibility

3. Minimal timing DRCs

4. Minimal cell density and pin density

Typically use Nesterov’s method to find
optimal solution. Too bad I have no idea how it
works.

Stage 5 – Clock Tree Synthesis

Objective: Design and optimize the clock

distribution network to achieve:

1. Minimal area usage by clock repeaters

while maintaining low clock skew

2. Acceptable clock latency and smooth

clock transition times

3. Efficient power consumption

Stage 6 - Routing

Objectives:

1. Create routing network to connect

standard cells

2. Perform SPEF extraction

Stage 6 – Routing – Routing

Typically use Steiner trees for fast route

algorithm.

Stage 6 – Routing – SPEF Extraction

Stands for Standard Parasitic Exchange

Format

Once parasitics are determined, multi-

corner STA is performed.

Stage 7 – Tape Out

Objective: Convert routed def to GDSII

layout.

DEF

• A textual format primarily used
during the physical design stage
to represent layout information
such as placement of cells,
routing, and design constraints.

GDSII

• A binary format optimized for
representing detailed geometrical
shapes used in the mask data for
IC fabrication.

Objectives:

1. Perform DRC checks:

1. Are the cells or macros too far or too close
together?

2. Is the wire pitch and density too high or too
low?

3. Are layers aligned and overlapped within limit.

2. Perform Antenna checks:

1. Are there any long metal wires where charge
can build up?

3. Perform LVS checks

1. Does the physical netlist match the HDL netlist?

Stage 8 - Signoff

	Default Section
	Slide 1: Chip Level Integration
	Slide 2: How are chips designed?
	Slide 3: Hardware Description Language
	Slide 4: Today we’re using Verilog
	Slide 5: Data Types
	Slide 6: Numeric Constants
	Slide 7: Modules
	Slide 8: Wires and Registers
	Slide 9: Wires vs Registers
	Slide 10: Assignment Types
	Slide 11: Sensitivity Lists
	Slide 12: Operators
	Slide 13: Abstraction and Hierarchy
	Slide 14: Test Benches and Verification
	Slide 15: OpenLANE
	Slide 16: Stage 1 - Linting
	Slide 17: Stage 2 - Synthesis
	Slide 18: Stage 2 – Synthesis - Yosys
	Slide 19: Stage 2 – Synthesis - OpenSTA
	Slide 20: Stage 3 – Floor Planning
	Slide 21: Building Blocks
	Slide 22: Stage 3 – Floor Planning – Row and Track Creation
	Slide 23: Stage 3 – Floor Planning – Place IO
	Slide 24: Stage 3 – Floor Planning – Power Distribution Network
	Slide 25: Stage 3 – Floor Planning – Well Tap and Cap Cells
	Slide 26: Stage 4 - Placement
	Slide 27: Stage 5 – Clock Tree Synthesis
	Slide 28: Stage 6 - Routing
	Slide 29: Stage 6 – Routing – Routing
	Slide 30: Stage 6 – Routing – SPEF Extraction
	Slide 31: Stage 7 – Tape Out
	Slide 32: Stage 8 - Signoff

