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How are chips designed?

• Today we’ll be focusing in on 

• Functional Design and Logic Design

• Physical Design



Hardware Description Language

We need a language that knows how to 

model digital circuits. 

• How can we describe hardware behavior 

without fully implementing it

• How can we describe hardware behavior 

without overwhelming ourselves



Today we’re using Verilog 

We’re going to do a short primer on Verilog

We will not be doing a deep dive

This section is to help you understand how 

HDL differs from a typical programming 

language.

Verilog VHDL

This is my personal opinion



Data Types

• Verilog uses for valued logic

• Reasons for “X”:

• Uninitialized value

• Conflicting drivers / assignments

Value Meaning

0 Logic zero, “low”

1 Logic one, “high”

Z or ? High impedance (tri-
state buses)

X Unknown value



Numeric Constants

By default, constant values are specific with 

specific width and radix.

All values by default are unsigned.

Value Description

123 Default: Decimal, unspecified 
width

‘d123 ‘d = Decimal radix

‘h7B ‘h = Hexadecimal radix

‘o173 ‘o = Octal radix

‘b111_1011 ‘b = binary radix, “_” are 
ignored

‘hxx Can include X, Z, or ? In non-
decimal constants

16’d5 16 bit constant with a decimal 
assignment of 5.

11’h1 11-bit constant with a 
hexadecimal assignment



Modules

Modules are the primary way we abstract 

logical primitives and other modules. 

All modules declare directional ports, which 

are used for inter-module communication. 

module mux2(input a,b,sel, output z,zbar);

 assign z = sel ? b : a;assign zbar = ~z;

endmodule



Wires and Registers 

We need to declare all named wires (nets)

We can also produce buses, indexed 

collections of wires.

If you want a register just replace wire with 

reg

Net Description

wire a, b, z; Three 1-bit busses

wire [31:0] memdata; A 32-bit bus

wire [7:0] b1, b2, b3, 
b4

Four 8-bit busses

wire [W-1:0] input; Parameterized bus

Wire Reg

Use it if you want a 
continuous assignment

• Holds a value across 
procedural 
assignments

• Used for sequential 
logic 



Wires vs Registers

Feature reg wire

Purpose
Holds values assigned within 
procedural blocks (always, initial)

Used for continuous assignments 
and connecting module 
outputs/inputs

Continuous Assignment Not allowed Allowed using assign statements

Procedural Assignment
Can be assigned in always or initial 
blocks

Cannot be assigned in procedural 
blocks

Non-blocking 
Assignments

Allowed (for sequential logic) Not allowed

Blocking Assignments Allowed (for combinational logic) Not allowed

Synthesis
May synthesize to flip-flops, latches, 
or combinational logic depending on 
use

Synthesizes to combinational 
connections only



Assignment Types

Blocking: Values assigned sequentially in 

order

• Used in combinatoric logic

Non-Blocking: Values assigned in parallel

• Used in sequential logic



Sensitivity Lists

There is a keyword called always

Ensures that logic executes appropriately to 

signal change in a module. 

always @(posedge clk or negedge reset) 

begin

  if (!reset)

    q <= 0;

  else

    q <= d;

end



Operators

Logical operators similar to other 

programming languages

Verilog-Specific:

• Concatenation

• Replication



Abstraction and Hierarchy

Verilog is capable of operating on different 

levels of abstraction

Modules are instantiated hierarchically 

allowing for another form of abstraction 

Structural Level Dataflow Level
module full_adder (input a, input b, input cin, 
output sum, output cout);
    assign sum = a ^ b ^ cin;        // XOR for 
sum
    assign cout = (a & b) | (cin & (a ^ b)); // 
Carry-out calculation
endmodule

module adder_structural (input [3:0] a, input 
[3:0] b, output [4:0] sum);
    wire c1, c2, c3;

    // Instantiate 1-bit adders to build the 4-bit 
adder
    full_adder fa0 (a[0], b[0], 1'b0, sum[0], c1);
    full_adder fa1 (a[1], b[1], c1, sum[1], c2);
    full_adder fa2 (a[2], b[2], c2, sum[2], c3);
    full_adder fa3 (a[3], b[3], c3, sum[3], 
sum[4]);
endmodule

module adder_dataflow (input [3:0] a, input 
[3:0] b, output [4:0] sum);
    assign sum = a + b;  // Dataflow description 
of addition
endmodule



Test Benches and Verification

Hardware verification is crucial in ensuring 
your behavioral model is accurate. 

Pass inputs, get outputs, compare with 
expected outputs. 

Add randomness to check all cases.

Test bench can be made in the HDL or in 
python through CoCoTB



OpenLANE

OpenLANE is an RTL to GDSII flow made up 

of many open-source tools. 

RTL: Register transfer level 

GDSII: Graphic Design System 2 

It turns hardware models into photomasks, 

which is called hardening.



Stage 1 - Linting

Objective: Check HDL syntax for errors.

• Ensures code follows best practices

• Ideally this shouldn’t be a stage, all HDL 

must be verified before you even think of 

hardening. 



Stage 2 - Synthesis

Objectives:

1. Create netlist 

2. Do static timing analysis on created 

netlist



Stage 2 – Synthesis - Yosys

We want to bring the abstraction down as 

much as possible. 

Acts as starting point for defining:

1. Static Timing Analysis

2. Floor plan

3. Placement

4. Routing

Behavioral:

assign Out  = S? B:A;

Netlist/Structural:

module mux2to1 (

 input S, A, B,

 output Out

);

 wire S_, Ans_, Bns;

 not (S_,S);

 and (AnS_, A, S_);

 and (BnS, B, S);

 or (Out, AnS_, BnS);

endmodule



Stage 2 – Synthesis - OpenSTA

Takes Verilog Netlist and performs Static 

Timing Analysis.

• We don’t know where anything is

• We must make estimations with wire load 

models

• Global WLM

• Hierarchical WLM

• Fan-Out WLM

Two Types:
• Single Corner
• Multi Corner



Stage 3 – Floor Planning

Objectives:

1. Define chip dimensions

2. Define placement rows and route tracks

3. Place input output ports. 

4. Generate power distribution network

5. Insert well tap and end cap cells



Building Blocks

Standard Cells:

• Smallest functional blocks used to create 

digital circuits (inverters, AND, OR, flip-

flops)

• They are predefined in the standard cell 

library or PDK.

Macros:

• Pre-designed blocks with fixed 

functionality that are already hardened. 



Stage 3 – Floor Planning – Row and Track 
Creation

Placement Rows: Defines size and possible 

locations of macros and standard cells

Routing Tracks: Defines grid at which 

interconnects can be placed

Typically defined in the PDK.



Stage 3 – Floor Planning – Place IO

Space around edges of CORE_AREA is 

reserved for IO

Typically a floor planning utility randomly 

assigns IO

If you want specific locations, use a DEF file 

to define this. 



Stage 3 – Floor Planning – Power Distribution 
Network

Aligned with the placement rows

Wider pitch to allow for more current 

carrying capacity

Diodes placed between V_dd and V_ss to 

prevent ESD.



Stage 3 – Floor Planning – Well Tap and Cap 
Cells

DeCap Cells: 

• Electrically stabilize power rails

• Fill in empty space maintaining density

Well Tap Cell:



Stage 4 - Placement

Objectives:

1. Find optimal location for standard cells 
while considering:

1. Area, timing, and power optimizations

2. Route Feasibility

3. Minimal timing DRCs

4. Minimal cell density and pin density

Typically use Nesterov’s method to find 
optimal solution. Too bad I have no idea how it 
works. 



Stage 5 – Clock Tree Synthesis

Objective: Design and optimize the clock 

distribution network to achieve:

1. Minimal area usage by clock repeaters 

while maintaining low clock skew

2. Acceptable clock latency and smooth 

clock transition times

3. Efficient power consumption



Stage 6 - Routing

Objectives:

1. Create routing network to connect 

standard cells

2. Perform SPEF extraction



Stage 6 – Routing – Routing

Typically use Steiner trees for fast route 

algorithm. 



Stage 6 – Routing – SPEF Extraction

Stands for Standard Parasitic Exchange 

Format

Once parasitics are determined, multi-

corner STA is performed. 



Stage 7 – Tape Out

Objective: Convert routed def to GDSII 

layout. 

DEF 

• A textual format primarily used 
during the physical design stage 
to represent layout information 
such as placement of cells, 
routing, and design constraints.

GDSII

• A binary format optimized for 
representing detailed geometrical 
shapes used in the mask data for 
IC fabrication.



Objectives:

1. Perform DRC checks:

1. Are the cells or macros too far or too close 
together?

2. Is the wire pitch and density too high or too 
low?

3. Are layers aligned and overlapped within limit. 

2. Perform Antenna checks:

1. Are there any long metal wires where charge 
can build up?

3. Perform LVS checks

1. Does the physical netlist match the HDL netlist?

Stage 8 - Signoff
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