

Laboratory Introduction to

Embedded Control
lab manual v15.3

Interrupts on the C8051

Interrupt Source Interrupt

Vector

Priority

Order

Interrupt Source Interrupt

Vector

Priority

Order

Reset 0x0000 Top Comparator 0 Falling Edge 0x0053 10

External Interrupt 0 (/INT0) 0x0003 0 Comparator 0 Rising Edge 0x005B 11

Timer 0 Overflow 0x000B 1 Comparator 1 Falling Edge 0x0063 12

External Interrupt 1 (/INT1) 0x0013 2 Comparator 1 Rising Edge 0x006B 13

Timer 1 Overflow 0x001B 3 Timer 3 Overflow 0x0073 14

UART0 0x0023 4 ADC0 End of Conversion 0x007B 15

Timer 2 Overflow (or RXF2) 0x002B 5 Timer 4 Overflow 0x0083 16

Serial Peripheral Interface 0x0033 6 ADC1 End of Conversion 0x008B 17

SMBus Interface 0x003B 7 External Interrupt 6 0x0093 18

ADC0 Window Comparator 0x0043 8 External Interrupt 7 0x009B 19

Programmable Counter

Array

0x004B 9 UART1 0x00A3 20

External Crystal OSC Ready 0x00AB 21

Interrupts and Priority Order

7 6 5 4 3 2 1 0

EA IEGF0 ET2 ES0 ET1 EX1 ET0 EX0

IE: Interrupt Enable Register (Bit Addressable)

7 6 5 4 3 2 1 0

ECP1R ICP1F ECP0R ECP0F EPCA0 EWADC0 ESMB0 ESPIO

EIE1: Extended Interrupt Enable 1 Register

7 6 5 4 3 2 1 0

TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0

TCON: Timer Control Register (Bit Addressable)

Embedded Control Lab Manual Chapter 1 - Introduction

i

Table of Contents

Chapter 1 - Introduction 1

Uses of Embedded Control 1

The Embedded Control Course 2

The Target Systems 2

Lab Manual and Assignments 3

Future of Embedded Control 4

Chapter 2 - Lab Equipment 5

Diagnostic Tools 5

Logic probe 5

Using the logic probe 6

Multimeter 7

Oscilloscope 7

Development Tools 7

Computers 7

8051 Software Installation and Configuration 8

Introduction 8

Using the SiLabs IDE and HyperTerminal Software / SecureCRT 9

File management on the computer 10

LITEC Multimedia Tutorials 10

Protoboards 11

Finding More Information 13

Chapter 3 - Programming in C 15

Brief Overview 15

A Simple Program in C 16

Syntax Specifics 16

Declarations 17

Repetitive Structures 18

Arrays 19

Operators 20

Programming Structure Hints 23

Specifics of the SDCC C Compiler 24

Library Functions 24

Comments 25

Definition of an Interrupt Handler Function 25

Limitations of the demo version 25

Chapter 1 - Introduction Embedded Control Lab Manual

ii

Chapter 4 - The Silicon Labs C8051F020 and the EVB 26

Powering the EVB 26

Input/Output Ports on the C8051 26

Setting Bits for Input or Output 28

Reading and Writing Individual Bits 28

Crossbar 30

Initializing the system 33

Timer Functions 34

System Clock (SYSCLK) 34

Timers* 34

Counter/Timers and Overflow 37

Counting External Events 38

Interrupts 39

Interrupts on the C8051 39

Interrupt Service Routines 41

Programmable Counter Array 43

Pulsewidth modulation 46

The C8051 A/D Converter* 54

Configuring the A/D converter 55

Serial Communication 60

SMBus and I2C bus 61

Chapter 5 - Circuitry Basics and Components 68

Building Circuits 68

Grounding 68

Noise 68

Preventing errors 68

Schematics 69

Chip handling precautions 70

The Buffer 70

The Inverter 71

Common Digital Gates 72

LEDs 73

Switches 74

Toggle and Push-button Switches 74

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Chapter 1 - Introduction

iii

Configuring switches for 0 or 5 volt digital output 75

Electric Compass 76

Ultrasonic Ranger 77

LCD and Keypad 78

Accelerometer 79

Wireless RF Serial Link Modules 80

Chapter 6 - Motor Control 82

Servo Motors 82

Actuation 82

Driver 83

DC Motors 83

Actuation 83

Speed Controller 84

Chapter 7 - Control Algorithms 86

Closed-Loop Control 86

Control Terms 88

Proportional Control 89

Proportional plus Integral Control (PI Control) 91

Proportional plus Derivative Control (PD Control) 92

Other Considerations 92

Chapter 8 - Troubleshooting 94

Hardware 94

Short Circuits 94

Crossed Wiring 95

Logical Errors 95

EVB Not Responding 95

Software 96

Output problems 96

Glossary 98

Appendix A - Programming Information 124

C functions 124

c8051f020.h header file 138

c8051_SDCC.h header file 145

Chapter 1 - Introduction Embedded Control Lab Manual

iv

i2c.h header file 147

Appendix B - Helpful Information 154

Resistor Color Code 154

Connections on the Smart Car 155

More Specifications on the C8051F020 EVB 156

Frequently Asked Questions 157

Appendix C - Course Syllabus & Policies 160

A few words on plagiarism: 168

Appendix D - Lab Assignments 169

Index 171

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Chapter 1 - Introduction

1

Chapter 1 - Introduction

Microprocessor-controlled systems have become ubiquitous in our day-to-day lives. In

addition to the microprocessor’s familiar role as the central processing unit (CPU) in a computer,

they are well suited to serve as dedicated controllers for various applications. For these dedicated

applications it proves cost effective to add hardware features directly into the microprocessor

silicon wafer. These typically include timers, analog-to-digital converters, digital-to-analog

converters, on chip memory, and serial bus interfaces. With such addition hardware, the chips are

called microcontrollers.

From the time you woke up this morning, you’ve probably interacted with at least a dozen

different systems that utilize a microcontroller. As an illustration, most of you have a digital alarm

clock that may have a small microcontroller in it. If you switched on your TV or stereo, then you’ve

probably interacted with another microcontroller. If you cooked your breakfast or lunch in a

microwave, then you’ve communicated your cooking instructions to its microcontroller. If you

chose instead to eat in the cafeteria and used your RAD card, then a microcontroller in the card

reader of the cash register processed your transaction. If you drove to class, your car may have fuel

control, emission control, anti-lock brakes, air bags...etc. Each of these typically has a dedicated

microcontroller.

Uses of Embedded Control

The term embedded refers to the fact that the microcontroller is an integral part of the unit that

it controls. Examples of systems that typically utilize an embedded microcontroller include:

Consumer products

Stopwatches, cell phones, mp3 players, alarm clocks, microwave ovens, dishwashers,

washing machines, printers, computer cards, telephones, FAX machines, photocopiers, cal-

culators, audio and video entertainment systems, camcorders, cameras, burglar alarms,

home thermostats, and countless electronic games and toys.

Embedded systems in automotive and related products

Anti-lock brakes, engine management, climate control, cruise control, automatic transmis-

sion, stereo systems, cellular phones, filling station gas pumps.

Medical and related systems

Cardiac defibrillators, cardiac monitors, sudden infant death syndrome (SIDS) monitors,

blood gas analyzers, breathalyzers, digital thermometers.

Chapter 1 - Introduction Embedded Control Lab Manual

2

Commercial products and applications

Barcode scanners, anti-theft systems in retail stores, vending machines, intelligent traffic

lights, remote data entry systems.

Military applications

Guided missiles, smart bombs, avionics, communication equipment, global positioning sat-

ellite (GPS) receivers, UAVs.

A number of different microcontrollers have been specifically designed for embedded control

applications. In this lab, you will be using a popular 8-bit microcontroller specifically designed for

embedded control, the Silicon Labs C8051F020. Considering its size, the C8051 is both powerful

and flexible and has proven ideal for many demanding consumer applications.

The Embedded Control Course

The purpose of this course is to introduce you to the development of an integrated embedded

control system. Through this experience, you will gain an understanding of how such systems are

designed and integrated into a typical consumer product. Whether your future job requires you to

develop cutting-edge sound equipment, design fuel-injection systems, or monitor the ozone layer,

the chances are very high that you will be involved with embedded control to some degree.

Therefore, with microcontroller-controlled systems playing an increasingly vital role in the world

we live in, this course can give you, no matter what your specialty, an enormous advantage over

those engineers who have never designed an embedded control system.

The Target Systems

There are three different, but closely related, objectives for the semester. At the end of the

semester you will have developed controllers for three types of systems, each using sensors and

actuators. Concepts learned to control the Smart Car in Lab 4 will be extended in two ways to

control the car on an incline and control the Gondola on a turntable. Both the Gondola and the

Smart Car have an on-board microcontroller, an electronic compass and an ultrasonic ranger. The

compass will control the steering servo on the car or the steering fan on the gondola. The ranger

will control various performance objectives on the car or on the gondola/turntable. The car will

prove useful in the development of the control algorithms.

The students’ goal with the car is to build the microcontroller interface circuitry and develop

the software, which will enable the car to follow the magnetic field in the Core Studio, along the

floor of the lab, as accurately as possible while monitoring the ranger. The distance reading of the

ultrasonic ranger is used to react to environmental changes. The code and knowledge gained will

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Chapter 1 - Introduction

3

be used to port that code to the gondola and implement control code on the turntable. The

development of the system is spread over several lab exercises, each moving to accomplish various

tasks.

The steering mechanism of the car consists of a servomotor that is connected to the front wheels

through push rods. A closed-loop steering control subsystem is developed to maintain the car on

the track by periodically reading the signals from the magnetic compass and determining corrective

steering action. On the gondola, it is much the same except the signals will control the speed and

direction of a fan mounted in the blimp tail.

A DC drive motor mounted at the back of the car powers the car. A separate control subsystem

is developed so that the distance reading of the ultrasonic ranger controls the power to the drive

motor and/or the steering servo. The code will then be modified to become closed-loop control of

the gondola by controlling the power to thrust fans based on the difference between the desired

distance and the actual distance.

Thus the basic system consists of an electronic compass and steering control subsystem to

maintain the orientation of the car or gondola modified by the ultrasonic ranger that may also

control the car’s movement or modify the gondola’s orientation. Additionally an accelerometer

will be introduced to measure the car’s pitch and roll on an incline and take action based on these

measurements.

As is standard engineering practice for a system as complex as the smart car and gondola, after

a system-level design, you will design, construct, and test one subsystem at a time. For the

hardware elements of most of these subsystems, we will guide you toward a solution that you are

free to use in other control system designs. However, if you think you have a better solution, or

you want to try something different, you are encouraged to do so. RPI students are known to be

exceptionally creative, and we encourage that creativity. However, keep in mind limitations of

time and the availability of materials. Your goal is to produce the best product you can by utilizing

the tools and materials available to you, within the time constraints of a one-semester course. And

there is an additional constraint - the gondola’s angular momentum must be taken into

consideration in the design of the control system.

Lab Manual and Assignments

The lab assignments will introduce you to several topic areas of embedded microcontroller

control, and will then help you to integrate what you learn at each stage into a working control

system. Since the goal of the final lab exercise is to integrate what you have learned and actually

built in all of the previous lab exercises, it is essential that you keep up with the work. The specific

lab assignments listed in Appendix E- Lab Assignments are listed on the LMS web page. These

include the necessary reading assignments, both in this manual and in the other sources, as well as

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/appendix_e.rtf%23_blank

Chapter 1 - Introduction Embedded Control Lab Manual

4

relevant interactive tutorials since much of this information may be new to you. It will be necessary

for you to read the assigned material before the start of each laboratory session, and it would be

enormously advantageous to work through the tutorials in advance of the lab session. Moreover,

the required reading material will be considered fair game on exams. Throughout the course,

homework will also be assigned along with short in-class exercises to assist you in preparing for

the lab exercises.

Future of Embedded Control

The applications of embedded control are limited only by one’s imagination and there is a

growing opportunity for engineers to utilize embedded control to solve a variety of important

problems of today and in the future. In the future, you will continue to see embedded control appear

in almost every household item. Some products may actually become feasible because of an

inexpensive embedded control system. For this reason, engineers from all areas and with different

specialties will at some time in their careers be involved with the development of systems that

utilize embedded control.

The microcontroller kit used in the course is available at the Computer Store in the VCC. At

the time of this printing, the price is $45. It doesn’t include everything you will be using this

semester, but it is remarkably self contained and ready to go out of the box. You might consider

this microcontroller for projects in other course.

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Chapter 2 - Lab Equipment

5

Chapter 2 - Lab Equipment

The Embedded Control Lab provides a complete suite of development and diagnostic tools to

aid you in the development of your embedded control system. You are expected to load the Silicon

Laboratory IDE software and the SDCC compiler on your laptop and to bring the laptop to every

class. The Integrated Development Environment, IDE, is a package of programs that allow you to

develop the software using the SDCC compiler for writing and compiling C codes for the C8051

on the EVB (evaluation board).

There are also several types of diagnostic tools available for you to use including logic probes,

multimeters, and oscilloscopes. These are indispensable aids for diagnosing problems with the

circuitry you will build, and the basic uses of these tools are described in the sections that follow.

Diagnostic Tools

Logic probe

The logic probe is a tool that is used to test digital circuitry. Most digital electronic circuitry

utilizes binary digital logic. This means that only two possible logic states, or levels, are recognized

by the circuitry. Commonly used designations for these levels are (1 and 0), (TRUE and FALSE),

and (HIGH and LOW). Depending on the type of electronic circuitry, the logic levels themselves

can be represented either by distinct current levels or by distinct voltage levels. The digital

circuitry that you will be using in your design work utilizes discrete voltage levels, by far the most

common type.

Digital circuitry is designed to recognize any voltage above a specified threshold as logic

HIGH, and any voltage below another specified threshold as logic LOW (nominally 0 volts). The

threshold voltages may vary among families of logic circuitry. The circuitry you will be using is

TTL† or TTL-compatible, which recognizes any voltage below 0.8 volts as logic LOW and any

voltage above 2.0 volts as logic HIGH (nominally 5 volts). Voltages between 0.8 and 2.0 volts are

considered ambiguous and hence undesirable.

 Although there may be differences between models, logic probes generally have two LEDs to

indicate logic state (HIGH or LOW), and one LED to indicate the occurrence of a transition

 Two examples are high-speed current mode logic (CML), and the 20mA current interface

utilized in the RS-232-C standard. In the latter, a 20mA current represents logic LOW, and zero

current represents logic HIGH.

† Transistor-Transistor Logic. Other logic families include complementary metal-oxide

semiconductor (CMOS) and emitter-coupled logic (ECL).

Chapter 2 - Lab Equipment Embedded Control Lab Manual

6

between logic states. Additionally, they usually have a switch to select between CMOS or TTL

circuitry, and another switch labeled pulse or memory (depending on the manufacturer) to turn a

transition memory mode on or off. When the tip of the logic probe is placed upon a digital data

line, the probe will yield the following types of information:

Logic state

The logic probe can indicate either of two possible logic states, LOW or HIGH, or neither of

these states, namely, the floating state. The first two states are indicated when the appropriately

labeled LED is on, and the floating state is indicated when neither the HIGH nor LOW LEDs are

on. A common situation where the floating state is indicated occurs when the probe touches a wire

that is entirely isolated from the circuit. Another floating state situation occurs when the probe is

touching a signal path that is connected only to a logic gate input terminal.

Logic transitions

By lighting its transition or pulse LED, the logic probe can also give an indication of whether

logic level transitions are occurring. Some probe models also emit a beep to indicate the occurrence

of a transition. Because logic level pulses can be extremely brief, perhaps on the order of nano- or

picoseconds, it may not be possible to observe the occurrence of such brief HIGH or LOW pulses

on the respective LEDs. However, the logic probe’s internal circuitry is designed to detect logic

transitions occurring as closely as 60 nanoseconds apart, and report these events by lighting its

pulse LED, and/or emitting a short beep. Most logic probes also have a transition memory or pulse

mode switch that simply causes the probe’s transition LED to remain lit indefinitely after a

transition is detected. The probe’s transition LED can then be cleared by manually turning the

transition memory mode switch off and on (i.e., toggling the switch).

Using the logic probe

The logic probe requires an external power source and should be connected to the same power

source utilized by the circuitry you are testing. The following list describes the steps necessary to

use the logic probe:

1. Connect the probe’s red and black power cord leads to +5 volts and ground

respectively on your protoboard.

2. Set the CMOS/TTL switch appropriately (in the lab, you will most likely be using

TTL components).

3. Set the pulse mode switch in accordance with how you plan to use the probe (see

Logic transitions on page 6)

4. Touch the probe’s tip to any signal path you wish to analyze, and the probe’s LEDs

will provide you with an indication of the logic activity.

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Chapter 2 - Lab Equipment

7

In the Embedded Control lab, the logic probe finds typical application in debugging logic

circuitry developed to interface to the C8051 microprocessor’s parallel I/O ports. Such circuitry is

developed by students to provide the means for the C8051 to control LED displays and/or stepper

motors or to read push-button switch settings. More information on the logic probe can be found

at flitec.rpi.edu in the Tutorials.

Multimeter

The multimeter is an instrument that can be used to measure AC and DC voltages and currents

or to measure resistance or to determine electrical continuity. The multimeter will be especially

useful for analyzing the analog circuitry. The multimeters in the lab are also able to test diodes by

using the setting marked by a diode symbol. The diode test feature also allows circuit continuity

to be tested. By placing the multimeter’s red lead on one point and the black lead on the other

point, the multimeter will emit a beep if the resistance between the two points is less than 200

More information on the multimeter can be found at flitec.rpi.edu in the Tutorials.

Oscilloscope

An oscilloscope is used to analyze high-speed analog or digital signals. The oscilloscope

provides a continuous representation of a signal in the form of a trace on its display screen. In

comparison, the logic probe and multimeter provide only discrete data readings. Oscilloscopes are

useful for determining the presence of unwanted voltage glitches or other types of noise on a signal

path. If you are unable to isolate a circuit problem with either the logic probe or multimeter, the

oscilloscope will provide a more complete “picture” of the signal.

The oscilloscope is somewhat more complicated to operate than either the logic probe or

multimeter, so if you would like to use it during a lab and are not familiar with its operation, please

asks the TA for assistance.

Development Tools

Computers

The software development tools that you will use will be run on your laptop computer. We

will help you install the software during the first week of classes. You can reinstall at any point, if

it becomes necessary.

The Silicon Labs C8051F020 evaluation boards (EVBs) use two ports (connections to your

computer.) One is a USB port that is used to load your code onto the microcontroller. The other is

a serial RS-232 port that can be used for data input or output while your program is running on the

microcontroller. Most laptop computers don’t have a serial port; it is handled by using a USB-to-

Serial adapter provided in the classroom. There is a driver that must be downloaded for the USB-

Chapter 2 - Lab Equipment Embedded Control Lab Manual

8

to-Serial adapter. If you are using the Vista operating system, you will allow your computer to

search the web to find the driver. We have installation links for other operating systems.

Any user input to the code running on the C8051 microcontroller and any ASCII output will

be displayed on your laptop using terminal emulator software. SecureCRT is the recommended

package and it is available free from the Help Desk in the VCC for any of the RPI machines. Other

options include HyperTerminal and PuTTY. Both are available for free from the web.

HyperTerminal is built into Windows XP but not Vista.

The installation instructions on LMS will be the most up-to-date ones available. What follows

is for your convenience, but may be slightly dated.

8051 Software Installation and Configuration

Introduction

The SiLabs IDE is a convenient way to edit, compile, and download source code written for

the microcontroller. While SiLabs provides a nice interface for making source code changes and

easily downloading them to the development boards, it lacks the actual compiler portion, which

converts C code to hex files, the common format used by the 8051. To do this, a free and widely

used open source tool called Small Device C Compiler (SDCC) is used. SDCC compiles the C

code written, and automatically optimizes and converts it to hex. Due to its popularity, support for

SDCC in the SiLabs IDE comes standard, making it easy and convenient to use.

The detailed instructions for installing the SiLabs IDE and SDCC compiler are in a file on the

main course web page, called Installing_SiLabs-SDCC-Drivers_Win7.docx. This file is updated

frequently to be compatible with the dynamic web page URLs that are constantly changing. The

instructions guide you step-by-step through the procedures to:

1. Download and install the SDCC compiler for code compilation

2. Download and install the IDE for code development and execution in the EVB

3. Add required C language support files for the EVB

4. Create a “Project” for each new lab assignment

5. Compile program files in a “Project”

6. Download and install support tools and Windows drivers

7. Provide a reference list of common problems and solutions

It cannot be emphasized enough that these instructions must be followed extremely carefully

in order to be able to complete all the software assignments for homework and lab exercises

required by this class.

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Chapter 2 - Lab Equipment

9

Using the SiLabs IDE and HyperTerminal Software / SecureCRT / PuTTY

You can use either the HyperTerminal software (or SecureCRT/PuTTY) for serial

communication on the computer. This will be used to receive information from the C8051

microcontroller. PuTTY is the preferred software.

If you choose the HyperTerminal, you can use the icon for the c8051.ht HyperTerminal

communication link on your desktop (or elsewhere if you chose a different destination during

installation described above). Double-click this icon to begin the communication link. Once the

program begins, it will automatically attempt to establish a connection. You may disconnect this

connection by selecting “Disconnect” in the “Call” menu or clicking the “Disconnect” icon. If you

need to change any settings, you should disconnect the call.

The first time you use this software, you should check the properties for this communication

link. Under the “File” menu, choose the “Properties” menu item. For use on an RPI laptop with a

serial port, the software should connect using COM1. For laptop computers using the USB-to-

serial adapter, one must check the COM port number in the device manager; right click my

computer and select properties -> hardware -> device manager -> Ports. Find the COM port

number there. Windows 8 users just type “device manager” in the search window.

On the Properties window, click on the “Configure” button below the COM port selection. The

COM port properties should be set as follows:

– Bits per second: 38400

– Data bits: 8

– Parity: None

– Stop bits: 1

– Flow control: None

Click “OK” on both windows to close them and save any changes made.

To establish a connection, select “Call” under the “Call” menu, or click on the “Call” icon.

Once the microcontroller is running a program, any screen outputs will appear in the

HyperTerminal window.

If you choose the SecureCRT or PuTTY, the details are quite similar. After opening the

SecureCRT software window, under the “File” menu, select “Connect (Alt + C)”. Choose a new

Session by selecting “Serial” under the “Protocol” drop-down list. Then set the Port, BaudRate,

Databits, Parity, and Stopbits similar to the HyperTerminal as described above. Make sure that all

the FlowControls are unchecked.

Chapter 2 - Lab Equipment Embedded Control Lab Manual

10

File management on the computer

It is strongly recommended that you create a folder for your code files. A good option is to

create a folder within the C:\SiLabs\MCU folder. We will assume you have named that folder

“Projects” for this manual, C:\SiLabs\MCU\Projects.

For file management on your laptop computers, remember to keep backup copies of your

programs and other documents on a CD, a USB drive, or on your RCS account. Make sure that

all partners have access to the backup files. Loss of files or inaccessible files is not a valid

excuse for late work. Always keep a copy of your current project code on a USB thumb drive!

LITEC Multimedia Tutorials

The on-line tutorials contain much of the information needed for the course along with

additional information on many other subjects extending beyond the required course material.

While information found in the lab manual is often duplicated in the tutorials, some topics are

covered in more detail in the latter.

The LITEC tutorials were originally developed using HyperCard, a development system used

to create custom applications on the Macintosh. They have since been converted to the hypertext

markup language (HTML) and are available on-line via the RPILMS class pages. A user can

navigate through the tutorials to find further information by clicking on the various hypertext links

within the website. The tutorials are available under the course materials on RPILMS

(htpps://lms.rpi.edu).

The “main menu” of topics can be found on the top of the window and is always available to

navigate to a new area of interest. These general topics can be selected by simply clicking on the

topic name. A sub-menu of topics will then be listed below the main menu. Clicking on the items

in the sub-menu will bring up the desired information in the main lower window. You will find

that the tutorials contain helpful information on the lab assignments, hardware (circuit components

and tools) and software aspects of the lab, and the basic concepts that you will be learning in this

course. Additionally, the tutorial for each lab assignment contains a list of pertinent topics for that

particular lab.

To exit the tutorials, either select the Close option from the File menu located in the title bar

of Internet Explorer or simply click on the X button on the top right corner of the title bar.

Using the tutorials

Upon starting the tutorials, new users find that it takes just a bit of exploring and experimenting

before they quickly gain a feeling for how the tutorials work and how to find information within

them.

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Chapter 2 - Lab Equipment

11

Connecting and downloading to the EVB

After successfully compiling and linking code in a project, you are ready to download it to the

EVB on the cars for execution. Make sure the USB debug adapter from the car is plugged into

your laptop. The Connect button on the toolbar will start the computer communicating with the

EVB - you may have to wait a short time while the connection is established. Remember that the

EVB must be powered in order for it to communicate with the computer. Once the connection is

made, you can download your program using the Download code button on the toolbar. Once the

code has finished downloading, choosing the “Go” icon or option in the “Debug” menu can start

it.

If the code is correct, it will begin running and you can observe the results. The code will

continue to run until the program ends, or until the “Stop” icon is selected.

Output from the EVB

If your program is going to produce some sort of text output, you will need to use a program

called SecureCRT, HyperTerminal or PuTTY to show the output. SecureCRT is recommended for

Embedded Control and the one that is best supported.

Protoboards

A protoboard is often used to test a logic circuit before the design is transferred to a printed

circuit board. By first building the circuit on a protoboard, a circuit designer is able to test the

functionality of the circuit and easily make necessary changes.

The type of protoboard you will be using has been specially designed to be mounted on the

chassis of the Smart Car. Figure 2.1 shows how this protoboard should be used.

Chapter 2 - Lab Equipment Embedded Control Lab Manual

12

Figure 2.1 - Smart Car Protoboard

This protoboard has a ribbon cable connector for connecting to an EVB (or EVBU), a wire-

insertion block strip to connect to the EVB pins, and a main wiring area where circuits are

developed. In the wiring area shown in Figure 2.1, the lines indicate that the “holes” in the

protoboard are connected underneath. This figure also illustrates how to properly position a chip

along specific columns on the protoboard surface so that none of its pins are shorted together.

As you begin to assemble your circuitry on the protoboard, please take note of following

suggestions and tips:

1. Thoroughly familiarize yourself on how the holes on the protoboard are connected.

2. Insert chips only in the special columns on the protoboard as illustrated in Figure 2.1.

3. Use black wire only for ground connections and red wire only for +5 volts. Do

not use red or black wire for any other purpose. This is an industry-wide standard

that should be followed.

If you follow the suggestions for neat wiring and the red/black color convention for power and

ground, it will be much easier for you and your TA to diagnose any circuit problems. The key to

successful protoboarding is to adopt meticulous wiring methods. Such methods will help you avoid

making wiring mistakes in the first place, will make troubleshooting easier, and will result in a

much more impressive-looking project!

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Chapter 2 - Lab Equipment

13

Finding More Information

All of the information you will need for this course should be in this manual, but you may want

to know more about some of the equipment or circuit components. The following list summarizes

the manuals that are available for you to use in the lab.

 C8051F02x Manual

 SDCC Manual

Both manuals are available on RPILMS and the SDCC and SiLabs websites.

Chapter 2 - Lab Equipment Embedded Control Lab Manual

14

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Chapter 3 - Programming in C

15

Chapter 3 - Programming in C

Since the heart of an embedded control system is a microcontroller, we need to be able to

develop a program of instructions for the microcontroller to use while it controls the system in

which it is embedded. When programs are developed on the same type of computer system on

which they will be run, as is most commonly done, it is called native platform development. An

example of native platform development is the use of Borland’s C/C++ to develop a program on

an Intel or AMD-based computer such as an Windows PC, and subsequently running the program

on the same computer.

However, the type of program development that you will be doing in this course is known as

cross platform development, where your laptop computer (one platform) is used to develop

programs that are targeted to run on the SiLabs C8051F020 EVB (another platform). Thus, even

before such a program can be tested, it must be transmitted (downloaded) from the computer to

the EVB.

For this embedded microcontroller, we will be using a programming language called 'C'. C is

extremely flexible, and allows programmers to perform many low-level functions that are not

easily accessible in languages like FORTRAN or Pascal. Unfortunately, the flexibility of C also

makes it easier for the programmer to make mistakes and potentially introduce errors into their

program. To avoid this, you should be very careful to organize your program so that it is easy to

follow, with many comments so that you and others can find mistakes quickly. The example

programs were written with this in mind, so that you get an idea of what well-structured programs

look like. In order to get you started in C programming, this chapter will explain the basics that

you will need to begin. If you would like more examples, they can be found in the LITEC Tutorials

under Software: C Programming.

Brief Overview

As stated above, the C language allows many things that other languages do not, making it

very easy to make errors. For this reason, it is suggested that you study this entire unit, including

the tutorials if necessary, and become familiar with the specifics before beginning the labs.

Although this may seem like a lot of work before the first lab, it will be worth your time and will

pay off quickly. If there is a question you have regarding the C language that is not included in the

manual, or in the tutorials, you will probably find the answer in a C reference text.

Chapter 3 - Programming in C Embedded Control Lab Manual

16

A Simple Program in C

The following program is similar to the first programming example used in most C

programming books and illustrates the most basic elements of a C program.

#include <stdio.h> /* include file */

main() /* begin program here */

{ /* begin program block */

 printf(“Hello World\r\n”);

 /* send Hello World to the terminal */

} /* end the program block */

The first line instructs the compiler to include the header file for the standard input/output

functions. This line indicates that some of the functions used in the file (such as printf) are not

defined in the file, but instead are in an external library (stdio.h is a standard library header file).

This line also illustrates the use of comments in C. Comments begin with the two character

sequence “/*” and end with the sequence “*/”. Everything between is ignored and treated as

comments by the compiler. Nested comments are not allowed.

The second line in the program is main(). Every C program contains a function called

main() which is the function that executes first. The next line is a curly bracket. Paired curly

brackets are used in C to indicate a block of code. In the case above, the block belongs to the

main() statement preceding it.

The printf line is the only statement inside the program. In C, programs are broken up into

functions. The printf function sends text to the terminal. In our case, the C8051 will send this

text over the serial port to a “computer terminal”, where we can view it. (You will use software on

your laptop to simulate a terminal.) This line also illustrates that a semicolon follows every

statement in C. The compiler interprets the semicolon as the end of one statement, and then allows

a new statement to begin.

You may also notice that the comment after the printf statement continues over more than

one line. It is important to remember that the compiler ignores everything between the comment

markers. (See Specifics of the SDCC Compiler)

The last line is the closing curly bracket that ends the block belonging to the main function.

More examples can be found in the tutorials under the C examples section.

Syntax Specifics

There are many syntax rules in C, but there is neither room nor time here to discuss everything

in this manual. Instead, we explain the basics, along with the specifics of the SDCC C Compiler,

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Chapter 3 - Programming in C

17

which are not in your textbook. Additional information about the C language can be found in the

tutorials, and in any C reference text.

Declarations

One thing that was distinctly missing from the first example program was a variable. The type

of variables available with the SDCC C Compiler for the C8051 microcontroller and their

declaration types are listed below in Table 3.1:

Table 3.1 - SDCC C Compiler variable types

Type* Size (bytes) Smallest Value Largest Value

integer

(unsigned) char 1 0 255

signed char 1 -128 127

(signed) short 2 -32768 32767

unsigned short 2 0 65535

(signed) int 2 -32768 32767

unsigned int 2 0 65535

(signed) long 4 -2147483648 2147483647

unsigned long 4 0 4294967295

floating point

float 4 1.2 x 10-38 1.2 x 1038

SDCC specific

bit 1/8 = 1 bit 0 1

sbit 1/8 = 1 bit 0 1

The format for declaring a variable in a C program is as follows:

 <type> variablename;

For example, the line

 int i;

would declare an integer variable i. Although there are a large variety of variable types available,

it is important to realize that the larger the size of the data type, the more time will be required by

the C8051 to make the calculations. Increased calculation time is also an important consideration

* The items in parentheses are not required, but are implied by the definition. We recommend

that you state these definitions explicitly to avoid errors due to misdefinition.

Chapter 3 - Programming in C Embedded Control Lab Manual

18

when using floating-point variables. It is suggested that in the interest of keeping programs small

and efficient, you should not use floating point numbers unless absolutely necessary.

Repetitive Structures

Computers are very useful when repeating a specific task and almost every program utilizes

this capability. The repetitive structures for, while, and do…while are all offered by C.

for Loops

The most common of looping structures is the for loop, which looks like this

 for (initialize_statement; condition; increment) {

 ...

 }

In the example above, the for loop will perform the “initialize_statement” one time

before commencing the loop. The “condition” will then be checked to make sure that it is true

(non-zero). As long as the “condition” is true the statements within the loop block will be

performed. After each loop iteration, the increment statement is performed. For example:

 for (i=0; i<10; i++) {

 display(i);

 }

The statement above will initially set i equal to zero, and then call a user-defined function

named display()10 times. Each time through the loop, the value of i is incremented by one.

After the tenth time through, i is set to 10, and the for loop is ended since i is not less than ten.

while Loops

Another frequently used loop structure is the while loop, which follows this format

 while (condition){

 ...

 }

When a while loop is encountered, the condition given in parenthesis is evaluated. If the

condition is true (evaluates to non-zero), the statements inside the braces are executed. After the

last of these statements is executed, the condition is evaluated again, and the process is repeated.

When the condition is false (evaluates to zero), the statements inside the braces are skipped over,

and execution continues after the closing brace. As an example, consider the following:

 i = 0;

 while (i<10)

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Chapter 3 - Programming in C

19

 {

 display(i);

 i++;

 }

The above while loop will give the same results as the preceding example given with the

for loop. The variable i is first initialized to zero. When the while is encountered in the next

line, the computer checks to see if i is less than 10. Since i begins the loop with the value 0

(which is less than ten), the statements inside the braces will be executed. The first line in the loop,

i++, increments i by 1 and is equivalent to i=i+1. The second line calls a function named

display with the current value of i passed as a parameter. After display is called, the

computer returns to the while statement and checks the condition (i < 10). Since after the

first iteration of the loop the value of i is 1, the condition (i < 10) evaluates to logical TRUE

or equivalently “1”, the loop will again be executed. The looping will continue until i equals 10

when the condition (i < 10) will evaluate as being false. The program will then skip over all

the statements within the braces of the while construct, and proceed to execute the next statement

following the closing brace “}”.

Arrays

It may be necessary to store a list or table of values of the same type that you want to associate

in some way. An array can be used to do this. An array is a group of memory locations all of the

same name and data type. Each memory location in the array is called an element and is numbered

with the first element as number “0”. Note: Be aware, though, that arrays can quickly use up the

available variable space, and the compiler does not necessarily check this potential problem. The

array is declared with the type of data to be stored in the array as follows:

 <type> arrayname[maxsize];

For example, the lines

 int values[10];

 float timer[60]; /* floating point arrays may take up a lot of memory */

would declare an array named values that can store up to ten integers (values[0].... values[9]) and

an array named timer that can store up to sixty floating point values (timer[0].... timer[59]). The

array can be initially filled with values when it is declared, or it can later be filled with data by the

program as follows:

 int c[5]={23, 10, 35, 2, 17}; /* c[0]...c[4] is filled with listed values */

 int f[5]={0}; /* f[0]...f[4] is filled with zeros */

 for (i=0;i<=4;i++)

 f[i]=i; /* fills the elements of f[0]..f[4] with 0..4 */

Chapter 3 - Programming in C Embedded Control Lab Manual

20

Arrays can also have multiple dimensions. A simple example is an array with multiple rows

and columns. These arrays can also be initialized and filled as follows. The simplest way to reset

an entire array within a program is using for() loops that clear every element individually.

 int data[2][10]={{0},{0}}; /* initialized data to have 2 rows and 10 columns filled with

zeros –initialization only works when variable is declared */

 data[0][5]=26; /* puts the value 26 into the element at row 0, column 5 */

 data[1][9]=5; /* puts the value 5 into the element at row 1, column 9 */

Operators

In addition to a full complement of keywords and functions, C also includes a full range of

operators. Operators usually have two arguments, and the symbol between them performs an

operation on the two arguments, replacing them with the new value. You are probably most

familiar with the mathematical operators such as + and -, but you may not be familiar with the

bitwise and logical operators which are used in C. Table 3.2 - Table 3.7 list some of the different

types of operators available. The operators are also listed in the order of precedence in Table 3.8.

Similar to operation precedence in algebra where multiplication precedes addition, all C operators

obey a precedence, which is summarized in Table 3.8.

Mathematical

The symbols used for many of the C mathematical operators are identical to the symbols for

standard mathematical operators, e.g., add “+”, subtract “-”, and divide “/”. Table 3.2 lists the

mathematical operators.

Table 3.2 - Mathematical operators

operator description

* multiplication

/ division

% mod (remainder)

+ addition

- subtraction

Relational, Equality, and Logical

The C language offers a full range of control structures including if…else, while,

do…while, and switch. Most of these structures should be familiar from previous computing

classes, so the concepts are left to a reference text on C. In C, remember that any non-zero value

is true, and a value of zero is false. Relational, equality, and logical operators are used for tests in

control structures, and are shown in Table 3.3. All operators in this list have two arguments (one

on each side of the operator).

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Chapter 3 - Programming in C

21

Table 3.3 - Relational, equality, and logical operators

operator description operator description

< less than == equal to

> greater than != not equal to

<= less than or equal to || logical OR

>= greater than or equal to && logical AND

Bitwise

C can perform some low-level operations such as bit-manipulation that are difficult with other

programming languages. In fact, some of these bitwise functions are built into the language. Table

3.4 summarizes the bitwise operations available in C.

Table 3.4 - Bitwise and shift operators

operator description example result

& bitwise AND 0x88 & 0x0F 0x08

^ bitwise XOR 0x0F ^ 0xFF 0xF0

| bitwise OR 0xCC | 0x0F 0xCF

<< left shift 0x01 << 4 0x10

>> right shift 0x80 >> 6 0x02

Table 3.5 - Truth Tables
 X|Y=Q X&Y=Q

X Y Q X Y Q

0 0 0 0 0 0

0 1 1 0 1 0

1 0 1 1 0 0

1 1 1 1 1 1

Unary

Some C operators are meant to operate on one argument, usually the variable immediately

following the operator. Table 3.6 gives a list of those operators, along with some example for

reference purposes.

Assignment

Most mathematical and bitwise operators in the C language can be combined with an equal

sign to create an assignment operator. For example a+=3; is a statement which will add 3 to the

Chapter 3 - Programming in C Embedded Control Lab Manual

22

current value of a. This is a very useful shorthand notation for a=a+3;. Note all 10 variations

on this syntax that are shown in Table 3.8 on page 23. All of the assignment operators have the

same precedence as equals, and are listed in the precedence table.

Miscellaneous

Many of the operators in C are specific to the syntax of the C language, and bear other

meanings depending on their operands. Table 3.7 below is a list of some miscellaneous operators

that are specific to the C language. This table has been included only as a reference, and you may

wish to refer to a C reference manual for complete descriptions of these operators

Table 3.6 - Unary operators

operator description example equivalent

++ post-increment j = i++; j = i;

i = i + 1;

++ pre-increment j = ++i; i = i + 1;

j = i;

-- post-decrement j = i--; j = i;

i = i - 1;

-- pre-decrement j = --i; i = i - 1;

j = i;

* pointer dereference *ptr value at a memory location

whose address is in ptr

& reference (pointer) of &i the address of i

+ unary plus +i i

- unary minus -i the negative of i

~ ones complement ~0xFF 0x00

! logical negation !(0) (1)

Table 3.7 - Miscellaneous operators

operator description

() function call

[] array

-> pointer to structure member access

. structure member access

(type) type cast

sizeof size of type (in bytes)

?: if ? then: else

, combination statement

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Chapter 3 - Programming in C

23

Precedence and Associativity

All operators have a precedence and an associativity. Table 3.8 illustrates the precedence of all

operators in the language*1

. Operators on the same row have equal precedence, and precedence

decreases as you move down the table.

Table 3.8 - Operator precedence and associativity

Operators† associativity

() [] ->. left to right

! ~ ++ -- * & (type) sizeof right to left

* / % left to right

+ - left to right

<< >> left to right

< <= > >= left to right

== != left to right

& left to right

^ left to right

| left to right

&& left to right

|| left to right

?: right to left

= += -= *= /= %= &= ^= |= <<= >>= right to left

, left to right

Programming Structure Hints

The C programs you develop should be written in a style that is easy for yourself and others to

read and maintain (modify). Since issues pertaining to programming style are the topic of entire

textbooks, the following are a few helpful guidelines and hints that are generally regarded as

hallmarks of good programming style.

– Strictly follow the C style convention for the indentation of blocks of code.

– Select identifier names for C variables and functions that implicitly describe their

functionality.

* Kernighan and Ritchie, The C Programming Language

† This table is from Kernighan and Ritchie, The C Programming Language.

Chapter 3 - Programming in C Embedded Control Lab Manual

24

– Keep the scope of all variables as local within functions unless absolutely necessary to

globalize their scope.

– As much as possible, encapsulate the functionality of chunks of code into C functions,

i.e. adopt a modular programming style. It is especially important to avoid having

functionally equivalent copies of code dispersed throughout a project comprising one

or more files. If the functionality of similar chunks of code can be encapsulated into a

single C function, not only will this result in a reduction of the number of lines of code,

but also more of the code maintenance can be isolated to solitary functions.

– Use comments liberally throughout a program. A good rule of thumb is to include a

descriptive comment for about every three lines of code. Comments are extremely

helpful when referring to old code or someone else’s code.

– For convenience, a decimal/hexadecimal/binary conversion table is included below:

Decimal Hexadecimal Binary Decimal Hexadecimal Binary

0 0x0 0000 8 0x8 1000

1 0x1 0001 9 0x9 1001

2 0x2 0010 10 0xA 1010

3 0x3 0011 11 0xB 1011

4 0x4 0100 12 0xC 1100

5 0x5 0101 13 0xD 1101

6 0x6 0110 14 0xE 1110

7 0x7 0111 15 0xF 1111

Specifics of the SDCC C Compiler

The Small Device C Compiler is specifically built for programming microcontrollers including

the 8051 series microcontroller. SDCC is free, open-source software available for download to

anyone.

Library Functions

As seen in the prior example programs, most of the things done in C (with the exception of

low-level functions) involve using library functions. All compilers have their own library

functions, but they are usually very close to those defined by the ANSI standard. The SDCC C

compiler is no exception since it includes most of the ANSI functions and contains some

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Chapter 3 - Programming in C

25

extensions specifically for the C8051. A list of useful functions is included in Appendix A -

Programming Information for your reference.

In particular, it must be noted that SDCC supports two separate print functions: printf()

and printf_fast_f(). Both are described in Appendix A. The first, printf(), should be

used regularly but note that it can’t be used to print floating point variables. When floating point

variables must be printed the printf_fast_f() function is needed. Also pay attention to using

the proper type %d, %i, %u, %l, %x, %lu, and %f with the variable. An unsigned long variable

can be printed as %d without any error or warning but the output will not be what would

be expected.

Comments

In accordance with the ANSI standard, nested comments (comments within comments) are not

allowed.

Definition of an Interrupt Handler Function

The SDCC C compiler will generate a function as an interrupt handler if it is defined as such

using the __interrupt keyword in the function definition. The __interrupt keyword is not

portable to most other compilers. If you wish to test compile your code on another compiler, such

as Borland C/C++ or gcc on RCS, you will need to remove __interrupt from your function

prototypes and definitions.

Limitations of the demo version

The Silicon Labs IDE that comes with the develop kits natively supports a variety of

microcontroller compilers, including SDCC. Since both are available online, all code can be tested

for compilation errors just as it would work within the lab.

If you desire to use your knowledge from this course to include an embedded microcontroller

in a project in IED or the MDL, you may be able to purchase one at the VCC Computer Store.

They may have to order the microcontroller, so be aware that a delivery time will exist.

file:///C:/Documents%20and%20Settings/C/My%20Documents/Downloads/appendix_a.rtf%23_blank

Chapter 4 - The Silicon Labs C8051F020 and the EVB Embedded Control Lab Manual

26

Chapter 4 - The Silicon Labs C8051F020 and the EVB

Each station in the lab has been provided with a Silicon Labs C8051F020 EVB (EValuation

Board). The EVB consists of a C8051F020 microcontroller (64k bytes of internal flash and 4k

bytes of internal RAM), and an RS232 transceiver and connector that provide a means of serial

communication between the EVB and the host computer. The EVB also has a ribbon cable

connector that is used to connect the EVB to a protoboard where students build their circuitry.

Since the EVB is itself a computer, after a program is downloaded from the computer to the EVB

and begins running, the serial cable between the EVB and the computer may be disconnected

without affecting the operation of the program running on the EVB. If you would like more

detailed information on the Silicon Labs C8051F020 (sometimes called the SiLabs C8051 for

short) or the EVB, the Silicon Labs C8051F020 Reference Manual is available on RPILMS and at

www.silabs.com.

Powering the EVB

When the car is at the station, the charger and battery should always be connected to the

appropriate connections on the Smart Car power board (See Appendix C - Helpful Information).

When the EVB is not in use, as when the student is writing code on the computer, the EVB switch

on the side of the protoboard mounting should be in the off position, turning the red LED off. When

the student leaves the lab, they should make sure the charger is plugged in and the EVB switch is

in the off position.

Input/Output Ports on the C8051

The C8051 has seven ports, P0 through P7, which can be used for digital input or output. In

this class, we will only be using ports 0 through 3, which are all 1 byte (i.e., 8 bits) wide - these

ports are addressable as 1-byte entities, or else you can address the individual pins of the port.

When the C8051 reads one of its digital ports, 0 volts on the data line of the port is interpreted as

logic FALSE and 3+ volts is interpreted as logic TRUE. Ports 0 through 3 each has a data register

and an output mode register associated with it. Sections to follow will cover reading from and

writing to individual bits within these 1-byte entities.

 Portions of this chapter are taken from the Silicon Laboratories C8051F020 Reference

Manual, copyright 2004. All rights reserved, used with permission.

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC
file:///C:/Documents%20and%20Settings/C/Application%20Data/My%20Documents/appendix_c.rtf%23_blank

Embedded Control Lab Manual Chapter 4 - The Silicon Labs C8051F020 and the EVB

27

Table 4.1 - Predefined port addresses

Port Associated Data

Register

Associated Output

Mode Register

Other Associated Registers

Port 0 P0 P0MDOUT

Port 1 P1 P1MDOUT P1MDIN - Port 1 Input Mode Register

Port 2 P2 P2MDOUT

Port 3 P3 P3MDOUT P3IF - Port 3 Interrupt Flag Register

Port 4 P4 P74OUT

Port 5 P5 P74OUT

Port 6 P6 P74OUT

Port 7 P7 P74OUT

7 6 5 4 3 2 1 0

Px.7 Px.6 Px.5 Px.4 Px.3 Px.2 Px.1 Px.0

Px: Portx Data Register, x = 0…7

Note that these data register are both bit- and byte-addressable - this means that each bit can

be written to or read from individually using its assigned name or the register as a whole can be

written to or read from. For example, bit 7 of Port 0 can be set to logic 1 using the code:

 __sbit __at 0x87 bit7; /* create sbit for Port 0, pin 7 */

 bit7 = 1; /* set just pin 7 of Port 0 to high */;

that sets the particular bit to 1, or using the line:

 P0 |= 0x80;

that uses a bitwise “Or” operator to “mask” the bits that are not to be changed and set the desired

bit.

As the name implies, the output mode registers are used to set the output mode for the

associated port.

7 6 5 4 3 2 1 0

 Bits 7-0: PxMDOUT.[7:0]: Port x Output Mode Bits

 0: Port Pin output mode is configured as Open-Drain (input).

 1: Port Pin output mode is configured as Push-Pull (output).

 PxMDOUT: Portx Output Mode Register, x = 0...3

Chapter 4 - The Silicon Labs C8051F020 and the EVB Embedded Control Lab Manual

28

For more information on the I/O ports and their associated registers, see p.164 in the

C8051F020 Reference Manual.

Setting Bits for Input or Output

A Port pin is configured as a digital input by setting its output mode to “Open-Drain” and

writing a logic 1 to the associated bit in the Port data register. For example, P3.7 (Port 3, bit 7) is

configured as a digital input by setting P3MDOUT.7 (Port 3 Output Mode register, bit 7) to a logic

0 and P3.7 to a logic 1. The following lines of code illustrate one way to do this in your program:

 P3MDOUT &= ~0x80; // Configure Port 3, pin 7 to Open Drain mode

 P3 |= 0x80; // Set Port 3, pin 7 equal to 1 (logic high)

A Port pin can be configured as a digital output by setting its output mode to “Push-Pull”, as

in the following code:

 P2MDOUT |= 0x04; // Configure Port 2, pin 2 to Push-Pull mode

Digital output can also be performed in Open-Drain mode, but for the purposes of this course,

we will be using Push-Pull mode for output. For further information on the output modes, refer to

the C8051F020 Reference Manual, p. 161.

Reading and Writing Individual Bits

For a program to read the value of a particular bit of a digital input port, it is sometimes

necessary (or just easier) to first read the entire port (all 8 bits), and then, with a second operation

called masking, to determine the value of any individual bit. Similarly, for a program to change a

particular bit it may be necessary or desirable to write to the entire byte. This section will cover

the techniques that are applied to read and write individual bits within a register.

Example 4.1 below illustrates a code segment from a C program which will set bits 0 - 1 of

port 2 and bits 3-6 of port 3 for output, while setting bits 4 - 7 port 2 and bits 0 - 2 of port 3 for

input. The remaining bits of both ports should not be touched and are to be left as they are. The

program will then enter a loop to read bit 4 of port 2 through masking. The masking operation sets

those bits that are not of interest to 0, thereby ignoring the state of all bits on port 2 except those

of interest (P2.4). In Example 4.1, the variable value will equal 0x10 if the state of P2.4 is high,

and value will equal 0x00 if the state of P2.4 is low. Upon determining that bit 4 of port 2 is

logic TRUE (1), the program will then set bits 4 and 6 of port 3 to TRUE (1) and bits 3 and 5 of

port 3 to logic FALSE (0).

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Chapter 4 - The Silicon Labs C8051F020 and the EVB

29

OD -> Open-Drain, PP -> Push-Pull, XX -> Don’t Touch, in -> input, out -> output

Port 2:

MODE (P2MDOUT) OD OD OD OD XX XX PP PP (0000 XX11 => in in in in xxx xxx out out)

IMPEDANCE (P2) HI HI HI HI -- -- -- -- (1111 XXXX)

Port 3:

MODE (P3MDOUT) XX PP PP PP PP OD OD OD (X111 1000 => xxx out out out out in in in)

IMPEDANCE (P3) -- -- -- -- -- HI HI HI (XXXX X111)

 char value, mask;

 mask = 0x10; // "anding" mask to ignore all but bit 4

 P2MDOUT |= 0x03; // Port 2, pins 0-1 push-pull

 P2MDOUT &= 0x0F; // Port 2, pins 4-7 open-drain

 P2 |= ~0x0F; // Set pins 4-7 of Port 2 to 1

 // this will always be the ~ of the MDOUT "&=" value

 P3MDOUT |= 0x78; // Port 3, pins 3-6 push-pull

 P3MDOUT &= 0xF8; // Port 3, pins 0-2 open-drain

 P3 |= ~0xF8; // Set pins 0-2 of Port 3 to 1

 // this will always be the ~ of the MDOUT "&=" value

 do

 {

 value = P2 & mask;

 while (value != mask); // do while bit 2.4 is LOW

 }

 // Want P3 <- X101 0XXX

 P3 |= 0x50; // 0x50 in binary is: 0101 0000, use to set bits to 1

 P3 &= 0xD7; // 0xD7 in binary is: 1101 0111, use to set bits to 0

Example 4.1 - Setting bits of Ports 2 and 3 for input and output, and waiting until bit 4 of Port

2 goes HIGH

Individual bits in a register may be written to by using bitwise operations. Example 4.2

illustrates clearing certain bits in a port while leaving other bits unchanged, and also setting only

certain bits in a port.

P2 = P2 & 0x6A; // Clear bits 0,2,4 and 7 in port 2, don’t change bits 1,3,5 and 6

P3 |= 0x95; // Set bits 0,2,4 and 7 in port 3, don’t change bits 1,3,5 and 6

Example 4.2 - Setting and clearing bits

The first line in Example 4.2 performs a bitwise “and” between the current state of Port 2 and

0x6A (binary 0110 1010). This will clear (set them low) bits 0, 2, 4 and 7 while leaving the other

bits in the register unchanged. The second line in the example sets bits 0, 2, 4 and 7 (sets them

high) by performing a bitwise “or” between the current state of the register and 0x95 (binary 1001

0101).

Chapter 4 - The Silicon Labs C8051F020 and the EVB Embedded Control Lab Manual

30

Crossbar

The C8051 EVB comes equipped with a number of “digital peripherals”, such as timers, a

Programmable Counter Array (see “Programmable Counter Array” on page 44), etc. These

peripherals do not have dedicated I/O pins; rather, the Crossbar assigns them pins for input and

output.

Figure 4.1 - Priority Crossbar Decode Table

The Priority Crossbar Decoder, or “Crossbar”, allocates and assigns Port pins on Port 0 through

Port 3 to the digital peripherals (UARTs, SMBus, PCA, Timers, etc.) on the device. The Port pins

are allocated in order starting with P0.0 and continue through P3.7 if necessary. The digital

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Chapter 4 - The Silicon Labs C8051F020 and the EVB

31

peripherals are assigned Port pins in a priority order that is listed in Figure 4.1 with UART0 having

the highest priority and CNVSTR having the lowest priority.

The Crossbar assigns Port pins to a peripheral if the corresponding enable bits of the peripheral

are set to a logic 1 in the Crossbar configuration registers XBR0, XBR1, and XBR2. The Port I/O

crossbar registers are shown below. Priority assignments for item such as UART0, SPI0, SMB0,

UART1, and the CEXn lines were shown previously in the Priority Crossbar Decode Table on

page 33.

XBR0: Port I/O Crossbar Register 0

Chapter 4 - The Silicon Labs C8051F020 and the EVB Embedded Control Lab Manual

32

XBR2: Port I/O Crossbar Register 2

XBR1: Port I/O Crossbar Register 1

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Chapter 4 - The Silicon Labs C8051F020 and the EVB

33

For example, if the UART0EN bit (XBR0.2) is set to a logic 1, the TX0 and RX0 pins will be

mapped to P0.0 and P0.1 respectively. Because UART0 has the highest priority, its pins will

always be mapped to P0.0 and P0.1 when UART0EN is set to logic 1. SPI has the next highest

priority and the port pins mapped will depend on whether UART0 is enabled or not. If UART0 is

enabled, P0.2, P0.3, P0.4, and P0.5 will be mapped to SPI. If UART0 is not enabled, then P0.0,

P0.1, P0.2 and P0.3 will be mapped to SPI. Continuing to the next highest priority, SMB will

reserve two port pins for mapping. The pins selected will depend on whether UART0 and SPI are

enabled. If a digital peripheral’s enable bits are not set to a logic 1, then its ports are not accessible

at the Port pins of the device. Also note that the Crossbar assigns pins to all associated functions

when a serial communication peripheral is selected. It would be impossible, for example, to assign

TX0 to a Port pin without assigning RX0 as well. Each combination of enabled peripherals results

in a unique device pinout. Note that since UART0 (Universal Asynchronous Receiver/Transmitter

0) is used for communication between the PC and EVB, UART0EN (XBR0.2) should always be

set to logic high (see the next section, Initializing the system). Further more, pins 0 and 1 of Port

0 are not available for use with any other peripherals.

All Port pins on Ports 0 through 3 that are not allocated by the Crossbar can be accessed as

General-Purpose I/O pins by reading and writing the associated Port Data registers.

Initializing the system

All of the necessary initialization and declarations are already made for you, and are included

in the header files c8051.h and c8051_SDCC.h. These files should be saved in the following

directory: C:\Program Files\SDCC\include\mcs51. On computers running Vista, the directory

may be C:\Program Files (x86)\SDCC\include\mcs51. The file can be included for your use by

adding the following line to your source code:

 #include <c8051_SDCC.h>.

In addition, you will need to call the function Sys_Init(), which is defined in c8051_SDCC.h,

in the main() function of your program.

Table 4.1 summarizes the necessary Port I/O registers that are available to you, and examples

4.1 and 4.2 illustrate the use of these predefined registers. There are additional definitions in this

file for features such as timers and serial interfaces. If you wish to make use of any of these

features, a complete listing of this header file is listed in Appendix A - Programming Information

(see c8051_SDCC.h header file). See the C8051F020 Reference Manual for more information.

One of the processes that the c8051_SDCC.h file initializes is the use of UART0 for serial

communication. UART0 is an enhanced serial port with features such as frame error detection and

address recognition hardware. You will not need to make any changes to UART0, but it should be

file:///C:/Documents%20and%20Settings/C/Application%20Data/My%20Documents/appendix_a.rtf%23_blank

Chapter 4 - The Silicon Labs C8051F020 and the EVB Embedded Control Lab Manual

34

noted that bit 2 of Crossbar Register 0 (XBR0) must be set in order to enable UART0 for

input/output.

These predefined port addresses are set up for the programmer to use them as variables. In

order to read from a location, simply set another variable equal to the port's register. For example:

 char a;

 a = P3;

To write to a memory location (if it is allowed), simply set the port label listed above to a value.

For example:

 P3 = 0x6F;

The process of initializing the ports is explained in Setting Bits for Input or Output on page 29.

Timer Functions

The clock in a microcontroller is the heart of the microcontroller—it dictates the timing of the

execution of each command in a sequence of instructions. Various options are provided through

user instructions by which the user can control the timing of certain commands, incorporate delays,

and most interestingly, perhaps, generate different functions like square waves and pulses which,

in turn, can be used to generate other types of waveforms. Besides the generation of different

waveforms, some of the properties of these waveforms can also be studied using the timer

functions in the microcontroller. Some of the timer functions capabilities provided by the C8051

are discussed in the following sections.

System Clock (SYSCLK)

The system clock can be used to time actions to occur at fixed periodic intervals, or to measure

the time between actions or events. The C8051F020 can use either an internal oscillator or an

external oscillator as its system clock source. The internal oscillator operates at a frequency of 2

MHz by default, but can be configured by software to operate at other frequencies. The external

oscillator operates at 22.1184 MHz.

Timers*

C8051 devices have 5 counter/timers, known as Timer 0, Timer 1... Timer 4. These timers can

be configured to be 8, 13, or 16 bits long, and can be used to measure time intervals, count external

events, and generate periodic interrupt requests. Detailed information on the counter/timers can be

found starting on page 225 of the C8051F020 Reference Manual. For LITEC, we will be using

Timer 0 only; therefore, this section will focus on describing the use of Timer 0. Timers 0 and 1

* Chapter 22 of C8051F020 Reference Manual

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Chapter 4 - The Silicon Labs C8051F020 and the EVB

35

are nearly identical; however, for this course, Timer 1 is dedicated to the use of UART0 for serial

communication, and therefore is not available for your use.

Timer 0 can be configured as a 16-bit, 13-bit, or 8-bit counter; it can count the system clock

(SYSCLK), the system clock/12, or external events. In addition, the counting can be turned on and

off by an external event or by a program. The timer/counter is configured and controlled using

three special function registers: CKCON (the Clock Control Register), TMOD (the Timer Mode

Register), and TCON (the Timer Control Register).

CKCON can be used to select any of the 5 timers (Timer 0 through Timer 4), and to specify

whether a timer will count the system clock, or the system clock/12. Bit 3 of CKCON is used to

select whether Timer 0 will count SYSCLK, or SYSCLK/12.

The Timer Mode Register (TMOD) is used to configure Timers 0 and 1. Bits 0 and 1 set the

number of bits (8, 13, or 16) for Timer 0, bit 2 is used to specify whether the counter should

increment on a clock tick or on an input from an external pin, and bit 3 determines whether

enabling Timer 0 is dependent on the external input pin /INT0.

CKCON: Clock Control Register

Chapter 4 - The Silicon Labs C8051F020 and the EVB Embedded Control Lab Manual

36

Figure 4.2 - T0 Mode 0 Block Diagram

TMOD: Timer Mode Register

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Chapter 4 - The Silicon Labs C8051F020 and the EVB

37

Bit 4 of the Timer Control Register (TCON) can be used to enable or disable Timer 0. It should

be noted that TCON is one of the registers that is “bit-addressable” - this means that the bits of the

register have been given specific names, and these names can be used to access the individual bits.

Bit 4 of TCON is called TR0 - thus, the following line of code:

 TR0 = 1;

will have the same effect as the line:

 TCON |= 0x10;

As with the other registers, the user can still access TCON as a whole and use bit masking to

single out a particular bit.

Counter/Timers and Overflow

Whether the counter/timer is counting clock ticks or external event signals, the maximum count

can only go as high as can fit into the memory assigned to the counter. Thus, the maximum count

for a 16-bit counter is 0xFFFF (65,53510), the maximum count for a 13-bit counter is 0x1FFF

TCON: Timer Control Register (Bit Addressable)

Chapter 4 - The Silicon Labs C8051F020 and the EVB Embedded Control Lab Manual

38

(8,19110), and the maximum count for an 8-bit counter is 0xFF (25510). When a counter has

reached its maximum, an event called an “overflow” occurs, and the counter will reset to 0 and

begin counting again. An overflow can be used to trigger other events, including interrupts.

As mentioned above, setting or clearing bits 0 and 1 of TMOD, the Timer Mode Register, can

configure Timer 0 as an 8-bit, 13-bit, or 16-bit timer. Timer 0 stores its count in two 8-bit registers

- when it is configured as a 16-bit timer, TL0 holds the eight least significant bits and TH0 holds

the eight most significant bits. When Timer 0 is configured as a 13-bit timer, TH0 holds the eight

most significant bits, and TL0 holds the five least significant bits. For more information about the

modes available for Timer 0, see the C8051F020 Reference Manual, p. 227.

The following example code shows a function, Timer0_Init, which will initialize and configure

Timer 0 for use as a 16-bit counter/timer that counts using SYSCLK/12 as a source. Note that the

timer should be disabled (turned off) using TR0 before the program sets the count to 0.

void Timer0_Init(void);

main()

{

 Timer0_Init(); /* Configure Timer 0 */

 TR0 = 1; /* Enable Timer 0 */

}

void Timer0_Init(void)

{

 CKCON &= ~0x08; /* Timer 0 uses SYSCLK/12 as source */

 TMOD &= 0xF0; /* Clear bits 0-3 of the Timer Mode Register */

 TMOD |= 0x01; /* Set Timer 0 to Mode 1 (16-bit counter/timer) */

 TR0 = 0; /* Disable Timer 0 */

 TMR0 = 0; /* Clear all 16 bits of Timer 0’s count */

// TL0 = 0; TH0 = 0; /* Or Clear low & high bytes of Timer 0 separately */

}

Example 4.3 - Configuring and Initializing Timer 0

Counting External Events

In addition to counting clock ticks based on the system clock, Timer 0 can count external

events, such as a logic transition on an input pin. A counter/timer is incremented on each high-to-

low transition at the selected input pin. Events with a frequency of up to one-fourth the system

clock’s frequency can be counted. The input signal need not be periodic, but it should be held at a

given level for at least two full system clock cycles to ensure the level is sampled.

The Timer Mode Register (TMOD) is used to set up Timer 0 to count external pulses. Note

that when C/T0 (bit 2 of TMOD) is set to logic 1, high-to-low transitions at the selected input pin

(T0) increment the timer register. (See Figures 17.3 and 22.2 in the C8051 Reference Manual.)

In addition, bit 1 of XBR1 (Port I/O Crossbar Register 1), which is the T0 Input Enable Bit,

must be set.

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Chapter 4 - The Silicon Labs C8051F020 and the EVB

39

Interrupts

In a real-time system, much of the interaction between the microcontroller and the various

peripheral devices is through interrupts. When an abnormal condition arises or when a peripheral

device requires some service from the microcontroller, an interrupt can be generated to request

attention from the CPU. This way, the CPU does not have to periodically check the status (poll)

of various devices to query whether or not they need servicing, which economizes the CPU’s

processing time since devices may require only very infrequent servicing.

The concept of an interrupt in a microcontroller may be understood by considering the

following situation. When the telephone rings, you temporarily suspend whatever activity you are

engaged in, answer the phone, have the phone conservation, end the phone call, and then resume

your activity at the point where you had suspended it. The ringing of the telephone is analogous

to an interrupt (setting of the interrupt flag); the answering of the telephone and conversing is

analogous to invoking the interrupt service routine (ISR), the code that is invoked by the interrupt

(also called the interrupt handler). Saying good-bye indicates you are done with this call and the

caller doesn't need to call you back, this is analogous to clearing the interrupt flag. Hanging up

the phone and returning to your original task is analogous to ending the interrupt and returning to

code that was running when the interrupt occurred. The program then proceeds until the next

interrupt occurs.

An interrupt can be enabled (the interrupt calls are serviced) or disabled (the interrupt calls are

not answered) by appropriate instructions. This is analogous to the feature where the ringing of the

telephone can be switched on or off. Interrupts can also be nested, i.e., another interrupt can occur

while a previous interrupt is being serviced. This is analogous to answering a call waiting on the

telephone in the midst of another conversation. Interrupts can also be assigned priority, i.e., the

order in which they are serviced when two or more interrupts occur at once.

Since the CPU executes instructions in a sequential fashion, it may be necessary on occasion

to execute sets of instructions when requested by certain peripheral devices or on the occurrence

of certain conditions. These requests are asynchronous with the execution of the main program.

Thus interrupts provide a way to temporarily suspend normal program execution so that the CPU

can be freed to service these requests. After an interrupt has been serviced, the main program

resumes as if there had been no interruption.

Interrupts on the C8051

The C8051F020 has 22 kinds of interrupts available for use, each of which is triggered by a

different event. In the following section, we will be discussing the use of the Timer 0 Overflow

Interrupt.

Chapter 4 - The Silicon Labs C8051F020 and the EVB Embedded Control Lab Manual

40

Timer 0 Overflow Interrupt

As was mentioned above, when a timer overflows (reaches its maximum count), an overflow

event occur and the timer reset to 0 and resumes counting. The overflow event can be used to

activate an interrupt. In this example, when Timer 0 overflows, it can trigger the Timer 0 Overflow

Interrupt. An interrupt is triggered when both its interrupt enable and interrupt flag are set. The

interrupt enable “turns on” the interrupt, that is, it makes that particular interrupt available for use.

The interrupt flag is set automatically when the event that triggers that interrupt occurs.

The interrupt enable for Timer 0 is bit 1 in the IE (Interrupt Enable) register. Because the IE

register is bit-addressable, each of its bits have names which can be used to access that bit directly.

The name for bit 1, the interrupt enable for Timer 0, is ET0. Bit 7 of IE is the global interrupt

enable bit - this bit (called EA) must be set in order for any interrupt to be used.

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Chapter 4 - The Silicon Labs C8051F020 and the EVB

41

The Timer 0 interrupt flag is bit 5 of the TCON (Timer Control Register) - bit 5 of TCON has

the name TF0.

In summary, when Timer 0 overflows, its interrupt flag, TF0 (bit 5 in TCON) is set. If the

Timer 0 interrupt has been enabled by setting the interrupt enable, ET0 (bit 1 in IE), then the

interrupt will pause execution of the main program and launch execution of the associated interrupt

service routine (ISR). Once the ISR has completed, the interrupt flag will be cleared automatically,

and execution of the main program will resume.

Interrupt Service Routines

An interrupt service routine is a function that will execute when its associated interrupt occurs.

The specification of which interrupt will launch the ISR is given in the ISR’s function declaration,

which is of the form:

void ISR_name(void) __interrupt X

 {

 // Put code here

 }

7 6 5 4 3 2 1 0

EA IEGF0 ET2 ES0 ET1 EX1 ET0 EX0

Bit 7: EA: Enable all interrupts

This bit globally enables/disables all interrupts. When set to ‘0’, individual interrupt mask settings are overridden.

0: Disable all interrupt sources

1: Enable each interrupt according to its individual mask setting

Bit 6: IEGF0: General purpose flag 0

This is a general purpose flag for use under software control

Bit 5: ET2: Enable Timer 2 Interrupt

This bit sets the masking of the Timer 2 interrupt

0: Disable Timer 2 interrupt

1: Enable interrupt requests generated by the TF2 flag (T2CON.7)

Bit 4: ES0: Enable UART0 Interrupt

This bits sets the masking of the UART0 interrupt

0: Disable UART0 interrupt

1: Enable UART0 interrupt

Bit 3: ET1: Enable Timer 1 Interrupt

This bit sets the masking of the Timer 1 interrupt

0: Disable all Timer 1 interrupt

1: Enable interrupt requests generated by the TF1 flag (TCON.7)

Bit 2: EX1: Enable External Interrupt 1

This bit sets the masking of external interrupt 1

0: Disable external interrupt 1

1: Enable interrupt requests generated by the /INT1 pin

Bit 1: ET0: Enable Timer 0 Interrupt

This bit sets the masking of the Timer 0 interrupt

0: Disable all Timer 0 interrupt

1: Enable interrupt requests generated by the TF0 flag (TCON.5)

Bit 0: EX0: Enable External Interrupt 0

This bit sets the masking of external interrupt 0

0: Disable external interrupt 0

1: Enable interrupt requests generated by the /INT0 pin

IE: Interrupt Enable Register (Bit Addressable)

Chapter 4 - The Silicon Labs C8051F020 and the EVB Embedded Control Lab Manual

42

where ISR_name is the name of the function, and X is a number from 0 to 21, which uniquely

identifies the interrupt. The interrupt numbers have been pre-assigned and are the same as the

priority order numbers - these can be found in Table 4.2.

Table 4.2 - Interrupts and Priority Order

Interrupt Source Interrupt

Vector

Priority

Order

Interrupt Source Interrupt

Vector

Priority

Order

Reset 0x0000 Top Comparator 0 Falling Edge 0x0053 10

External Interrupt 0 (/INT0) 0x0003 0 Comparator 0 Rising Edge 0x005B 11

Timer 0 Overflow 0x000B 1 Comparator 1 Falling Edge 0x0063 12

External Interrupt 1 (/INT1) 0x0013 2 Comparator 1 Rising Edge 0x006B 13

Timer 1 Overflow 0x001B 3 Timer 3 Overflow 0x0073 14

UART0 0x0023 4 ADC0 End of Conversion 0x007B 15

Timer 2 Overflow (or RXF2) 0x002B 5 Timer 4 Overflow 0x0083 16

Serial Peripheral Interface 0x0033 6 ADC1 End of Conversion 0x008B 17

SMBus Interface 0x003B 7 External Interrupt 6 0x0093 18

ADC0 Window Comparator 0x0043 8 External Interrupt 7 0x009B 19

Programmable Counter Array 0x004B 9 UART1 0x00A3 20

External Crystal OSC Ready 0x00AB 21

Thus, if you want to call the function Timer0_ISR when a Timer 0 overflow triggers an

interrupt, your code would contain the following lines:

 void Timer0_ISR(void) __interrupt 1

 {

 // Put code here

 }

The following example code builds on a previous example to show how to initialize and configure

Timer 0 for use as a 16-bit counter/timer, and also to enable the Timer 0 Overflow Interrupt.

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Chapter 4 - The Silicon Labs C8051F020 and the EVB

43

void Timer0_Init(void);

void Timer0_ISR(void) __interrupt 1;

main()

{

 Timer0_Init(); /* Configure Timer 0 */

 IE |= 0x02; /* Enable Timer 0 interrupts */

 EA = 1; /* Enable global interrupts */

 TR0 = 1; /* Enable Timer 0 */

}

void Timer0_Init(void)

{

 CKCON &= ~0x08; /* Timer 0 uses SYSCLK/12 as source */

 TMOD &= 0xF0; /* Clear bits 0-3 of the Timer Mode Register */

 TMOD |= 0x01; /* Set Timer 0 to Mode 1 (16-bit counter/timer) */

 TR0 = 0; /* Disable Timer 0 */

 TMR0 = 0; /* Clear Timer 0’s count */

// TL0 = 0; TH0 = 0; /* Or Clear the bytes of Timer 0’s count separately */

}

void Timer0_ISR(void) __interrupt 1

{

 // Put code here

}

Example 4.4 - Configuring and enabling the Timer 0 Overflow Interrupt

Programmable Counter Array

The Programmable Counter Array (PCA0) provides enhanced timer functionality while

requiring less CPU intervention than the standard 8051 counter/timers. PCA0 consist of:

1. A dedicated 16-bit counter/timer whose count is stored in two 8-bit registers, PCA0H

(high byte) and PCA0L(low byte)

2. A mode register, PCA0MD

3. A control register, PCA0CN

4. Five capture/compare modules, each consisting of:

– A 16-bit capture/compare data register consisting of two 8-bit registers,

PCA0CPHn (for high byte) and PCA0CPLn (for low byte), n=0:4

– A capture/compare module mode register, PCA0CPMn, n=0:4

– An associated I/O line (CEXn) routed through the crossbar to Port I/O when en-

abled, n=0:4

Chapter 4 - The Silicon Labs C8051F020 and the EVB Embedded Control Lab Manual

44

Figure 4.3 - PCA Block Diagram

The heart of the PCA timer system is the 16-bit free-running counter - depending on how it is

configured, this timer can count one of six possible inputs, including the system clock (SYSCLK),

SYSCLK/4, or SYSCLK/12. The count takes place using two 8-bit registers, PCA0H, which

contains the high byte (eight most significant bits) of the count, and PCA0L, which contains the

low byte (eight least significant bits). As with the other C8051 counter/timers, when the count has

reached its maximum value, an overflow occurs, and the counter reset to 0 and resumes counting.

Because the PCA timer is a 16-bit counter, it can count up to 0xFFFF, or 65,53510.

The five capture/compare modules can be used to contain values which will be compared to

the PCA0 count - when the count matches the value in a module, then an event may be triggered,

such as setting an output pin to logic 1. Like the PCA0, each module stores its contents in two

associated registers, one of which holds the high byte (PCA0CPHn), and the other holds the low

byte (PCA0CPLn), where n = 0-4.

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Chapter 4 - The Silicon Labs C8051F020 and the EVB

45

Figure 4.4 - PCA Counter/Timer Block Diagram

Each capture/compare module may be configured to operate independently in one of six modes

- we will focus on the 16-bit Pulse Width Modulator Mode. (For more information on the PCA

and the modes available to the capture/compare modules, refer to p. 249 in the C8051F020

Reference Manual.)

Enable

Chapter 4 - The Silicon Labs C8051F020 and the EVB Embedded Control Lab Manual

46

EIE1: Extended Interrupt Enable 1

Pulsewidth modulation

Pulsewidth modulation (PWM) refers to the procedure in which the width of a pulse in a

rectangular waveform is varied in correspondence to some information. Each PCA0 module may

be operated in 16-bit PWM mode, which will allow it to produce a pulsed signal on an output pin.

In this mode, the 16-bit capture/compare module defines the number of PCA0 clock ticks for the

low time of the PWM signal. When the PCA0 counter matches the contents of module n, the output

on CEXn is asserted high; when the counter overflows, CEXn is asserted low.

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Chapter 4 - The Silicon Labs C8051F020 and the EVB

47

Bit 6 of the PCA Control Register, PCA0CN, is used to enable the PCA0 counter/timer:

The PCA0 Mode Register, PCA0MD, is used to set the mode for PCA0:

7 6 5 4 3 2 1 0

CF CR - CCF4 CCF3 CCF2 CCF1 CCF0

Bit 7: CF: PCA Counter/Timer Overflow Flag.

 Set by hardware when the PCA0 Counter/Timer overflows from 0xFFFF to 0x0000. When the Counter/Timer Overflow (CF)

interrupt is enabled, setting this bit causes the CPU to vector to the CF interrupt service routine. This bit is not automatically

cleared by hardware and must be cleared by software.

Bit 6: CR: PCA0 Counter/Timer Run Control.

 This bit enables/disables the PCA0 Counter/Timer.

 0: PCA0 Counter/Timer disabled.

 1: PCA0 Counter/Timer enabled.

Bit 5: UNUSED. Read = 0b, Write = don't care.

Bit 4: CCF4: PCA0 Module 4 Capture/Compare Flag.

This bit is set by hardware when a match or capture occurs. When the CCF interrupt is enabled, setting this bit causes the

CPU to vector to the CCF interrupt service routine. This bit is not automatically cleared by hardware and must be cleared by

software.

Bit 3: CCF3: PCA0 Module 3 Capture/Compare Flag.

 This bit is set by hardware when a match or capture occurs. When the CCF interrupt is enabled, setting this bit causes the

CPU to vector to the CCF interrupt service routine. This bit is not automatically cleared by hardware and must be cleared by

software.

Bit 2: CCF2: PCA0 Module 2 Capture/Compare Flag.

 This bit is set by hardware when a match or capture occurs. When the CCF interrupt is enabled, setting this bit causes the

CPU to vector to the CCF interrupt service routine. This bit is not automatically cleared by hardware and must be cleared by

software.

Bit 1: CCF1: PCA0 Module 1 Capture/Compare Flag.

 This bit is set by hardware when a match or capture occurs. When the CCF interrupt is enabled, setting this bit causes the

CPU to vector to the CCF interrupt service routine. This bit is not automatically cleared by hardware and must be cleared by

software.

Bit 0: CCF0: PCA0 Module 0 Capture/Compare Flag.

 This bit is set by hardware when a match or capture occurs. When the CCF interrupt is enabled, setting this bit causes the

CPU to vector to the CCF interrupt service routine. This bit is not automatically cleared by hardware and must be cleared by

software.

PCA0CN: PCA Control Register (Bit Addressable)

Chapter 4 - The Silicon Labs C8051F020 and the EVB Embedded Control Lab Manual

48

Each capture/compare module has an associated Capture/Compare Mode Register, called

PCA0CPMn, where n = 0-4, one for each module. Each of the Capture/Compare Mode Registers

can be used to configure the corresponding module for 8-bit or 16-bit PWM, to enable or disable

the module’s comparator function, and to enable Pulse Width Modulation mode. 16-bit PWM

mode is enabled by setting the ECOMn, PWMn, and PWM16n bits in the PCA0CPMn register.

Figure 4.5 - PCA 16-Bit PWM Mode

7 6 5 4 3 2 1 0

CIDL - - - CPS2 CPS1 CPS0 ECF

Bit 7: CIDL: PCA0 Counter/Timer Idle Control

Specifies PCA0 behavior when CPU is in idle mode

0: PCA0 continues to function normally while the system controller is in idle mode

1: PCA0 operation is suspended while the system controller is in idle mode

Bits 6-4: UNUSED

Bits 3-1: CPS2-CPS0: PCA0 Counter/Timer Pulse Select

These bits select the timebase source for the PCA0 counter:

CPS2 CPS1 CPS0 Timebase

0 0 0 System clock/12

0 0 1 System clock/4

0 1 0 Timer 0 overflow

0 1 1 High-to-low transition on EC1

1 0 0 System clock (SYSCLK)

1 0 1 External clock/8

1 1 0 Reserved

1 1 1 Reserved

Bit 0: ECF: PCA Counter/Timer Overflow Interrupt Enable

This bit sets the masking of the PCA0 Counter/Timer Overflow (CF) interrupt

0: Disable the CF interrupt

1: Enable a PCA0 Counter/Timer Overflow interrupt request when CF (PCA0CN.7) is set

PCA0MD: PCA0 Mode Register

Enable 16-bit PWM

PCA0CPn

PCA0

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Chapter 4 - The Silicon Labs C8051F020 and the EVB

49

As was noted above, each capture/compare module has its own associated I/O line (CEXn),

which is routed through the Crossbar to Port I/O when enabled. The Port I/O Register XBR0 is

used to route the CEXn I/O lines to port pins.

A segment of C code is shown in Example 4.5 illustrating the use of PCA0 and

capture/compare module 0 (CCM0) to implement Pulse Width Modulation.

7 6 5 4 3 2 1 0

PWM16n ECOMn CAPPn CAPNn MATn TOGn PWMn ECCFn

Bit 7: PWM16n: 16-bit Pulse Width Modulation Enable

This bit selects 16-bit mode when Pulse Width Modulation mode is enabled (PWMn = 1)

0: 8-bit PWM selected

1: 16-bit PWM selected

Bit 6: ECOMn: Comparator Function Enable

This bit enables/disables the comparator function for PCA0 module n

0: Disabled

1: Enabled

Bit 5: CAPPn: Capture Positive Function Enable

This bit enables/disables the positive edge capture for PCA0 module n

0: Disabled

1: Enabled

Bit 4: CAPNn: Capture Negative Function Enable

This bit enables/disables the negative edge capture for PCA0 module n

0: Disabled

1: Enabled

Bit 3: MATn: Match Function Enable

This bit enables/disables the match function for PCA0 module n. When enabled, matches of the PCA0 counter with a

module’s capture/compare register cause the CCFn bit in PCA0MD register to be set to logic 1

0: Disabled

1: Enabled

Bit 2: TOGn: Toggle Function Enable

This bit enables/disables the toggle function for PCA0 module n. When enabled, matches of the PCA0 counter with a

module’s capture/compare register cause the logic level on the CEXn pin to toggle. If the PWMn bit is also set to logic 1,

the module operates in Frequency Output Mode

0: Disabled

1: Enabled

Bit 1: PWMn: Pulse Width Modulation Mode Enable

This bit enables/disables the PWM function for PCA0 module n. When enabled, a pulse width modulated signal is

output on the CEXn pin. 8-bit PWM is used if PWM16n is logic 0; 16-bit mode is used if PWM16n is logic 1. If the

TOGn bit is also set, the module operates in Frequency Output Mode.

0: Disabled

1: Enabled

Bit 0: ECCFn: Capture/Compare Flag Interrupt Enable

This bit sets the masking of the Capture/Compare Flag (CCFn) interrupt

0: Disable the CCFn interrupts

1: Enable a Capture/Compare Flag interrupt request when CCFn is set

PCA0CPMn: PCA0 Capture/Compare Mode Registers

Chapter 4 - The Silicon Labs C8051F020 and the EVB Embedded Control Lab Manual

50

#include <c8051_SDCC.h>

#include <stdlib.h>

#include <stdio.h>

int CEX0_PW = 20000; /* designed PW at cex0 20,000=0x4E20*/

void Port_Init(void);

void PCA_Init(void);

void main(void)

{

 int temp0_lo_to_hi;

 Sys_Init(); /* Initialize the C8051 board */

 Port_Init(); /* Set port(s) for input/output */

 PCA_Init(); /* Configure the PCA */

 while (1)

 {

 temp0_lo_to_hi = 0xFFFF - CEX0_PW; /* = 0xB1DF = 45,535 */

 PCA0CP0 = temp0_lo_to_hi; /* = 0xB1DF */

 }

}

void Port_Init(void)

{

 P0MDOUT |= 0x04; /* Set pin 2 of Port 0 to push-pull */

 XBR0 = 0x0C; /* Configure crossbar to use CEX0 */

}

void PCA_Init(void)

{

 PCA0CPM0 = 0xC2; /* CCM0 in 16-bit compare mode */

 PCA0CN = 0x40; /* Enable PCA counter */

}

Example 4.5 - Pulse Width Modulation implemented using the PCA (Programmable Counter

Array)

Remember that the output pin is set high when the PCA0 count matches the contents of

capture/compare module 0, so in order to output the correct pulsewidth, the contents of module 0

should be set to 0xFFFF minus the desired pulsewidth.

Within Port_Init(), pin 2 of Port 0, which will be the output pin used by CEX0, is set to push-

pull mode, and the Crossbar register XBR0 is set to route CEX0 to a Port pin. When

Capture/Compare Module 0 (CCM0) makes a successful compare, it changes the state of pin P0.2

to logic high. When PCA0 overflows, it clears pin P0.2 (sets it LOW).

The 16-bit counter rolls over to zero every 216 (65536) clock cycles meaning that PCA0 will

set P0.2 low every 65536 clock cycles. In the main loop, the contents of CCM0 is set to 45535 =

65535 – 20000 or 0xFFFF - 20000. Therefore, P0.2 is set High whenever the free-running counter

equals 45,535. This process will repeat itself as long as the program is running.

The waveform at pin P0.2 for Example 4.5 can be viewed using an oscilloscope and will be as

shown in Figure 4.6.

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Chapter 4 - The Silicon Labs C8051F020 and the EVB

51

Figure 4.6 - Pulsewidth Modulation Waveform

PCA Overflow Interrupt Using ‘Preset’ Technique

As with Timer 0 (see “Timer 0 Overflow Interrupt” on page 41), when the PCA overflows, it

can trigger an interrupt. Using an interrupt service routine, we can control how often to update the

compare value, which represents the magnitude of the desired pulsewidth. We may simply call

interrupt service routine every 2x clock counts using x-bit counter. Or we may call interrupt service

routine every y clock counts, where y ≤ 2x , using ‘preset’ values.

The C code shown in Example 4.6 uses PCA0 and capture/compare module 0 (CCM0) to

implement Pulse Width Modulation, but uses the PCA overflow interrupt (interrupt 9) to regulate

the frequency with which the compare value is updated. Note that in the code, every time interrupt

service routine is called, PCA0 counter is pre-set to 21,300 so that interrupt service routine is called

every 2 ms using System Clock. This ‘preset’ technique can also be used in Timer 0 Overflow

Interrupt to regulate the time interval in which interrupt service routine is called. See Java Applet

for PCA on LMS.

Chapter 4 - The Silicon Labs C8051F020 and the EVB Embedded Control Lab Manual

52

Figure 4.7 - Pulsewidth Modulation Waveform

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Chapter 4 - The Silicon Labs C8051F020 and the EVB

53

/*This is sample code. It uses a 2.5 ms period; NOT 20 ms that the lab exercise requires*/

#include <c8051_SDCC.h>

#include <stdlib.h>

#include <stdio.h>

int CEX0_PW = 10000;

void Port_Init(void);

void PCA_Init(void);

void PCA_ISR (void) __interrupt 9;

void main(void)

{

 char input;

 unsigned int tmp0_lo_to_hi;

 Sys_Init(); // Initialize the C8051 board

 Port_Init(); // Set port(s) for input/output

 PCA_Init(); // Configure the PCA

 while (1)

 {

 input = (char)getchar(); // Wait for a key to be pressed

 if (input == 'r') // If 'r' is pressed by the user

 {

 if (SERVO_PW < PW_RIGHT)

 CEX0_PW = CEX0_PW + 100; // Increase the pulsewidth by 100

 }

 else if (input == 'l') // If 'l' is pressed by the user

 {

 if (SERVO_PW > PW_LEFT)

 CEX0_PW = CEX0_PW - 100; // Decrease the pulsewidth by 100

 }

 tmp0_lo_to_hi = 0xFFFF - CEX0_PW;

 // Set next compare value to pulsewidth

 PCA0CP0 = tmp0_lo_to_hi; // Load 16 bits for CEX0 on P0.2

 PCA0CP2 = CEX0_PW + 10240; // Load 16 bits for CEX2 on P0.4 (inverse Duty Cycle)

 printf("Pulsewidth = %d\r",CEX0_PW);

 }

}

void Port_Init(void)

{

 P0MDOUT |= 0x1C; // Set pins 2 - 4 of Port 0 to push-pull

 XBR0 = 0x1C; // Configure crossbar to use CEX0 – CEX2, and UART0

}

void PCA_Init(void)

{

 PCA0MD = 0x89; // Enable CF interrupt & SYSCLK (not SYSCLK/12)

 PCA0CPM0 = PCA0CPM2 = 0xC2; // CCM0 & CCM2 in 16-bit compare mode

 PCA0CN = 0x40; // Enable PCA counter

 EIE1 |= 0x08; // Enable PCA interrupt

 EA = 1; // Enable global interrupts

}

void PCA_ISR(void) __interrupt 9

{

 if (CF)

 {

 CF = 0; // Clear overflow flag

 PCA0 = 10240; // (or PCA0 = 0x2800) Start count for 2.5 ms

 } // NOTE: motors on Smartcar need a 20 ms period

 // DO NOT USE THIS VALUE!

 PCA0CN &= 0x40; // Handle other PCA interrupt sources

}

Example 4.6 - Pulse Width Modulation implemented using the PCA (Programmable Counter

Array) and Interrupts

Chapter 4 - The Silicon Labs C8051F020 and the EVB Embedded Control Lab Manual

54

The C8051 A/D Converter*

Analog-to-digital (A/D) conversion is a process whereby a continuous-valued voltage is

converted into an integer that is proportional to the voltage. For example, the C8051F020 has an

8-bit and a 12-bit A/D converter. The remainder of this section will apply specifically to the 8-bit

converter, although the concepts can also be applied to the 12-bit converter. The 8-bit A/D

converter (ADC1) can be programmed to acquire analog input from Port 1 through any of its 8

external pins (P1.0 - P1.7). Since the converter has 8 bits of resolution, the result of an A/D

conversion will be an integer in the range 0 to 255, and this integer result has a linear relationship

to the original analog input voltage as will be described.

Figure 4.8 – A/D Converter Function Block Diagram

Conceptually, the A/D converter examines the voltage on an analog input pin and tries to

determine approximately how far this voltage lies between the allowable extreme voltages VRL

(Voltage Reference Low) and VRH (Voltage Reference High). The A/D conversion result will then

be in proportion to where the input voltage falls between the VRL and VRH extremes. For example,

if VRL = 0V and VRH = 2.4V, and if the voltage at the input pin = 1.2V, then 1.2V is half or 50%

of the way between 0 and 2.4V. Thus the A/D conversion result, (which is always a discrete

number between 0 and 255), will be 50% of its maximum value, or 128.

For the C8051, the VRL will always be 0 Volts, and VRH (which will generally be referred to

as Vref) will equal 2.4 Volts. Input voltages in the range from 0 to Vref will map to a digital number

from 0x00 to 0xFF (010 to 25510). In general, if the voltage at P1.x is less than or equal to 0 V,

* Chapter 7 of C8051 User Manual

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Chapter 4 - The Silicon Labs C8051F020 and the EVB

55

then the conversion result will saturate at 0. Similarly, if the voltage at P1.x is greater than or

equal to the voltage at Vref, then the conversion result will saturate at 255. Otherwise, the

conversion result will be proportional to where the voltage at P1.x lies between 0 V and Vref. You

should try to avoid inputting voltages of greater than Vref or less than 0 V. The equation below

describes the relationship between the reference voltage, a voltage on one of the 8 analog inputs

P1.x (x = 0, 1... 7) and the A/D result. Depending upon how the A/D converter has been configured

by program instructions, the user can select which of the 8 pins will be used for input. Note that

the Gain can be set to determine how much the output signal should be amplified (see the

information on the ADC1 Configuration Register, ADC1CF, on page 57); for this course, the Gain

will normally be set to one. Configuration of the A/D converter will be discussed in the next

section.

𝐴𝐷𝑟𝑒𝑠𝑢𝑙𝑡 = floor [256 ∙
𝑉𝑃1.𝑥 ∙ 𝐺𝑎𝑖𝑛

𝑉𝑅𝑒𝑓
] for 0 ≤ (𝑉𝑃1.𝑥 ∙ 𝐺𝑎𝑖𝑛) < 𝑉𝑅𝑒𝑓

Configuring the A/D converter

In order to perform an A/D conversion using the C8051, you will need to set and access a

number of SFRs (Special Function Registers). The pins on Port 1 can serve as analog inputs to the

ADC1 analog MUX. A Port pin is configured as an Analog Input by writing a logic 0 to the

associated bit in the P1MDIN register. All Port pins default to a Digital Input mode.

You may recall from Table 4.1 that Port 1 has an associated data register, P1, and an associated

output mode register, P1MDOUT. In order to use a pin of Port 1 for analog input, a logic 1 must

be sent to its corresponding pin in P1, and that pin must be set to “open drain” by writing a logic

0 to the corresponding pin in P1MDOUT. Thus, in order to configure pin 0 of Port 1 for analog

input, the following lines should appear in your code:

 P1MDIN &= ~0x01; // Set pin 0 of Port 1 for analog input
 P1MDOUT &= ~0x01; // Set pin 0 of Port 1 as “open drain”

 P1 |= 0x01; // Send logic 1 to pin 0 of Port 1

7 6 5 4 3 2 1 0

P1MDIN.7 P1MDIN.6 P1MDIN.5 P1MDIN.4 P1MDIN.3 P1MDIN.2 P1MDIN.1 P1MDIN.0

Bits 7-0: P1MDIN.[7:0]: Port 1 Input Mode Bits

0: Port pin is configured in Analog Input mode
1: Port pin is configured in Digital Input mode

P1MDIN: Port 1 Input Mode Register

Chapter 4 - The Silicon Labs C8051F020 and the EVB Embedded Control Lab Manual

56

The next step is to be sure that Vref will be set to the 2.4 V internal reference voltage. This is

accomplished using the Reference Control Register (REF0CN). Bits 0, 1, and 3 of REF0CN will

be used to ensure that Vref is set correctly.

Table 4.3 - Voltage Reference Electrical Characteristics

VDD = 3.0 V, AV+ = 3.0 V, -40°C to +85°C unless otherwise specified

PARAMETER CONDITIONS MIN TYP MAX UNITS

INTERNAL REFERENCE (REFBE = 1)
Output Voltage 25°C ambient 2.36 2.43 2.48 V

VREF Short-Circuit Current 30 mA

VREF Temperature Coefficient 15 ppm/°C

Load Regulation Load = 0 to 200 μA to AGND 0.5 ppm/μA

VREF Turn-on Time 1 4.7μF tantalum, 0.1μF ceramic bypass 2 ms

VREF Turn-on Time 2 0.1μF ceramic bypass 20 μs

VREF Turn-on Time 3 no bypass cap 10 μs

EXTERNAL REFERENCE (REFBE = 0)
Input Voltage Range 1.00 (AV+)-3 V

Input Current 0 1 μA

Table 4.3 shows 2ms delay in Voltage Reference Start-up. This is a long delay; no ADC

conversions can be done before this. If attempted, the conversion value will return as 255 since

the input voltage will be compared to a reference that is close to 0V and being larger than the

reference results in a saturated voltage and the maximum value possible.

Figure 4.9 shows the configuration requirements for the analog conversion reference voltage.

Before any analog-to-digital or digital-to-analog conversions can take place, the 1.2V band-gap

bias voltage must be enabled (BIASE = 1). In addition to this voltage, a 2nd reference voltage must

be provided. This 2nd reference can be created 2 ways: by attaching an external source, or by

generating it internally using the 1.2V band-gap and an amplifier with a gain of 2 to supply a fixed

2.4V reference voltage. In all Embedded Control labs using the A/D converter, the internal 2 amp

in combination with the band-gap source will provide the required reference voltage, but students

should understand how other reference voltage values may be used.

Note that the value of the reference voltage determines the range of the converter. The largest

positive voltage applied to the converter must be less than the reference voltage. That means that

with the internally generated 2.4V reference the maximum applied voltages must be less than 2.4V.

The minimum voltage is always 0V, or ground. Also note that if the 2 amp is not enabled (REFBE

= 0), the 1.2V band-gap potential is NOT connected to the VREF line (effectively an open switch

on the amp output) and an external voltage supply must be used to provide the reference.

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Chapter 4 - The Silicon Labs C8051F020 and the EVB

57

Figure 4.9 – Voltage Reference Sources Functional Block Diagram

7 6 5 4 3 2 1 0

- - - AD0VRS AD1VRS TEMPE BIASE REFBE

Bits 7-5: UNUSED

Bit 4: AD0VRS: ADC0 Voltage Reference Select
0: ADC0 voltage reference from VREF0 pin

1: ADC0 voltage reference from DAC0 output
Bit 3: AD1VRS: ADC1 Voltage Reference Select

0: ADC1 voltage reference from VREF1 pin

1: ADC1 voltage reference from AV+

Bit 2: TEMPE: Temperature Sensor Enable Bit
0: Internal temperature sensor OFF

1: Internal temperature sensor ON

Bit 1: BIASE: ADC/DAC Bias Generator Enable Bit (Must be ‘1’ if using ADC or DAC)
0: Internal bias generator OFF

1: Internal bias generator ON

Bit 0: REFBE: Internal Reference Buffer Enable Bit

0: Internal reference buffer OFF
1: Internal reference buffer ON. Internal voltage reference is driven on the VREF pin

REF0CN: Reference Control Register

Chapter 4 - The Silicon Labs C8051F020 and the EVB Embedded Control Lab Manual

58

The ADC1 Configuration Register (ADC1CF) and the ADC1 Control Register (ADC1CN)

will allow you to set the gain for internal amplification, enable ADC1, set the “Start of Conversion”

mode, and start the conversion. ADC1CN also contains the flag that will indicate when the A/D

conversion is completed. The gain for the internal amplification should be set to 1 using ADC1CF.

7 6 5 4 3 2 1 0
AD1SC4 AD1SC3 AD1SC2 AD1SC1 AD1SC0 - AMP1GN1 AMP1GN0

Bits 7-3: ADC1 SAR Conversion Clock Period Bits

SAR Conversion clock is derived from system clock by the following equation, where AD1SC refers to the 5-bit value

held in AD1SC4-0.

11

1

−=

SAR
CLK

SYSCLK
SCAD

Bit 2: UNUSED

Bits 1-0: AMP1GN1-0: ADC1 Internal Amplifier Gain (PGA)

00: Gain = 0.5

01: Gain = 1

10: Gain = 2

11: Gain = 4

ADC1CF: ADC1 Configuration Register

7 6 5 4 3 2 1 0

AD1EN AD1TM AD1INT AD1BUSY AD1CM2 AD1CM1 AD1CM0 -

Bit 7: AD1EN: ADC1 Enable Bit

0: ADC1 Disabled. ADC1 is in low-power shutdown

1: ADC1 Enabled. ADC1 is active and ready for data conversions

Bit 6: AD1TM: ADC1 Track Mode Bit

0: Normal Track Mode: When ADC1 is enabled, tracking is continuous unless a conversion is in process

1: Low-power Track Mode: Tracking Defined by AD1STM2-0 bits

Bit 5: AD1INT: ADC1 Conversion Complete Interrupt Flag

This flag must be cleared by software

0: ADC1 has not completed a data conversion since the last time this flag was cleared

1: ADC1 has completed a data conversion

Bit 4: AD1BUSY: ADC1 Busy Bit

0: ADC1 conversion is complete or a conversion is not currently in progress. AD1INT is set to logic 1 on the falling

edge of AD1BUSY

1: ADC1 conversion is in progress

Bits 3-1: AD1CM2-0: ADC1 Start of Conversion Mode Select

AD1TM = 0:

000: ADC1 conversion initiated on every write of ‘1’ to AD1BUSY

001: ADC1 conversion initiated on overflow of Timer 3

010: ADC1 conversion initiated on rising edge of external CNVSTR

011: ADC1 conversion initiated on overflow of Timer 2

1xx: ADC1 conversion initiated on write of ‘1’ to AD0BUSY (synchronized with ADC0 software-commanded conversions)

AD1TM = 1:

000: Tracking initiated on write of ‘1’ to AD1BUSY and lasts 3 SAR1 clocks, followed by conversion

001: Tracking initiated on overflow of Timer 3 and lasts 3 SAR1 clocks, followed by conversion

010: ADC1 tracks only when CNVSTR input is logic low; conversion starts on rising CNVSTR edge

011: Tracking initiated on overflow of Timer 2 and lasts 3 SAR1 clocks, followed by conversion

1xx: Tracking initiated on write of ‘1’ to AD0BUSY and lasts 3 SAR1 clocks, followed by conversion

Bit 0: UNUSED

ADC1CN: ADC1 Control Register

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Chapter 4 - The Silicon Labs C8051F020 and the EVB

59

Note that we have not yet specified which specific pins of Port 1 should be used for analog

input - this will be done using the AMUX1 Channel Select Register (AMX1SL). AMUX1 refers

to the configurable analog multiplexer which is one component of the ADC1 (8-bit A/D converter)

subsystem of the C8051. More information about the ADC1 subsystem and the role of the

multiplexer can be found on page 75 of the C8051F020 Reference Manual. The pins of AIN1 also

function as Port 1 I/O pins - specifying the desired AIN1 pins for analog input will correctly set

the corresponding Port 1 pins.

The code in Example 4.7 demonstrates how to configure the 8-bit A/D converter, and also how

to start the conversion, wait for it to complete, and then read the resulting digital value. Note that

upon completion of the A/D conversion, the digital value will be placed in the 8-bit ADC1 Data

Word Register, ADC1.

ADC1: ADC1 Data Word Register

ADC1: ADC1 Data Word Register

ADC1: ADC1 Data Word

RegisteADC1: ADC1 Data Word

Registerr

AMX1SL: AMUX1 Channel Select Register

Chapter 4 - The Silicon Labs C8051F020 and the EVB Embedded Control Lab Manual

60

#include<c8051_SDCC.h>

#include<stdio.h>

void Port_Init(void);

void ADC_Init(void);

unsigned char read_AD_input(unsigned char n);

main()

{

 unsigned char result;

 Sys_Init(); /* Initialize the C8051 board */

 putchar(0); /* Need to do this to prevent error */

 Port_Init(); /* Configure P1.0 for analog input */

 ADC_Init(); /* Initialize A/D conversion */

 while (1)

 {

 result = read_AD_input(0); /* Read the A/D value on P1.0 */

 }

}

void Port_Init(void)

{

 P1MDIN &= ~0x01; /* Set P1.0 for analog input */

 P1MDOUT &= ~0x01; /* Set P1.0 to open drain */

 P1 |= 0x01; /* Send logic 1 to input pin P1.0 */

}

void ADC_Init(void)

{

 REF0CN = 0x03; /* Set Vref to use internal ref. voltage (2.4 V) */

 ADC1CN = 0x80; /* Enable A/D converter (ADC1) */

 ADC1CF &= ~0x03; /* Clear gain bits to 0 (gain = 0.5) */

 ADC1CF |= 0x01; /* Set A/D converter gain to 1 */

}

unsigned char read_AD_input(unsigned char n)

{

 AMX1SL = n; /* Set P1.n as the analog input for ADC1 */

 ADC1CN = ADC1CN & ~0x20; /* Clear the “Conversion Completed” flag */

 ADC1CN = ADC1CN | 0x10; /* Initiate A/D conversion */

 while ((ADC1CN & 0x20) == 0x00); /* Wait for conversion to complete */

 return ADC1; /* Return digital value in ADC1 register */

}

Example 4.7 - Code for A/D Conversion on pin 0 of Port 1

Serial Communication

There are many reasons that one needs to send data to or receive data from other devices. For

example, the ‘printf’ and ‘scanf’ command use an RS-232 serial protocol to communicate between

the micro controller and a terminal program on your laptop. Serial connections send data one bit

at a time, which require fewer wires than parallel connections. The electronic compass and the

ultrasonic ranger used in the Gondola use a different serial communication protocol - I2C bus. A

brief introduction to I2C bus is given next. For more details refer to Chapter 18 of C8051 user

manual.

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Chapter 4 - The Silicon Labs C8051F020 and the EVB

61

SMBus and I2C bus

The I2C bus, Inter IC bus, was developed by Philips in the 1980s to allow for communication

between devices in a TV. SMBus, System Management Bus, is an Intel standard developed in

1995 to avoid patent issues. Since SMBus includes the I2C standards, we use either name

interchangeable. There are versions of the I2C bus that work up to 3.4MHz. In your lab, you will

use 100kHz, which is the original specification.

Serial ports transmits one bit of data at a time; sending high and low signals on a wire. Then,

how does the receiver know when one bit ends and the next starts? The answer is providing a

clock, which is used to determine the bit rate. Synchronous communication sends a clock signal

with the data. I2C is one such system, as is SPI*. Asynchronous communication uses separate

clocks; one on each end (e.g., USB, Ethernet) and asynchronous communication requires both

ends to agree on the clock rate, the baud rate. The clocks won’t exactly match, so additional

information must be sent to match up the data.

For I2C, two wires carry signals, so it is called a 2-wire system. It needs power and ground, so

four wires will be connected. It operates synchronous communication with only one master at a

time and one or more slaves (see Figure 4.10). The Master device sends the clock on one wire, the

SCL or serial clock. Then, every device is synchronized to the Master. The C8051 can be a slave,

however, for our application the C8051 will always be the Master and sensors are Slaves.

The other wire transmits serial data (SDA). Data line is high to signify that a bit is a 1 or true,

low for a 0 or false. Unit sending data must set the data line high or low while clock is low. When

clock goes high data is read by the other device(s). Data is sent in bytes; 8 bits sent in serially one

after another. After one byte is sent, receiver must acknowledge data received before next byte can

be sent. Data is sent either to the slave devices (write) or data is received from the slave devices

(read) on the SDA line. Because data has to flow either direction, SDA line can’t be push pull;

both SDA and SCL are automatically configured as open drain on the C8051. Pull-up resistors are

used to pull both the SDA and SCL lines high to 3.3V. Any device can pull the lines low, so any

device can send data.

Slaves have addresses; all devices are on the same bus, so each needs a unique identifier. Slaves

and Master must keep track of who is talking, so there is a Read/Write bit, a Start signal and a Stop

signal.

* Serial Peripheral Interface (SPI) is a synchronous protocol that uses 3 wires and is also

available on the C8051F020.

Chapter 4 - The Silicon Labs C8051F020 and the EVB Embedded Control Lab Manual

62

Figure 4.10 - Typical SMBus Configuration

There are two modes; (1) Master Transmitter Mode is used to talk to a slave device and (2)

Master Receiver Mode is used to listen to a slave device. The Master Transmitter Sequence (see

Figure 4.11) starts with the Master sending a START signal followed by a byte containing the 7-

bit slave address (bits 7-1) with the R/W bit (bit 0) low, indicating a write sequence. The Slave

should then send an acknowledge (ACK) signal. The Master will then send one byte of data, check

for ACK from the Slave, and repeat until all data is sent. The transmission is ended by the Master

sending the STOP command. The Master must know how many bytes to write.

Figure 4.11 - Typical Master Transmitter Sequence

In the Master Receive mode (see Figure 4.12) the Master again sends a START signal and

sends a single byte with the 7-bit slave address (bits 7-1) and the R/W bit (bit 0) high, indicating a

read sequence. The Slave should then send an acknowledge (ACK) signal. Then, the Slave will

send one byte of data, and the Master should acknowledge. Transmission of data bytes is repeated

until the Master responds with NACK (Not Acknowledge) and STOP instead of ACK. Note that

the Master must know how many bytes to read.

 See Chapter 18 of the C8051 User Manual for additional details.

VDD = 3.3V VDD = 3.3V

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Chapter 4 - The Silicon Labs C8051F020 and the EVB

63

Figure 4.12 - Typical Master Receiver Sequence

Using Interrupts might be the most eloquent way to implement the I2C bus. However, there

are 28 possible status states of the I2C bus hardware on the C8051 and a complete interrupt service

routine would have to handle all these states. Since the C8051 is always the Master in our

application and not all states will occur, our code will not use interrupts. Instead the code will

control each step of the communication, and will monitor the SI bit (of the SMB0CN register) to

determine when a step is complete.

There are five SFRs, special function registers associated with the I2C bus:

– SMB0CN – SMBus 0 Control: Used to control the bus (functions use sbits)

– SMB0STA – SMBus 0 Status: Read to know present status (not used in our implemen-

tation)

– SMB0CR – SMBus 0 Clock Register: Set for 100kHz clock (set once)

– SMB0ADR – SMBus 0 Address: slave address (not used in our implementation)

– SMB0DAT – SMBus 0 data: data for reads and writes (used by functions)

Chapter 4 - The Silicon Labs C8051F020 and the EVB Embedded Control Lab Manual

64

7 6 5 4 3 2 1 0
BUSY ENSMB STA STO SI AA FTE TOE

Bit 7: BUSY: Busy Status Flag

0: SMBus0 is free

1: SMBus0 is busy

Bit 6: ENSMB: SMBus Enable

This bit enables/disables the SMBus serial interface

0: SMBus0 is disabled

1: SMBus0 is enabled

Bit 5: STA: SMBus Start Flag

0: No START condition is transmitted

1: When operating as a master, a START condition is transmitted if the bus is free. (If the bus is not free, the START is

transmitted after a STOP is received) If STA is set after one or more bytes have been transmitted or received and

before a STOP is received, a repeated START condition is transmitted. To ensure proper operation, the STO bit

should be explicitly cleared to ‘0’ before setting the STA bit to ‘1’.

Bit 4: STO: SMBus Stop Flag

0: No STOP condition is transmitted

1: Setting STO to logic 1 causes a STOP condition to be transmitted. When a STOP condition is received, hardware clears

STO to logic 0. If both STA and STO are set, a STOP condition is transmitted followed by a START condition. In

slave mode, setting the STO flag causes SMBus to behave as if a STOP condition was received.

Bit 3: SI: SMBus Serial Interrupt Flag

This bit is set by hardware when one of 27 possible SMBus0 states is entered. (Status code 0xF8 does not cause SI to be

set.) When the SI interrupt is enabled, setting this bit causes the CPU to vector to the SMBus interrupt service routine.

This bit is not automatically cleared by hardware and must be cleared by software.

Bit 2: AA: SMBus Assert Acknowledge Flag

This bit defines the type of acknowledge returned during the acknowledge cycle on the SCL line.
0: A “not acknowledge” (high level on SDA) is returned during the acknowledge cycle

1: An “acknowledge” (low level on SDA) is returned during the acknowledge cycle

Bit 1: FTE: SMBus Free Timer Enable Bit

0: No timeout when SCL is high

1: Timeout when SCL high time exceeds limit specified by the SMB0CR value

Bit 0: TOE: SMBus Timeout Enable Bit

0: No timeout when SCL is low

SMB0CN: SMBus0 Control Register (Bit Addressable)

7 6 5 4 3 2 1 0

Bits 7-0: SMB0DAT: SMBus0 Data

The SMB0DAT register contains a byte of data to be transmitted on the SMBus0 serial interface or a byte that

has just been received on the SMBus0 serial interface. The CPU can read from or write to this register whenever

the SI serial interrupt flag (SMB0CN.3) is set to logic 1. When the SI flag is not set, the system may be in the

process of shifting data in/out and the CPU should not attempt to access this register.

SMB0DAT: SMBus0 Data Register

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Chapter 4 - The Silicon Labs C8051F020 and the EVB

65

For implementation, first, you need to initialize SMBus registers; setting SCL to 100kHz and

enabling SMBus0 (note that you also need to initialize the crossbar (XBR0) appropriately in order

to use SMBus):
 void SMB_Init(void)

 {

 SMB0CR=0x93; /* set SCL to 100KHz (actual freq ~ 94,594Hz)*/

 ENSMB=1; /* bit 6 of SMB0CN, enable the SMBus */

 }

R/W R/W R/W R/W R/W R/W R/W R/W
Reset Value

00000000

 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

SFR Address

0xCF

Bits 7-0: SMB0CR.[7:0]: SMBus0 Clock Rate Preset

 The SMB0CR Clock Rate register controls the frequency of the serial clock SCL in master mode. The

 8-bit word stored in the SMB0CR Register preloads a dedicated 8-bit timer. The timer counts up, and

 when it rolls over to 0x00, the SCL logic state toggles.

 The SMB0CR setting should be bounded by the following equation , where SMB0CR is the unsigned

 8-bit value in register SMB0CR, and SYSCLK is the system clock frequency in Hz:

SMB0CR < ((288 – 0.85 × SYSCLK) ¤ 1.125)

 The resulting SCL signal high and low times are given by the following equations:

TLOW = (256 – SMB0CR) ¤ SYSCLK

THIGH @ (258 – SMB0CR) ¤ SYSCLK + 625ns

 Using the same value of SMB0CR from above, the Bus Free Timeout period is given in the following

 equation:

TBFT @ 10 x (256 – SMB0CR) + 1

 SYSCLK

SMB0CR: SMBus0 Clock Rate Register

𝑆𝑀𝐵0𝐶𝑅 < ((288 − 0.85 ∙ 𝑆𝑌𝑆𝐶𝐿𝐾 106⁄) 1.125⁄)

𝑇𝐿𝑂𝑊 = (256 − 𝑆𝑀𝐵0𝐶𝑅)/𝑆𝑌𝑆𝐶𝐿𝐾

𝑇𝐻𝐼𝐺𝐻 ≅ (258 − 𝑆𝑀𝐵0𝐶𝑅) 𝑆𝑌𝑆𝐶𝐿𝐾⁄ + 625ns

𝑇𝐵𝐹𝑇 ≅
10 ∙ (256 − 𝑆𝑀𝐵0𝐶𝑅) + 1

𝑆𝑌𝑆𝐶𝐿𝐾

Chapter 4 - The Silicon Labs C8051F020 and the EVB Embedded Control Lab Manual

66

Figure 4.13 - SMBus0 Block Diagram

After initialization, you will need a series of simple functions:

– void i2c_start (void): to sends a start signal, which must be followed by a write

to be useful

– void i2c_write (unsigned char output_data): to send a byte of data or a slave

address with the R/W bit, which must be preceded by a start or another write

– void i2c_write_and_stop (unsigned char output_data): to send last byte of a

write to slave, which is followed by a stop signal

– unsigned char i2c_read (void): to read a byte of data from a slave, which must

be preceded by a start and a write. The write contains the address of the slave of interest.

Port I/O

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Chapter 4 - The Silicon Labs C8051F020 and the EVB

67

Most often there are three writes before the read. The first addresses the slave, the

second picks which data is desired from the slave and the third says to start sending.

– unsigned char i2c_read_and_stop (void): to read the last signal in a sequence

and send a stop signal.

You will also need two higher-level functions:

– void i2c_write_data (unsigned char addr, unsigned char slave_reg,

unsigned char *buffer, unsigned char num_bytes): (1) to start the I2C, (2) to

write to the slave address, addr, with R/W bit low, (3) to send a byte of data which is

the register inside the slave to be written, slave_reg, (4) to send the data that is to be

written in the slave_reg, buffer, (5) to repeat if more than one byte is to be written, and

(6) to end with a stop signal on last write.

– void i2c_read_data (unsigned char addr, unsigned char slave_reg,

unsigned char *buffer, unsigned char num_bytes): (1) to start the I2C, (2) to

write to the slave address, addr, with R/W bit low, (3) to write a byte of data which is

the register inside the slave to be read, slave_reg, and send stop, (4) to start the I2C, (5)

to write to the slave address, addr, again but with R/W bit high, (6) to read data, and to

repeat read to get all the data, num_bytes, (7) to set ACK high during each read except

on the last read, and (8) to stop the I2C.

Chapter 5 - Circuitry Basics and Components Embedded Control Lab Manual

68

Chapter 5 - Circuitry Basics and Components

Building Circuits

It is essential that you are familiar with the information in this section before you begin building

your first circuit. When you begin assembling your circuitry, please keep in mind that it is

absolutely essential to wire your circuits as neatly as possible! The more time invested into

building a neat, cleanly wired circuit, the less time will be spent in trying to isolate problems with

it later.

Grounding

One of the most common sources of problems causing circuits to work unpredictably and

sporadically is incorrect grounding practices. Since voltage is defined as potential difference, all

interacting circuitry must have a common reference. All voltages are measured from this point,

which is defined as 0V, or ground. Make sure that the power supply; the EVB, and your circuitry

all are using a common ground by explicitly connecting the grounds together at a single point.

Noise

Noise is defined as an unwanted signal that interferes with a transmitted signal. Another

extremely important reason why it is essential to wire the protoboards neatly is to eliminate as

much noise as possible. Recall from physics that wires carrying electric current also have magnetic

fields that can induce unwanted voltages and currents in adjacent wires. The degree to which the

unwanted induction takes places is largely a function of how efficiently a wire serves as an

antenna. A long loop of wire sticking up serves as a much better antenna than a short wire close

to the surface of the protoboard. Therefore, try to keep your wires short and close to the

protoboard to reduce antenna effects. Also, avoid running power and ground for motors to the

vertical rails on the protoboard that would induce a significant amount of noise into your circuitry

as the relatively large motor currents fluctuate.

Preventing errors

The best way to avoid facing most hardware problems is to prevent them from ever occurring.

All wires should be flat against the protoboard to make component removal simple, and no bare

wires should protrude above the protoboard holes in order to avoid unintended connections and

shorts. Select wire colors according to industrial standards—use red wire only for 5V power and

black wire only for ground. This makes it much easier to visually inspect the board to see if power

and ground are connected. Select colors for other wires so that they will be easier to trace. A single

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Chapter 5 - Circuitry Basics and Components

69

wire within a bundle of other identically colored wires is very difficult to differentiate and trace.

Finally, place all chips on the board in the same orientation and with their tops facing the top of

the protoboard so that it is easy to quickly see which pins are connected.

Schematics

Throughout this course, you will be given schematics for the logic circuits you will be expected

to build. A few common schematic symbols are shown in Figure 5.1. A schematic shows the

interconnections between integrated circuit (IC) chips and other electronic components that are

necessary to realize the circuit. Because a schematic is made primarily to show logical connections,

it often does not closely resemble the physical layout of the circuit. For example, the IC chips are

often shown on a schematic with the pins rearranged, usually so that the input pins are on one side

and the output pins are on the other. This is done for organizational purposes, to make the

schematic more readable.

Figure 5.1 - Common schematic symbols

Figure .2 - IC illustrating counter-clockwise pin number scheme

On the physical chip, the pin numbers are arranged from the top-left around the chip in

a counter-clockwise (CCW) direction as shown in Figure 5.2. The top-left is found by locating the

small dot or notch on the chip.

 Additionally, it is important to remember that schematics often do not show pins labeled for

power and ground on ICs. This is because power and ground connections are always required, and

showing these connections would simply add clutter to the drawing. So when building your circuit,

Ground

Resistor Inductor

Diode npn Transistor

Phototransistor

Capacitor

LED

Photodiode

Potentiometer

-

LM311

+

1

2

3

4

8

7

6

5V EE

GND V CC

Output

Balance / Strobe

Balance

Inputs

5

Chapter 5 - Circuitry Basics and Components Embedded Control Lab Manual

70

don't forget to attach power and ground to each chip even if these connections are not shown on

the schematic!

Chip handling precautions

Integrated circuit chips are very susceptible to damage by static electricity. You can

permanently damage an IC if you don’t discharge any accumulated static charge from yourself

before handling it. To avoid this, you must make sure that you discharge any static electricity your

body may have accumulated before you handle a chip. One way to do this is to touch a well-

grounded object just before handling any chips.

The Buffer

In integrated circuits, a buffer gate receives a logic input and sends the same logic output.

Buffer chips typically contain multiple buffer gates with pairs of pins for input and output for each

gate. The chip will to have power (VCC) at pin 16 and ground (GND) at pin 8 connections to

operate properly. Applications of buffers include isolating specific parts of a circuit and acting as

a current supply or current sink. Although the output logic state (low or high) always matches the

input state, buffers also interface different logic families with supply voltages ranging from 5V

down to 2.5V or lower. Output voltages will match logic thresholds of connected family.

The 74F365 Hex Buffer/Driver chip contains six pairs of input/output pins (see Figure 5.3). In

addition, it has two Output Enable pins, 1 and 15, which must be set low in order for the chip to

function as a buffer. When both Output Enable pins are set low, then a low input on one of the

input pins will produce a low output on the corresponding output pin, and a high input will produce

a high output on the corresponding pin.

Figure 5.3 - 74F365 Hex Buffer/Driver Chip

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Chapter 5 - Circuitry Basics and Components

71

Note that setting only one of the Enable pins high will still produce a high impedance state,

which will effectively isolate the input from the output (see Table 5.1). Thus, the chip can actually

output three states: high, low, and high impedance. In class, make sure both of these pins are

grounded. Note that the 3.3V logic levels of the C8051F020 are boosted to the 5V logic levels of

the protoboard circuits by the 74F365 buffer.

Table 5.1 - Function Table for the 74F365

L = Low Voltage Level, H = High Voltage Level, X = Immaterial, Z = High Impedance

Inputs Output

OE1 OE2 In Out

L L L L

L L H H

X H X Z

H X X Z

The Inverter

The function of an inverter is to transform a logic high at the input, A, to a logic low at the

output, Y, and visa versa. Similar to a buffer chip, and inverter chip also typically contains multiple

gates and requires power and ground connections.

The Motorola SN74LS05N and SN74LS04N hex inverter ICs, shown in Figure 5.4, contains

six independent inverters. The Motorola SN74LS05N has been designed with open-collector

outputs that require the use of pull-up resistors in order to function properly.

Figure 5.4 - Symbol for an inverter (left) and a Motorola SN74LS05N or SN74LS04N

 hex inverter IC

1

2

3

4

5

6

7

14

13

12

11

10

9

8

V CC

GND

SN74LS05N

1

2

3

4

5

6

A Y

Chapter 5 - Circuitry Basics and Components Embedded Control Lab Manual

72

The Motorola SN74LS04N hex inverter IC serves the same function and has the same pin

configuration as the SN74LS05N. The main difference between the two ICs is that the SN74LS04N

does not require pull-up resistors at its outputs in order for the inverter to function correctly.

Common Digital Gates

Some of the common digital gates frequently used in digital electronics are given below.

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Chapter 5 - Circuitry Basics and Components

73

LEDs

An LED, or light emitting diode, is a very simple means of displaying information to a user.

An LED is simply a diode that emits light when current flows across it. An important characteristic

to remember about diodes is that a diode only allows current to flow in one direction. Therefore,

an LED can be lit by placing a potential difference across the diode that will cause current to flow

from the anode to the cathode of the LED. It should also be noted that the intensity of the light

emitted by the LED is directly proportional to the amount of current passing through the LED.

Figure 5.5 shows a physical and schematic representation of a standard LED.

Figure 5.5 - An LED, note flat side is on cathode (-) lead

The question that should be on your mind is “How can we control the LED using the

microprocessor?” Remember, the microprocessor can send a 1 or 0 to each digital output pin

resulting in a logic high or low level, where logic low corresponds to ground and logic high to

+5V.

When implementing a circuit as shown in Figure 5.6, a 0 [V] (or logic low) must be output

from the EVB pins connected to the LEDs in order to create a potential difference across the LEDs

and cause them to light. Note, a buffer is used between the LED and the EVB pin in order to protect

the EVB in case of a short across the LED or other potentially damaging occurrence. The buffer

will be used for isolation extensively in this course.

Figure 5.6 - Simple LED/buffer schematic

+-

anodecathode

side view top view

Chapter 5 - Circuitry Basics and Components Embedded Control Lab Manual

74

Switches

The next developmental stage is the integration of switches. The lab for Embedded Control is

equipped with momentary push button switches and non-momentary slide switches, which can be

configured for a variety of uses. One particular use for the switches is to provide a means to input

digital data to the C8051. The C8051 can read data through the data lines of its digital input ports

from an external device such as a switch. Since values provided to the C8051’s digital input ports

must either be 0 volts (logic LOW) or 5 volts (logic HIGH), switches used for digital input should

be configured to provide these two voltage levels.

Toggle and Push-button Switches

The push-button switches in the lab, and some types of toggle switches, are momentary

switches. The slide switches in the lab are non-momentary toggle switches. As soon as you release

a push-button switch, contact is broken. When you release a momentary toggle switch, its spring

returns it to the 'A' position. Figure 5.7 illustrates the relation between switch position and contact

configuration of a toggle switch, whether it is momentary or non-momentary.

Figure 5.7 - Slide (toggle) switch positions

The distinguishing feature of the momentary switch is its normal position. The term normal as

applied here means “without outside intervention, as by manually holding the switch in one

position or the other”* . Switches that have a normal position also have contacts referenced as

normally open (N.O.) and normally closed (N.C.). The normal position for the momentary toggle

switches is for COM to be connected to 'A'. Because the toggle switches can connect one line

(COM) to either of two alternate lines (A or B), they are further classified as single-pole double-

throw (SPDT) switches. The slide switches available in the lab for Embedded Control do not have

a normal position.

* The terminology “normally open/closed contacts” also applies to electro-mechanical

switches (relays) where the relay is in its normal position when its coil is not energized.

When the switch is in the A position,

A is connected to COM.

COM

A B

When the switch is in the B position,

B is connected to COM.

COM

A B

A B A B

COM COM

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Chapter 5 - Circuitry Basics and Components

75

Figure 5.8 illustrates the internal configuration of the push-button switches. Since these

switches are configured to connect a single line to another line, they are classified as single-pole

single-throw (SPST) switches. When the push-button is not pressed, the contacts are normally

open.

Figure 5.8 - Push-button switch positions

Table 5.2 below summarizes the types of switches available in the lab for Embedded Control.

Table 5.2 - Switches available in the lab for Embedded Control

Physical Type
Momentary/

Non-Momentary

Normal

Position
Electrical Type

Pushbutton Momentary Open SPST

Slide Switch (Toggle) Non-Momentary N/A SPDT

Configuring switches for 0 or 5 volt digital output

Figure 5.9 illustrates a useful push-button switch configuration for generating a digital (0 or 5

volt) signal, while Figure 5.10 illustrates a toggle switch configuration for producing a 0 or 5 volt

signal. For illustrative purposes only, the outputs from these switch configurations are shown as

being routed to various data lines of the C8051’s digital input port 2. In practice, these switch

outputs could be routed to any logic gate input terminal which accepts 0 and 5 volt logic inputs,

e.g., the input terminals of logic gates such as AND, OR, NOT, etc.

A B

A B

Button not pressed, no connection

between A and B.

Button pressed, A connected directly to

B.

A B

Physical Diagram of a Push-button

Switch

Chapter 5 - Circuitry Basics and Components Embedded Control Lab Manual

76

Figure 5.9 - Push-button configuration for producing 0 and 5 volt outputs

Figure 5.10 - Toggle switch configuration for producing 0 and 5 volt outputs

Electric Compass

The electric compass yields the current direction with respect to magnetic north. A magnetic

field sensor in the compass is sensitive enough to detect the Earth’s magnetic field. As shown in

Figure 5.11, the compass requires a 5V power line at Pin 1 and a ground line at Pin 9. Also, you

need to connect Pin 2 (SCL - Serial Clock) and Pin 3 (SDA - Serial Data) to I2C bus to get readings

from the compass. The SCL and SDA Port pin connections on the EVB will depend on the XBR0

setting. As with all I2C devices the SDA and SCL lines must be pulled up to a 3.3V supply through

a 1.8k resistor. Pin 7 on the 60-pin connector is the only pin assigned to 3.3V and must be wired

carefully in all circuits. Never short 3.3V to 5V anywhere in a circuit. Doing so will damage

both the EVB and the 5V supply on the car.

+5V

1 k 










   

  ()

Switch in position A: V = 5

Switch in position B: V = 0

+5V

1 k 

Push-button

switch

A

B

To Port 2, data

line 2 (P2.2)

Push-button released: V = 5
Push-button pressed: V = 0

To Port 2, data

line 4 (P2.4)
Toggle

switch
COM

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Chapter 5 - Circuitry Basics and Components

77

Figure 5.11 - Wiring for Compass

Ultrasonic Ranger

The ultrasonic ranger detects the distance to objects or surfaces. It does so by creating a short

burst of high frequency sound waves, which travel a the speed of roughly 0.9 feet/msec and reflect

back to the ranger from any object encountered in the path. After transmitting the signal, the ranger

waits for the reflected signal (echo). If the echo is received, the ranger computes the distance to

the object based on the elapsed time. The necessary wiring is shown in Figure 5.12.

The ranger requires 5V power and ground lines. It also requires I2C bus connections (SDA and

SCL) to read the distance to an object. Again, the SCL and SDA Port pin connections on the EVB

depend on the XBR0 settings but still must be pulled up to 3.3V on Pin 7.

Figure 5.12 - Wiring for Ranger

3.3V (Pin 7)

Chapter 5 - Circuitry Basics and Components Embedded Control Lab Manual

78

LCD and Keypad

The LCD and keypad drivers provide an easy way to display characters on a LCD screen and

read key presses using the I2C bus. The LCD screen is capable of displaying 20 characters per line,

with a total of 4 lines for the entire display. The keypad is capable of reading 12 characters total

(numbers 0-9, *, and #).

The LCD requires 5V power and ground lines. It also requires I2C bus connections (SDA and

SCL) to send data to the LCD, and read data from the keypad. The SCL and SDA Port pin

connections on the EVB will depend on the XBR0 settings.

Figure 5.13 - Wiring for LCD: GND is black, SCL is white, SDA is gray, and 5V is violet. If

the white & gray wires are crossed at the cable connector the signals are GND, SDA, SCL, 5V.

Figure 5.14 - Wiring for keypad. Pins 1 and 9 are unconnected. Only pins 2-8 are used.

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Chapter 5 - Circuitry Basics and Components

79

Accelerometer

A 3-axis accelerometer with an SMB interface allows the car to detect accelerations along all

3 axes. The data can also be used to determine pitch and roll angles of the car on a flat surface.

The chip used on the module is an STMicroelectronics LSM303C, which also includes a 3-axis

magnetometer. The magnetometer will not be used in this class, but could be used to calculate

compass heading the same way the SMB compass module does.

Different from the others, this module requires 3.3V power and ground lines. As typical it

requires I2C bus connections (SDA and SCL) to send data to the 8051 and receive configuration

information. The SCL and SDA Port pin connections on the EVB will depend on the XBR0

settings. The accelerometer’s I2C bus address is 0x3A.

Note the directions for the x-, y-, and z-axis on the board: +x is to the right; +y is to the bottom;

and +z is up, out of the board. If the module is held flat, neither the x- nor y-axis will detect any

acceleration (tilt). If the board is tilted around the x- or y-axis, a signed acceleration value will be

returned and the sign will indicate the direction of the pitch or roll while the magnitude will

indicate the size of the angle. Lab 5 explains the details of how to set up and use the module. Your

main program must call the accelerometer initialization function Accel_Init_C(void) (not

Accel_Init(void)) in i2c.h before using the device. The data from the chip is inherently

noisy and some extra processing is required to allow the car to be well controlled. The simplest

method to clean up the signal (although unsophisticated) is to average a number of individual

readings together. It has been determined that 8 or 16 will do a reasonable job of reducing the

noise. Also, due to variations in how the module mounts on protoboards, there will be constant

offsets in both the x- and y-axis that must be measured when the car is on a flat surface (off the

foam block and on its wheels). Average about 32 data points to determine an offset value to be

subtracted from every reading when in normal operation.

Figure 5.15 - The 3-axis Acceleration Module (or compatible version). GND and VDD_IO are

the ground and +3.3V connections, SDA and SCL are self-explanatory. No other pins are used.

Chapter 5 - Circuitry Basics and Components Embedded Control Lab Manual

80

Wireless RF Serial Link Modules

A wireless RF transceiver pair sets up a serial link between the car and the laptop without using

the wired USB/RS-232 adapter. The car module interfaces directly with the transmit and receive

UART0 signals (P0.0 & P0.1) on the EVB Port Connector. The laptop module plugs into a USB

port and is assigned a COMn: port number by Windows similar to when the USB/RS-232 adapter

is plugged in, after the drivers are loaded. The same procedure should be followed to connect your

SecureCRT terminal to the correct serial port. With everything in place, this allows the car to send

and receive serial data using printf() and getchar() commands. Laptops can more

conveniently be used to select expanded menu options with easier to understand instructions than

those imposed by the limits of the LCD/Keypad interface. Additionally, real-time data may be

collected while the car drives up the ramp for later plotting without any outside physical restraints

pulling against the car. Similar hardware will be used on the gondolas in Lab 6 for wireless

connections, but will already be connected internally on the gondolas.

For additional information on setting up SecureCRT to collect data from the car that will be

passed to Excel or MATLAB for plotting, see the sections Terminal Emulator Program and

Drivers for USB RF link serial adapter in the course website file Installing_SiLabs-SDCC-

Drivers.

It is important to realize that transmitter/receiver pairs are set and students must be sure to use

the correct matching laptop module with the car module. Unmatched modules are configured to

different radio channels and can’t communicate with each other. The channel number (written on

the white tag on the car module, ranging from 1 to 10) must match the number written on the laptop

USB module. Also, the wired RS-232 connection must not be used and must be unplugged

when the RF car module is connected to the EVB bus.

As usual, the car module requires +5V power and ground lines. It also needs connections to

the UART0 TX0 (Transmit, P0.0) and RX0 (Receive, P0.1) lines, as show in Figure 5.16. A 5th

pin needs to be grounded during normal operation.

Figure 5.16 – The wireless serial RF connection module and diagram.

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Chapter 5 - Circuitry Basics and Components

81

A common problem with the RF links used on the cars and the similar units used on the

gondolas is signal distortion due to over-modulation at the receiver. If the receiver unit plugged

into the laptop is too close to the car or gondola (less than 3 feet away), the characters received

may be corrupted. This usually shows up as garbled characters or graphical symbols on the

terminal. If this happens move the receiver further away from the transmitter and restart

SecureCRT. In most cases SecureCRT must be completely closed down and restarted to reset the

defaults or it will not go back to receiving and displaying ASCII characters correctly.

Chapter 6 - Motor Control Embedded Control Lab Manual

82

Chapter 6 - Motor Control

Three types of motors commonly used in embedded control applications are DC (direct

current), servo, and stepper motors. For the Smart Car, the steering system is controlled by a

pulsewidth-modulated signal applied to a servo motor while the speed is controlled by pulsewidth

modulation of the signal sent to the drive motor. The process by which the motors interpret these

signals is vastly different however. An overview of DC, servo, and stepper motor operation and

the process by which the DC and servo motors process the pulsewidth-modulated signals will be

discussed below as well as the associated driver circuitry.

 Each type of motor requires a driver to act as an interface between the motor and the C8051.

A driver is a circuit that uses a small control signal to control a large load, such as a motor or a

relay. It is also used to isolate the control system from this large load. The outputs from the C8051

are 5V logic outputs, which means that they are either 0 or 5V, and cannot supply enough current

to run the motors. Therefore, these signals must be amplified if they are to be used to control

anything other than logic circuits.

Servo Motors

Servo motors are typically used in applications which require controlled rotary movement.

They are cheap ($1 to $20), run very fast (1000 RPM and up), and require very little driving

circuitry.

Actuation

A common method for controlling the position of a servo motor is through pulsewidth

modulation of the driving signal. The internal circuitry of the servo motor includes a potentiometer,

a comparator circuit, and an internal clock - these allow the motor to vary its functioning depending

on the pulsewidth of the driving signal. The pulsewidth refers to the amount of time the driving

signal is high during the period of the signal. The comparator circuit in the servo motor determines

whether the pulsewidth of the driving signal is equal to the pulsewidth of the internal clock. When

the driving signal pulsewidth is less than the internal clock pulsewidth, the comparator circuit

supplies a control signal that allows the servo motor to rotate and turn the wheels to the left. A

potentiometer is coupled to the shaft of the servo motor and adjusts the pulsewidth of the internal

clock. As the servo rotates, the potentiometer rotates, and the pulsewidth generated by the internal

clock changes. The motor shaft continues to rotate until the pulsewidth of the internal clock is

equal to the pulsewidth of the driving signal (as determined by the comparator circuit).

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Chapter 6 - Motor Control

83

The same procedure is followed when the driving pulsewidth is greater than the internal clock

pulsewidth, except that the comparator circuit now supplies a control signal that allows the servo

motor to rotate and turn the wheels to the right.

Driver

The modest power and voltage requirements allow the servo to run using a single buffer. The

servo does not need any voltage amplification, but a buffer or dual inverter gates are needed as a

current source, thus amplifying the power from the logic signal output by the C8051 to a signal

having sufficient current to drive the servo motor. The 74F365 buffer chip can supply 48mA and

the 74LS04 inverter chip can supply 40mA; the servo motor typically draws approximately 10mA

(small in comparison to the DC drive motor which draws close to 1A).

DC Motors

A DC drive motor mounted on the car chassis gets its power from the 12 volt power source.

Regulating the power applied to the drive motor controls the speed of the car: the rotational speed

of the motor will increase with an increasing analog voltage. A pulsewidth-modulated signal can

be generated by the control program running on the EVB that is used to switch a current-driver

chip (for power amplification), the output of which is connected to a DC drive motor. The average

power applied to the drive motor depends on the duty cycle of the pulsewidth-modulated signal

that is under computer control.

Actuation

Pulsewidth modulation is a simple way to actuate a DC motor with a variable voltage, even if

a variable voltage source is not available. The inductance and series resistance of the motor coils

acts as a low pass filter, filtering out high frequency spikes and averaging an input signal to the

motor. By varying the time that a constantly varying pulse is on (Ton) within a constant time period

(Ttotal), the voltage on the motor can be varied (see Figure 6.1). The output voltage for this scheme

is thus controlled by varying the duty cycle, . A duty cycle of 100% corresponds to maximum

power applied to the drive motor.

Ton

Ttotal

Chapter 6 - Motor Control Embedded Control Lab Manual

84

Figure 6.1 - Pulsewidth modulation averaging

Speed Controller

The speed controller can receive pulse width modulation input signals and map it to pulse

width modulation output signals. The Table 6.1 provides mapping between input and output

signals. Note that the numbers are approximate because there is deadband near neutral pulse width.

The speed controller has been calibrated for you based on Table 6.1. When PCA is configured as

System Clock/12 as our lab application, the corresponding pulse width will be calculated as:

pulse width (counts) = input pulse width (ms) * System Clock/12 (MHz)

The input pulse width must be refreshed every 20 ms. If the program refreshed pulsewidth

much less often, the program shuts down the motor. If it refreshes much more often than 20 ms,

the program starts to confuse and does not work properly.

To make the motor work for the maximum and minimum pulse width, the warm-up period is

necessary; the micro controller must send the neutral pulse width for a second after power is on.

Also note that the Bandwidth of minimum and maximum pulse width must be maintained because

the motor shuts down if input pulse width is sufficiently larger than maximum pulse width or

sufficiently shorter than minimum pulse width.

The model number of speed controller used in the Smart Car and Gondola is EZX-R and HFX-

R by HITEC, respectively.

Table 6.1 - Pulse Width Table for Speed Controller

Input Pulse Width Output Signal

1.9 ms (maximum) 100% Forward Duty Cycle

1.7 ms 50% Forward Duty Cycle

1.5 ms (neutral) No Output

1.3 ms 50% Reverse Duty Cycle

1.1 ms (minimum) 100% Reverse Duty Cycle

voltage

time

amplitude

voltage averaged

across motor

T total

T on

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual

85

Chapter 7 - Control Algorithms Embedded Control Lab Manual

86

Chapter 7 - Control Algorithms

Control is a common concept, which you have probably encountered before. When you drive

an automobile, you are controlling it in order to safely arrive at a planned destination. Systems

such as an automobile are in the category of manual control. When no human interaction is

involved, we refer to this as automatic control. A good example is room-temperature control,

where a furnace is turned on and off depending on the desired temperature and a thermostat reading

of the current temperature.

This section will serve as a brief introduction to basic control algorithms. Automatic control is

a mature discipline, with an extensive body of knowledge, most of which is beyond the scope of

this course. For more detailed information you should refer to a control textbook such as Modern

Control Systems, by Richard Dorf, which is available in the library. The book Modelling and

Analysis of Dynamic Systems, by Charles Close and Dean Fredrick, is another reference with which

you may be more familiar and contains some material in more detail.

To solve a specific control problem, the designer must make decisions about the type of control

to use, including whether to add more hardware or make the software more complex. There is a

constant trade-off depending on the requirements for speed, expendability, and cost. One of the

advantages of embedded control is that the bulk of the solution can be handled in software, which

can be changed without much difficulty. The microcontroller remains the center of the control

system by coordinating all the components that interface with the environment.

The basic objective of a control system is to force the output y (Figure 7.1) to equal the input

or reference r by designing the controller so that the input to the system from the controller u (the

manipulated variable) drives the output y (controlled variable) to equal the reference. This is

normally done by controlling an actuator, such as a motor, valve, etc. When the manipulated

variable is adjusted according to measurements of the controlled variable, we call this closed-loop,

or feedback, control.

Closed-Loop Control

To illustrate the concept of control, let us look at a system you are familiar with. First, we will

take a look at the manual control of such a system, and then at how it is controlled automatically.

To regulate the speed of an automobile the driver uses the gas pedal, adjusting the flow of

gasoline into the engine. Say the driver wants to maintain a speed of 55 m.p.h.; if the current speed

is below this reference, she will have to press on the gas; conversely, if it is above she will have to

release it a little. Eventually, she will be able to maintain the pedal at a given position and maintain

the desired speed, so long as the grade of the road does not change.

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Chapter 7 - Control Algorithms

87

In a car that has cruise control, the driver has the option of setting the desired speed (reference),

and allows the car to take over the adjustment of the gas. If we have the same situation where the

grade of the road does not change, we could easily map the different positions of the gas pedal to

different speeds, and just select the one that corresponds to the desired reference. But in practice

the grade of the road will change. Another factor that makes such a solution impractical is the

degradation of the system over time, as well as changes in the quality of the gasoline, etc. In control

terms, we call these effects disturbances.

The approach taken in control to eliminate or minimize the effect of such disturbances is to use

feedback. This is, we take a measurement of the variable we want to regulate, and we feed it back

to the controller to compare with our desired reference value. Then, the controller can adjust the

manipulated variable as a function of the error - the difference between the reference and the actual

measurement (Figure 7.1).

Figure 7.1 - Simple closed-loop control system

In the case of the cruise control, if the error starts to increase (actual speed of the car is lower

than the desired reference), the system has to increase gas flow. If the error becomes negative, then

we are going faster than we want to, and the flow of gas has to be decreased. In essence, the

controller is mimicking the human driver. The process by which the controller calculates the

manipulated variable as a function of the error is the control algorithm.

Once a control algorithm is picked, it can then be tuned to obtain the desired performance of

the system. In the case of cruise control, by tuning we could set how aggressively the controller

will react to changes in the speed. We could have it be very fast in responding (resulting in constant

and abrupt acceleration and deceleration), or very slow (taking a long time to correct for changes

in the grade of the road). Ideally, we want to tune it so the car will respond smoothly and in a

reasonable amount of time.

In order to specify the desired performance of a closed-loop system (this is, a system with

feedback control), there is a whole set of terminology that is used. This allows us to give actual

performance values and criteria that can be used in the design of such a system, rather than verbal

descriptions, which are difficult to quantify.

controller system

-

+ yuer

Chapter 7 - Control Algorithms Embedded Control Lab Manual

88

Control Terms

Figure 7.2 - System response for control term definitions

There are several important terms that make it easier to describe the performance of control

systems. Most of these terms are indicated in Figure 7.2. The settling band is the region around

the reference (setpoint, desired output) in which it does not matter whether the system oscillates,

though the controller may still have an effect on the system output. The settling band can be

specified as a percentage as well; a typical value is ±2%, but could also be ±1%, ±5% or some

other value, depending on the application and the performance required. The steady state response

is the value the system output attains as time approaches infinity, provided that the system is stable.

Ideally, the steady state output is equal to the reference, but in practice it is acceptable if these

values are close (how close will depend on the application). If the final steady-state value of the

system differs from the desired setpoint, we call this the steady-state error. If a settling band is

defined, it should enclose this difference. The settling time is the time it takes the output amplitude

to reach and stay within the settling band. The rise time is the time it takes for the output amplitude

to go from 10% to 90% of the steady state value of the system (the concept of rise time is

independent of the settling band). Typical rise time values will vary for different types of systems;

for an aircraft rudder control, the rise time could be of the order of milliseconds, while in a

chemical process control system, the rise time could be of the order of hours! Like settling time,

this specification depends on the speed of the system response. The overshoot is the amount the

output amplitude goes above the reference (or under when the reference is negative). Some systems

can tolerate no overshoot while others can handle a large amount. Typically systems that allow

overshoot may show an oscillatory response, as is the case in Figure 7.2. In these cases, a period

of oscillation can be determined. The frequency of oscillation is defined as the inverse of the period

time [units]

0.1

0.9

rise time

settling time

period

1 desired output

overshoot

o
u
tp

u
t

a
m

p
li

tu
d
e

[u
n
it

s]

settling band, typically ± 2%

(the drawing shows a wider

 settling band to illustrate

 the settling time clearly)

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Chapter 7 - Control Algorithms

89

of oscillation. Additionally, there are other control concepts that will be introduced briefly in the

next section: overdamped, critically-damped and underdamped systems.

Before going on to the algorithms, keep in mind that for most systems control engineers will

work with mathematical models of the system they want to control. This allows them to perform

simulations on a computer instead of experimenting with the real system. More importantly, a

good mathematical model of a dynamic process captures the behavior of the system (sometimes

called the "plant" in control systems textbooks), which then allows the engineer to design the

controller to perform according to the specifications without the need to tune it experimentally.

Because of the limitations in time and scope of this course, we will resort to the more ad-hoc

approach of experimentation to tune our controllers.

Proportional Control

Proportional control is a simple type of closed-loop feedback control. The input to the system

adjusts linearly to the difference between the system output and the reference. This may allow the

closed-loop system to quickly approach its goal if the closed-loop system is stable (if the closed-

loop system is unstable the output will not go to its goal, it will diverge). Depending on the system

properties, THIS TYPE OF CONTROL MAY OR MAY NOT WORK! There are several

techniques used to analyze stability properties. You may learn these in other courses such as

Modeling and Control of Dynamic Systems, Signals and Systems, Discrete Time Systems, Control

Systems Engineering, Chemical Process Dynamics and Control, Dynamic Systems for Biomedical

Engineering, or Mechatronics.

Figure 7.3 - Proportional control block diagram

In a proportional controller, the gain, KP, is defined as the value of the multiplier that is applied

to the difference between the desired value and the measured value of the output, which may or

may not be the same as the actual output because of sensor errors (Figure 7.3). By varying the

gain, the system response can be varied. For some gains, the system may approach the desired

value with no overshoot but have long rise and settling times (Figure 7.4, curve A). This is referred

to as an overdamped system. For some other gains, the system may overshoot the desired value

but still decay toward the desired value (Figure 7.4, curve B). This is referred to as an

KP System

Desired value

+

-

Actual value

Controlled variable

Chapter 7 - Control Algorithms Embedded Control Lab Manual

90

underdamped system. For other gains or all gains, depending on the system properties, the system

may go unstable (Figure 7.4, curve C). There is an intermediate case defined between the

overdamped and underdamped system, the critically damped system (Figure 7.4, curve D); suffice

to say that it overshoots slightly, but with no oscillations and settles into the steady-state value.

We are not going to get into further explanations here, because it would require a lengthy analytical

procedure that is beyond the scope of this chapter. You may refer to any basic control system

theory book for further information. These concepts are usually introduced in the context of second

order systems.

Figure 7.4 - System responses with different gains

The three parameters (rise time, settling time, and overshoot) may be used to determine the

gain, depending on the requirements of the system. There are various techniques used in control

system design to find the adequate gain analytically. Since real life systems are inherently non-

linear, this can be non-trivial. Another method for control system design is “trial and error”. This

method is NOT GUARANTEED TO WORK! While less efficient and reliable, this technique

requires a less accurate system model and less understanding of control design techniques. The

gain is chosen following some “rules of thumb”: Typically, decreasing the gain increases the

system rise time (i.e., it decreases the response speed). On the other hand, increasing the gain

decreases the system rise time and increases the system overshoot, and in some cases could make

the system unstable.

Analytically, the control law for a proportional controller is given as:

𝒖(𝒕) = 𝑲𝑷𝒆(𝒕)

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Chapter 7 - Control Algorithms

91

where u(t) is the output control signal, KP is the proportional gain constant, and e(t) is the error.

Since we are dealing with a discrete-time system, we can replace t by k, which is the time-step

at which the calculation is done. In proportional control this is not a critical factor, as the new value

of the manipulated variable u does not depend on what has happened in the past.

Proportional plus Integral Control (PI Control)

To improve the system response without making the gain large, an integral term can be added

to improve steady-state control (this is, to minimize the steady-state error, in many cases to zero).

Note that PI control works if the system has natural damping. Since the damping for Gondola

is very small, we use PD control instead.

By integrating the error over time, an additional element will be utilized that will force the

output to the setpoint. As long as the error is non-zero, the integral will keep growing; when the

error finally reaches zero, then the integral’s value will stay constant, providing the needed extra

forcing of the system. If the instantaneous error is zero, then the value of the manipulated variable

will only be the integral term.

Analytically, the control law for a PI controller is given as:

𝒖(𝒕) = 𝑲𝑷𝒆(𝒕) + 𝑲𝑰 ∫ 𝒆(𝒕)𝒅𝒕

where u(t) is the control signal being sent, KP is the proportional gain constant, KI is the integral

gain constant, and e(t) is the error.

When implementing the PI control law in discrete time, we have to approximate the integral

by a summation. If we again use k to denote the current time instance, we can write:

𝒖(𝒌 + 𝟏) = 𝑲𝑷𝒆(𝒌) + 𝑲𝑰 ∑ 𝒆(𝒋)

𝒌

𝒋=𝟎

where u(k+1) is the next control signal to be implemented and e(k) is the current error. The

summation considers all the previous error values found at each discrete time interval.

An alternative form of this equation can also be used: this considers the current control signal

being implemented, u(k), the current error, e(k), and the previous error, e(k-1).

𝒖(𝒌 + 𝟏) = 𝒖(𝒌) + 𝑲𝑷[𝒆(𝒌) − 𝒆(𝒌 − 𝟏)] + 𝑲𝑰𝒆(𝒌)

KP + KIdt System

Desired value

+

-

Actual value

Controlled variable

Chapter 7 - Control Algorithms Embedded Control Lab Manual

92

You should be able to derive this last equation from the previous one through simple algebra.

When implementing an integral control it is important that the time interval at which the next

control move u(k+1) is calculated remains constant.

Another implementation of a PI controller calculates the integrated error eint(t) separately and

combines the terms as:

𝒆𝒊𝒏𝒕(𝒌) = 𝒆𝒊𝒏𝒕(𝒌 − 𝟏) + 𝒆(𝒌)

𝒖(𝒌 + 𝟏) = 𝑲𝑷𝒆(𝒌) + 𝑲𝑰𝒆𝒊𝒏𝒕(𝒌)

Proportional plus Derivative Control (PD Control)

PI control works if the system has natural damping. Since the Gondola has small damping

effects, you will use PD control in your lab. The derivative term provides damping, thereby

allowing larger proportional gains that results in quicker response. Note that PD control will not

remove steady state errors.

Analytically, the control law for a PD controller is given as:

𝒖(𝒕) = 𝑲𝑷𝒆(𝒕) + 𝑲𝑫

𝒅

𝒅𝒕
𝒆(𝒕)

where u(t) is the control signal being sent, KP is the proportional gain constant, KD is the derivative

gain constant, and e(t) is the error.

When implementing the PD control law in discrete time, we have to approximate the derivative

by a subtraction. If we again use k to denote the current time instance, we can write:

𝒖(𝒌 + 𝟏) = 𝑲𝑷𝒆(𝒌) + 𝑲𝑫[𝒆(𝒌) − 𝒆(𝒌 − 𝟏)]

where u(k+1) is the next control signal to be implemented, e(k) is the current error and e(k-1) is

the previous error.

 Other Considerations

Even though the principles of analog control using the trial and error approach can be applied

to this control problem, they may not always work. With more difficult problems, it is necessary

to develop and analyze the system model with your controller before you build it so that

catastrophic mistakes can be avoided.

KPe + KD∆e System

Desired value

+

-

Actual value

Controlled variable

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Chapter 7 - Control Algorithms

93

There are also many other strategies for controlling a system. You may have heard of fuzzy-

logic control for instance, or neural network control. Beyond these, there are more advanced

strategies such a model-predictive control (MPC), adaptive control (with many variations), optimal

control, and many more. These other topics are usually covered in graduate level courses.

Chapter 8 - Troubleshooting Embedded Control Lab Manual

94

Chapter 8 - Troubleshooting

Hardware

In this course you will be assembling a substantial amount of circuitry. Occasionally you may

make an error in wiring, or you may encounter a malfunctioning circuit component. Since

hardware problems are common during circuit development, it is crucial to know how to diagnose

circuit problems independently rather than depending on the TA. Being able to troubleshoot a

problem with a system is much more than just a skill—it demonstrates true understanding of

underlying principles. It is difficult to diagnose a system that isn’t understood.

As an engineer, you are expected to possess troubleshooting skills. Engineers, like medical

professionals, are counted upon to be able to identify a problem, analyze its symptoms, and

determine its cause. Developing a critical mind is the key to debugging, and this chapter gives

some hints on what to look for when debugging electronics.

Short Circuits

A short circuit or “short” occurs when two wires in the circuit are unintentionally connected.

This often occurs in haphazardly wired circuits when adjacent bare wires touch or when a wire is

connected to the wrong location. A short between power and ground can be dangerous if the power

supply is not short protected. Such a short might cause the power supply to rapidly heat up, quickly

destroying itself and possibly other nearby equipment. If a short circuit occurs on your protoboard,

one of the fuses on the power board will blow to protect the battery. This fuse will need to be

replaced. Your TA can supply you with another fuse, but first, you must check your board to

correct the problem to prevent another fuse from blowing.

Determining the existence of a short between power and ground is very easy—just use the

multimeter to read the voltage across power and ground to see if there is a potential difference. If

there isn’t, then a power-to-ground short is present somewhere in the circuit. You should turn off

the power supply and visually inspect for the short.

While the power supply is off, another way to determine the existence of a power-to-ground

short is by checking the continuity between the power and ground terminals. Disconnect your

circuit from the power supply. Set the multimeter to its diode-check mode and connect it across

the power and ground terminals on your protoboard. If the multimeter emits a continuous beep,

then a short exists between power and ground somewhere in the circuit. Visually inspect your

circuit for red and black wires connected to the wrong vertical rails. If a visual inspection doesn’t

reveal the short, then try using the multimeter to test the continuity between power and ground

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Chapter 8 - Troubleshooting

95

while removing power or ground wires one at a time from the circuit. When the short has been

removed, the multimeter will stop beeping.

Shorts, other than those between power and ground, are somewhat more difficult to diagnose.

Bare wires, unintentionally touching, fall under the general heading of shorts. Remember, that

sometimes problems are misdiagnosed as being hardware-related when in fact the problem is

rooted in faulty software.

Crossed Wiring

The term crossed wiring is often loosely applied to many different types of wiring errors, but

it generally refers to a set of wires that have been misconnected to a set of points, usually in an

orderly fashion. For example, consider the situation where two wires, W1 and W2 should be

connected to two points on a circuit, P1 and P2 respectively. If the wires are mistakenly connected

in the reverse order, W1 to P2 and W2 to P1, then the term crossed wiring would apply—W1 and

W2 were crossed.

The easiest way to check for this type of error is to check the order of connections on sets of

associated wires. For example, the input and output ports on the EVB each have eight data lines.

If a known, distinguishable pattern is written to one of the output ports via software, then by using

the logic probe to test the data lines, it will become immediately apparent if connections to these

lines have been crossed.

Logical Errors

Logical errors are the most difficult to find because they are caused by incorrect circuit design

(i.e., your schematic is incorrect), not careless wiring. An error of this type can only be found by

having a thorough understanding of what the circuit is intended to do, and a thorough

understanding of how each circuit component operates. One example of an error of this type is that

an incorrect integrated circuit (IC) chip was mistakenly used, e.g., you took the wrong IC from the

parts bin. If you understand how the “correct” IC is supposed to function, then by checking the

input-output relation of the IC in question, you will quickly determine that the IC is not functioning

as specified. A closer examination of the IC may then reveal that you’ve mistakenly used the wrong

IC. Use the multimeter or logic probe to test the functionality of the IC. With the voltages on the

IC’s input pins at a certain level, check if the voltages on the IC’s output pins are correct.

EVB Not Responding

One common problem is an EVB not responding when the user attempts to download a

program to it. This will usually produce the message, "Target could not be reset. Confirm cable

and power connections and retry." The first thing that should be checked is the power and ground

Chapter 8 - Troubleshooting Embedded Control Lab Manual

96

connections. If the connections are correct, check that the source of power is on (make sure the red

EVB power LED is on). If the power source does not light the LED, check the fuses located on

the car’s power connection board. Another possible cause is the serial cable. Check to ensure that

a proper connection is made at the EVB connector, as well as the computer’s connector port.

During the car sequence, the battery should be checked with a voltmeter to ensure that the

battery has enough voltage. If the batteries have a sufficient charge, check the output of the voltage

regulator located on the chassis of the car. The output voltage should be approximately 5 volts. If

the voltage falls below 4.8 volts, the EVB may not respond.

Software

During the lab sequences, complex software codes will be developed with multiple functions

and routines. These complex codes leave a great deal of room for error. Syntax errors are easily

remedied with the aid of the C compiler. Logical errors, on the other hand, are quite difficult to

find. Logical errors can place your code in an endless loop or even prevent your program from

entering a significant loop. During debugging, these logical errors can leave the programmer

stumped for several hours. The only sure fire way of remedying the logical errors is with a logical,

systematic approach. First, determine the intended response of the program. Next, determine the

actual response obtained when the program is running, and compare the responses. If the cause of

the problem is still undeterminable, placing print statements at strategic locations, such as before

and after loops and conditional statements, can help locate the errors. Once the location of the

faulty statement is discovered, attempts to rectify the error can take place.

To reduce the chance for error and simplify the debugging effort, programs should be well

constructed. The program should be made modular in structure; well commented, and variable

names should be well thought out to minimize any possible confusion.

Output problems

The EVB displays output by using a serial connection to send data to a program called

HyperTerminal, which may be running on the same computer as the development IDE, or on a

different computer. Either way, a serial cable must be connected from the EVB’s output serial port

to a serial port on the computer being used for display, and Secure CRT or HyperTerminal must

be running on that computer. If terminal program is not displaying the output, it may be necessary

to quit the program and restart it.

If restarting HyperTerminal does not solve the problem, you may need to create a new

connection to be sure the settings are correct. On starting HyperTerminal, you may be asked to

designate a new connection, or else you can choose the "New Connection" option under the "File"

menu. The first screen will request a name for the connection - choose a simple name such as

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Chapter 8 - Troubleshooting

97

"litec", and click on the "OK" button. The next screen will be titled "Connect To", and the last

setting on the screen will be "Connect using:" and offer some options - choose one of the COM

port options (usually COM1 or COM2), and click on "OK". The next screen will allow you to set

the COM port settings; set "Bits per second:" to 38400, and "Flow control:" to None; click on

"OK". From there, HyperTerminal should be set to correctly communicate with the EVB. The

baud rate is 39400 and all flow control must be turned off.

Glossary Embedded Control Lab Manual

98

Glossary

!

This is the logical negation operator and if the operand following ! is TRUE, the result is

FALSE. If the operand following the ! is FALSE, the result is true.
Usage: ! (5 > 4) is FALSE, because (5 > 4) is TRUE, and ! TRUE is FALSE

Context: logical operator

See also: !=, &&, ||, ~

!=

The not-equal-to operator. It tests for inequality between two operands. It returns TRUE only

if the left operand is not equal to the right operand.
Usage: The code (5 != 5) returns FALSE, the code (5 != 3) returns TRUE

Context: C relational operator

See also: =, !

~, |, &

This is the bitwise negation operator, bitwise OR operator and bitwise AND operator.
Usage: ~0xF3 is equivalent to 0x0C.

Context: bitwise operator

See also: !, &

|=, &=

This is a C abbreviation. The code variable1 |= variable2; is equivalent to the code variable1 = variable1 |

variable2;

Usage: The code a = 0x01; a |= 0x02; results in a containing the value 0x03

Context: C language syntax

See also: |, ||

||, &&

This is logical OR operator and logical AND operator. The OR operator takes two operands

and evaluates them, and it returns TRUE only if either of the operands are TRUE.
Usage: || is often used in conditional statements such as “if” or “while”

Context: logical operator

See also: &, |

^(1)

In other compilers, this is used in variable declarations to specify the position of the desired bit

for bit-addressable registers such as P0, P1, etc.
Usage: The code push_button = P3^4; will associate the variable push_button with bit 4 of port 3 of the C8051 EVB.

Context: C compiler syntax

^(2)

When used in a calculation in a C program, this operator performs a bitwise exclusive OR

operation.
Usage: The code a = 0x01; b = a^0x03; will set variable b equal to 0x02;

Context: ANSI C bitwise operator

See also: ^(1), bitwise operator

#define

This is an instruction to the C compiler that replaces all occurrences of a single word with the

text that follows it in the define command. This is done before the program is compiled. The

word to be replaced is usually in capital letters to distinguish it from program variables and

other strings.

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Glossary

99

Usage: The C program line #define GAIN 300 replaces all occurrences of the text GAIN with the text 300 before the program

is compiled.

Context: C preprocessor directive

See also: #include

#include

Tells the C compiler to include code and function declarations contained in the file indicated.

Many of these files, such as stdio.h and math.h, are included with the compiler.
Usage: The C program line #include <stdio.h> includes the definitions and code contained in the file stdio.h.

Context: C preprocessor directive

See also: stdio.h, c8051.h, math.h, #define

%

This is the modulus operator. It returns the remainder of a division operation.
Usage: The expression 6%4 will return a result of 2

Context: C arithmetic operator

See also: mod

&

This character has two purposes depending on how it is used. If it placed between two operands,

it is the bitwise (or binary) AND operator. The bitwise AND operator returns the result of an

AND operation performed on each pair of bits in the two operands. If & is placed in front of a

variable it is the address operator. It takes the address of the variable it is placed in front of. i.e.

it returns the location in memory where that variable is located.
Usage: The bitwise AND operator is used quite often in Embedded Control, especially for I/O port operations. Don’t use the

address operator unless you are familiar with the concept of a pointer.

Context: bitwise operator, C unary operator

See also: bit mask, &&

See also:

0x

This is used to designate a number expressed in hexadecimal notation (hex). Hexadecimal

numbers use the digits 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E and F.
Usage: 0x3F is the same as 63 in base 10 or 0011 1111 in binary

Context: C language syntax

See also: binary, decimal, number conversion

74F04, 74LS04

This is a hex inverter chip used in Embedded Control. An inverter is a logic device with a single

input and a single output. When the input is 0 volts (low), the inverter makes the output 5 volts

(high). When the input is 5 volts (high), the inverter makes the output 0 volts (low). Hence, it

“inverts” the logical state of the input. The “hex” part of the name means that there are six

independent inverters in one chip package.
Usage: The 7404 has TTL level outputs, meaning it produces enough current to drive other logic inputs, or microprocessor

inputs. It can drive an LED, but it will not be incredibly bright (max output is 8 mA). If you wish to have slightly

brighter LEDs, or to drive higher current loads consider using the 7405.

Context: Electronic component

See also: 74F05, 74LS05

74F05, 74LS05

This is a hex inverter chip with open collector outputs. Open collector outputs provide a higher

current capacity for driving LEDs, buzzers, and other higher current load devices. However, to

use the 7405 to drive other logic inputs or microprocessor inputs, you must use what is called

a “pull-up” resistor. This is simply a high value resistor (1k - 10k), which is connected between

the output of the 7405 and 5 volts. This resistor supplies the current necessary to “pull” the

Glossary Embedded Control Lab Manual

100

output up to a high value. The open collector output cannot do this without that resistor. See the

description of the 7404 for information on general-purpose inverters.
Usage: Use the 7405 to drive any high current devices you might want to use.

Context: Electronic component

See also: 74F04, 74LS04

<, >, ==, <=, >=

The less-than, greater-than, equal to, less-than-equal-to and greater-than-equal-to operators. For

example, the less than returns TRUE only if the left operand is of lesser value than the right

operand.
Usage: The code (4 < 5) returns TRUE, the code (5 < 4) returns FALSE.

Context: C relational operator

See also: <<, >>

<<, >>

The left shift and right shift operator. Takes the left operand and shifts it to the left the number

of times indicated by the right operand. For example, 0x01 << 1 shifts the value 0x01 to the left

1 bit, giving a result of 0x02.
Usage: A left shift of one bit is equivalent to a multiplication by 2.

Context: C shift operator

See also: <, >, <<=

<<=, >>=

A C abbreviation. The code a <<= 1; is equivalent to the code a = a << 1.
Usage: This is rarely used in Embedded Control.

Context: C shift operator

See also: <<

=

This is the assignment operator. It assigns a variable (left operand) to a value (right operand).

This must not be confused with the == operator, which tests for equality.
Usage: The code a = 5; assigns the value 5 to the variable a.

Context: C assignment operator

See also: ==

\n

This is the notation used in the C language to designate a new line character. If used in a print

statement in a program, it causes the text to scroll up one line and the cursor to return to the

beginning of the line.
Usage: This is sometimes called an escape sequence (a series of characters that represent one single character).

Context: C syntax

See also: \r, \t, printf()

\r

This is the notation used to designate a carriage return. If used in a print statement in a program,

it causes the cursor to go back to the beginning of the current line without jumping to a new

line. It is similar to the \n (new line) character, but doesn’t start a new line.
Usage: This is sometimes called an escape sequence (a series of characters that represent one single character).

Context: C syntax

See also: \n, \t, printf()

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Glossary

101

\t

This is the notation used to represent a tab character. This can be used when outputting data

that will be imported into a spreadsheet. The spreadsheet will expect the individual data items

to be separated by the tab character.
Usage: This is sometimes called an escape sequence (a series of characters that represent one single character).

Context: C syntax

See also: \n, \r, printf()

abs()

Math library function that returns the absolute value of an integer.
Usage: You must #include <math.h> to use this function.

Context: Math library function

See also: fabs()

address

The address of a variable is the location in memory where its value is stored. Addresses are

usually expressed in hexadecimal.
Usage: In Embedded Control we are not usually concerned with specific addresses.

Context: Microprocessor concept

See also: variable, RAM, ROM

analog

This refers to a value or signal that is continuous in nature. It can take on an infinite number of

values. Analog signals must be converted to digital values before they can be understood by a

microprocessor.
Usage: The analog signals used in Embedded Control are usually voltages between 0 and 5 volts.

Context: Electronic term

See also: digital

analog circuits

Circuits composed of non-discrete components such as resistors, capacitors, transistors, and op-

amps. The signals generated by these circuits are continuous in nature. The opposite of an

analog circuit is a digital circuit.
Usage: The OTU circuit is an analog circuit.

Context: Electronics Concept

See also: analog, digital, digital circuit, resistor, capacitor, op-amp

analog-to-digital conversion (A/D Conversion)

This is the process of quantizing an analog signal into a digital signal. The precision of the

quantized value is determined by number of bits assigned to the digital value. For example, an

8-bit conversion is more precise than a 4-bit conversion.
Usage: The Evaluation Board (EVB) can perform A/D conversion on any of 8 different pins.

Context: Microprocessor Concept

See also: analog, digital

anode

Positive terminal of a two terminal semiconductor component, such as an LED. On an LED it

is designated by the longer lead, or the side of the LED opposite the flat spot.
Usage: The anode of an LED is usually connected through a series resistor to power.

Context: Electronic term

See also: LED, cathode

Glossary Embedded Control Lab Manual

102

ANSI C

This refers to the C standard published by the American National Standards Institute (1989).
Usage: The SDCC C compiler is based on the ANSI C standard.

Context: C programming term

See also: SDCC C compiler

array

A group of associated variables that can be accessed with a numerical index.
Usage: myarray[4] refers to the variable in the array myarray with index 4. In C, array indices start with 0, so it is actually

the 5th element in that array.

Context: Programming concept

See also: index

ASCII

ASCII is a set of characters usable on a computer and numbers that represent them. For instance,

the lower case g has an ASCII value of 103.
Usage: In C, you can get the ASCII value of a character by enclosing it in single quotes (e.g. ‘g’ is equal to 103).

Context: Programming concept

See also: getchar()

assembly language

A very low level computing language in which you are dealing with the basic commands that

the microprocessor is executing. The C programs you write in the lab are translated to assembly

language so they can be executed by the microprocessor.
Usage: You will not have to write programs in assembly language in Embedded Control.

Context: Programming language

See also: compile, C programming language

associativity

Refers to the order in which a mathematical expression is evaluated. For instance, the

expression 3 + 4 * 5 could be evaluated as (3 + 4) * 5 or as 3 + (4 * 5), depending on the rules

for associativity.
Usage: The rules of associativity for C can be found in most C programming texts

Context: C Programming syntax

See also: Kernighan & Ritchie, C Programming language

baud

A measure of serial transmission speed. Stands for bits per second.
Usage: The serial transmission speed to the Evaluation Board is 57,600 Baud

Context: Computer unit

See also: serial

binary

Refers to a number expressed in base 2. Binary numbers use the digits 0 and 1. Binary number

are usually only used in the context of microprocessors.
Usage: 11011011 is a binary number equivalent to decimal 219

Context: Mathematical concept

See also: hexadecimal, decimal

bit

This is the smallest unit of computer memory. It consists of one location that can store one of

two values, usually 0 or 1.
Usage: A byte is made up of eight bits

Context: Microprocessor concept

See also: byte, nibble

bit mask

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Glossary

103

In order to isolate a particular bit or bits of a result, bitwise AND the result with a value called

a bit mask. The purpose is to clear all of the other bits so that all that is left is the information

in the bit(s) we are concerned with. For instance, to examine the rightmost bit of the Port 3 data

register, bitwise AND it with 0x01 (P3 & 0x01).
Usage: You will use a bit mask for much of the digital I/O you will do in Embedded Control.

Context: Programming concept

See also: bit, bitwise operator

bitwise operator

Refers to an operator that works on the individual bits that make up a value. For instance, the

bitwise AND operator (&) performs an AND operation on each individual bit of its operands.
Usage: You should be careful not to confuse the bitwise operators with logical and assignment operators.

Context: Programming term

See also: logical operator, assignment operator

brace (curly bracket) {}

Used in C to indicate the beginning and end of a program block.
Usage: The body of a function is set out in braces (curly brackets)

Context: C language syntax

See also: bracket, parenthesis

bracket (square bracket) []

Used in C to designate the index of an array.
Usage: my_array[i] indicates the ith element in the array my_array[]

Context: C language syntax

See also: brace, parenthesis

breadboard

This is an area where electronic components can be temporarily connected. Components can be

easily inserted and removed without soldering or special tools.
Usage: Breadboards are used for all of the circuits constructed in Embedded Control.

Context: Lab equipment

See also: protoboard, Evaluation Board

buffer

A region of memory (or a file) where incoming and outgoing data is temporarily stored until it

is required.
Usage: When printing a constant flow of data, if the monitor cannot respond quickly enough, the data is stored in the buffer.

Context: Microprocessor Concept

See also: memory, Random Access Memory (RAM)

bus

This is a term for several points that are connected together electrically. It can refer to a point

in a circuit where many signals are connected together.
Usage: Breadboards utilize several buses where many components are connected to a single point.

Context: Electronic term

See also: breadboard, protoboard

Glossary Embedded Control Lab Manual

104

byte

A byte is a group of eight bits. It is a common unit of computer memory. One byte is usually

used to represent one character. It is often used with prefixes as in Mb which indicates a

Megabyte.
Usage: Many of the special function registers (SFRs) on the C8051 are one byte in size

Context: Microprocessor concept

See also: bit, nibble

SDCC C compiler

This is a program that is used to convert your C program (a text file) into a binary format that

the C8051F020 microprocessor can understand. This process is called compiling. This program

also informs you of syntax errors in your C program. In the documentation, it may be referred

to as the SDCC C compiler.
Usage: This compiler is used in the Embedded Control lab. It is licensed and distributed by a company called SDCC.

Context: Software Tool

See also: compile, program, C8051F020, gcc compiler

C8051F020

This type of microprocessor manufactured by Silicon Labs is used in the Embedded Control

lab. You will find it on the Evaluation Board (EVB). It is a 16(??)-bit processor equipped with

timers, I/O ports, and analog/digital converters.
Usage: The C8051F020 is a general-purpose microprocessor used in many applications

Context: Microprocessor concepts

See also: Evaluation Board (EVB), microprocessor

c8051.h

A C header file specifically written for the C8051F020 Evaluation Board as it will be used in

LITEC. It initializes and configures some components of the microprocessor.
Usage: The C code #include <c8051.h> includes the c8051.h header file as part of the program.

Context: C language concept, C8051 microprocessor concept

See also: #include, registers

c8051f020.h

A C header file included with the SDCC C compiler. It contains the names and definitions of

the registers used by the microprocessor.
Usage: The header file c8051f020.h enables you to access the registers and ports of the C8051F020.

Context: C language concept, C8051 microprocessor concept

See also: #include, registers

capacitor

An electronic component that stores charge. Capacitance is measured in farads or microfarads

(f).
Usage: Capacitors are used to construct filters.

Context: Electronic component

See also: filter

cathode

Negative terminal or electrode of a load component (not a source), such as an LED. On an LED

it is designated by the shorter lead or the side of the LED that has a flat spot.
Usage: The cathode of an LED is usually connected to ground.

Context: Electronic term

See also: Light Emitting Diode, anode

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Glossary

105

ceil()

This function returns the smallest integer number which is greater than the number passed to it.

The name comes from the word ceiling (an upper limit).
Usage: ceil(4.6) returns a value of 5

Context: C math library function

See also: floor()

char

The char data type is typically an 8-bit value. It is named this because it is the size used to

represent the ASCII character set.
Usage: An unsigned character can represent the values 0 - 255.

Context: C data type

See also: int, float, double, signed, unsigned

clear

Refers to the act of setting a particular register bit to 0. We say we are ”clearing” a bit when we

set it to 0, and we say we are “setting” a bit when we set it to 1.
Usage: The code P3 = P3 & 0xFE; clears the rightmost bit of the Port 3 data register.

Context: Microprocessor term

See also: set, &

clock

Microprocessors use a common signal which oscillates at a fixed frequency to coordinate the

various activities that it performs. This signal, or the circuit that produces it, is often called the

clock. The frequency at which it oscillates is kept under very tight control. Consequently, time

can be measured by counting the oscillations of the clock signal.
Usage: The clock of the C8051F020 used in the lab oscillates at 22.1184 MHz.

Context: Microprocessor concept

See also: Microprocessor, Hz

color band

Resistor values are often indicated by a series of colored bands on the body of the resistor.

These colors represent numbers that can be used to determine the value and tolerance of the

resistor.
Usage: There is a resistor chart in Appendix C which shows how these colors represent resistor values.

Context: Electronic component identification

See also: resistor

comparator

A comparator is an integrated circuit that takes in two analog signals and produces a digital

value based on which of the two analog signals is greater.
Usage: A comparator can be used to determine if a signal under investigation is greater than a known reference voltage.

Context: Electronic component

See also: analog, digital, integrated circuit, op-amp

const

The data type const is used to declare a variable as constant. This means that the value it is

given initially cannot be changed.
Usage: const can be used instead of #define to declare the gain variable in your control algorithm.

Context: C data type

See also: char, int, double, float, constant, #define

Glossary Embedded Control Lab Manual

106

constant

A value or variable that does not change.
Usage: You can use the #define directive to set up names for any constants you may need in your programming

Context: Programming concept

See also: const, #define

counter

In programming, a counter is a variable that is incremented every time a particular event occurs.

The value of this variable is the number of times that event occurred.
Usage: Counters are used frequently in Embedded Control to keep track of various events.

Context: Programming term

See also: increment, decrement

CMOS, HCMOS

CMOS is an abbreviation for Complimentary Metal Oxide Semiconductor (HCMOS is a higher

speed version of CMOS). It is a type of logic circuit. CMOS chips are resistant to noise and

operate from a wide range of supply voltages. They are susceptible to damage due to static

discharge.
Usage: HCMOS chips are sometimes used in the lab. They are indicated by chip numbers containing HC such as the

74HC237

Context: Electronic term

See also: TTL logic

curly bracket (brace) {}

Used in C to indicate the beginning and end of a program block.
Usage: The body of a function is set out in braces (curly brackets).

Context: C language syntax

See also: bracket, parenthesis, brace

data type

The name for the several different kinds of variable that can be used in programming language.
Usage: The major C data types you will use are char, int, float, and double.

Context: Programming term

See also: char, int, float, double, declaration

debugging

The process of analyzing the behavior of your program to determine why it is not operating as

intended.
Usage: Good debugging practices will save you a lot of time in the Embedded Control course

Context: Programming concept

decimal

Refers to a number expressed in base 10. This is the kind of numbers most commonly used.
Usage: Decimal numbers use the digits 0,1,2,3,4,5,6,7,8 and 9.

Context: Mathematical concept

See also: hexadecimal, binary

declaration

Most programming languages require that you specify some details about a variable or function

before you attempt to use it. This is called a declaration.
Usage: The code int i; is a declaration for the variable i of type integer.

Context: Programming concept

See also: initialization, data type

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Glossary

107

decrement

To decrement a variable is to decrease its value by 1.
Usage: The code i--; causes the value of i to be decreased by one (same as i = i - 1;).

Context: Programming term

See also: increment

digital

This refers to a value or signal that is discrete in nature. That is it can take on one of a limited

number of values.
Usage: The digital signals used in Embedded Control are voltages of either 0 or 5 volts.

Context: Electronic term

See also: analog

diode

A diode is a single semiconductor PN junction. It allows current to flow in only one direction.

Certain diodes emit light when current is passed through them (Light Emitting Diodes, or

LEDs)
Usage: Diodes are used on the smart car chassis to reduce inductive noise from the drive motor.

Context: Electronic component

See also: Light Emitting Diode (LED)

double

A C data type used to store real numbers. The SDCC C Compiler does not recognize the double

data type.
Usage: In some compilers, double and float are essentially the same.

Context: C data type

See also: float, long, data type

embedded control

A general term for any time when a microprocessor is “embedded” into a machine to monitor

and control its behavior.
Usage: In Embedded Control a microprocessor is “embedded” in the Smart Car you construct.

Context: Computer term

See also: microcontroller

Evaluation Board (EVB)

The microprocessor board used in the lab to run Embedded Control programs. It contains a

C8051F020 microprocessor, RAM, ROM, and associated circuitry.
Usage: The EVB is what you will use to run your programs and control your lab projects.

Context: Embedded Control term

See also: C8051F020

FALSE

In C, any value that is not equal to 0 is considered to be TRUE. 0 is the only value that is

considered FALSE.
Usage: The code if (0) myvariable = 10; will not change myvariable, since 0 is considered FALSE.

Context: C language detail

See also: TRUE, if statement, while statement

filter

An electronic circuit which processes a changing signal. It allows certain components of the

signal to pass easily, while providing resistance to other components of the same signal.
Usage: We sometimes use low-pass filters to process signals in Embedded Control.

Context: Electronic term

See also: low-pass filter, high-pass filter

Glossary Embedded Control Lab Manual

108

flag

A variable that is used to indicate whether a particular event has taken place. For instance, you

may have a flag to indicate whether the start button has been pressed yet.
Usage: A flag usually has a value of 1 or 0, but that is not necessarily true.

Context: Programming concept

See also: variable

float

A C data type used to store real numbers. For the SDCC C compiler, a float is a 32 bit

representation.
Usage: In programming, using the float data type can provide greater precision in calculations and data.

Context: C data type

See also: double, data type

floor()

This function returns the largest integer number which is smaller than the number passed to it.

The name comes from the word floor (lower limit).
Usage: The code floor(4.6) evaluates to a value of 4

Context: Math library function

See also: ceil()

for statement

A C statement used to create loops and other repeating structures.
Usage: The code for (i=0;i<50;i++); is an example of a “for” statement that creates a short delay.

Context: C language

See also: while statement

fuse

An electrical device that will interrupt a circuit if the current through it gets too high. When this

has happened, we say the fuse is “blown”. The type used on teh Smart Car and the Gondola are

self resetting.
Usage: There are fuses on the Embedded Control Smart Car for protection - these fuses will blow if you have a short circuit.

Context: Electrical component

See also: short circuit

gate

The general term for a logic circuit, such as an AND or OR circuit. It may also loosely refer to

an inverter.
Usage: Gates you will probably be using is the NAND gate and an inverter.

Context: Electronic term

See also: 74F04, 74LS04

getchar()

This function is used to receive an input character from the input buffer of the Evaluation Board.

Typically this will be a character that you have typed on the computer keyboard while connected

to the EVB. It is included in the stdio.h header file.
Usage: This function can be used to wait for “any key” to be pressed.

Context: C library function

See also: scanf()

header file

A file that contains function prototypes for library functions. These files end with .h, and are

used with the #include directive.
Usage: The header files you will use are included with the compiler.

Context: Programming term

See also: #include, c8051.h, math.h, stdio.h, string.h

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Glossary

109

hexadecimal (hex)

This is used to designate a number expressed in hexadecimal notation (hex). Hexadecimal

numbers use the digits 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E and F. In C, the prefix 0x is used to

indicate hexadecimal notation.
Usage: 0x3F is the same as 63 in base 10.

Context: C language syntax

See also: binary, decimal, number conversion

high-pass filter

A filter that presents little resistance to high frequency signals but much resistance to low

frequency signals. It is used to process a signal to extract out the part of the signal that is

changing more quickly.
Usage: You would use an high-pass filter to look only at the alternating part of a signal and ignore the DC level.

Context: Electronics concept

See also: low-pass filter, filter

Hz (Hertz)

The unit of frequency. One Hz is one cycle per second or 1/second.
Usage: The C8051F020 microcontroller on the EVB operates at a frequency of 22.1184 MHz.

Context: Electronic units

See also: ohm, volt

if statement

A C statement used for conditional execution. It evaluates its argument and executes certain

code if the argument is TRUE.
Usage: The code if (5 > 4) myvariable = 1; will result in myvariable being set to 1 because (5 > 4) evaluates to TRUE.

Context: C language

See also: TRUE, FALSE, for statement, while statement

indentation

It is good programming practice to indent your C code according the level of nesting in the

code. For each nested loop or code block, indent the code inside 3-4 spaces more than the loop

or code block that contains it.
Usage: It is much easier to read and debug code that is properly indented.

Context: C programming

See also: C programming language

index

Refers to the numerical selector of an array; can refer to a numerical value or a variable used

for that purpose.
Usage: In the code myarray[i]; i would be called the array index.

Context: Programming term

See also: array

input

A signal connection that looks at the voltage or logic level. It does not attempt to change it; it

merely determines what it is. Or a value that a function uses to perform actions or calculations.
Usage: You can think of an input as where data flows “into” something.

Context: Computer term

See also: output

Glossary Embedded Control Lab Manual

110

int

The C data type for an integer. It can be preceded with several modifiers such as long, unsigned,

and signed. An integer is assumed to be signed unless the unsigned modifier is used. A signed

integer has a minimum value of -32767 and a maximum value of +32767.
Usage: With the SDCC C Compiler, an int is a 16-bit value and a long int is a 32-bit value.

Context: C data type

See also: integer, double, unsigned, signed, data type

integer

A number that has no fractional part.
Usage: Integers can be stored in variables of type int.

Context: Mathematical term

See also: int

integrated circuit (IC)

A component made up of many transistors (and other components) in a single package. The ICs

we use in the lab consist of a rectangular plastic body with eight to sixteen leads coming out. It

looks like a large black bug.
Usage: A common IC used in the lab is the 74LS04.

Context: Electronic components

See also: chip

interface

Refers to where a device or program interacts with the outside world.
Usage: The interface of the Evaluation Board includes a 60 pin I/O connector that you connect to the protoboard.

Context: Computer/Electronic term

See also: Evaluation Board

interrupt

Something that “interrupts” the normal linear execution of a computer program. In response to

some event, the computer is “interrupted” and goes off to do some other task. When that task

is completed, the computer returns to the point it was when the interrupt occurred.
Usage: Interrupts are often used to handle events which occur very often and need only a small amount of processing.

Context: Microprocessor term

See also: interrupt service routine

interrupt service routine (ISR)

This is the name for a function that “handles” an interrupt. When an interrupt occurs, the

execution of the program jumps to the interrupt service routine. When the ISR is finished

executing, the microprocessor returns to executing the regular program at the point where it left

off.
Usage: You will need to write an interrupt service routine for the Real-Time Interrupts used to measure the drive speed.

Context: Programming term

See also: interrupt, Real-Time Interrupt

inverter

An inverter is a logic device with a single input and a single output. When the input is 0 volts

(low), the inverter makes the output 5 volts (high). When the input is 5 volts (high), the inverter

makes the output 0 volts (low). Hence, it “inverts” the logical state of the input.
Usage: You will use inverters in most of your Embedded Control circuits

Context: Electronic component

See also: 74LS04, 74LS05

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Glossary

111

Kernighan & Ritchie

This refers to a rather well known book called “The C programming language” written by Brian

Kernighan and Dennis Ritchie. This book is considered an authoritative reference on the C

language, but contains some conventions that differ from the ANSI C standard which was

published later.
Usage: Published by Prentice Hall, RPI library call number QA76.73.C15 K47

Context: C language reference book

See also: “A Book on C” by Al Kelley and Ira Pohl

keyword

A reserved word in C. You cannot have functions or variables with the same name as a C

keyword.
Usage: For instance, you cannot name a variable “if”.

Context: C programming language

See also: variable, function, C programming language

Light Emitting Diode (LED)

This is a semiconductor junction that emits light when a current is passed through it. An LED

has two components, an anode and a cathode. The cathode is designated by a shorter lead, or

by a flat spot on the side of the LED. Normally the cathode would be connected to the output

of an inverter, and the anode would be connected to one side of a resistor. The other side of the

resistor would be connected to power. This resistor is required to limit the current through the

LED to a safe value.
Usage: Lab component

Context: Electronic component

See also: diode, resistor, semiconductor

logic probe

A device used to indicate logic levels. It indicates either high or low.
Usage: There is a logic probe in the Embedded Control tool kits

Context: Embedded Control equipment

See also: logic levels

long

A C data type modifier. In most cases it increases the number of bits used to store a data type.

With additional bits come additional variable ranges.
Usage: For example, a long int has a range of -2147483648 to +2147483647

Context: C data type

See also: signed, unsigned, int, double

loop

This refers to a program structure where a portion of code is repeated several times.
Usage: Loops can be made with the “for” or “while” statements

Context: Programming term

See also: for statement, while statement

mask

In order to isolate a particular bit of a result, we perform a bitwise AND between the result and

a value called a bit mask. The purpose is to clear all of the other bits so that all that is left is the

bit we are concerned with. To examine the rightmost bit of the data register of Port 3, we would

bitwise AND it with 0x01 (P3 & 0x01)
Usage: You will use a bit mask for much of the digital I/O you will do in Embedded Control

Context: Programming concept

See also: bit, bitwise operator

Glossary Embedded Control Lab Manual

112

math.h

An include file for C that contains prototypes for math functions such as sin() and cos().

Usage: The C code #include <math.h> enables you to use the math library functions

Context: C language concept

See also: #include, sin(), cos()

microcomputer

A computer device that utilizes microelectronics. It has become a very general-purpose term

which refers to any computing device which is intended to interface directly with a user.

Typically, with some type of output screen and keyboard that allows general purpose

computing.
Usage: The laboratory computers can be called microcomputers

Context: Computer term

See also: microcontroller

microcontroller

A computer device that has a very specific purpose: to control something. It may or may not

have a user interface. It is generally only useful for a small class of tasks.
Usage: The C8051 can be used as a microcontroller.

Context: Computer term

See also: microcomputer

mod

mod is short for modulus. It refers to taking the remainder of an integer division. The % is the

mod operator in the C language
Usage: 6 mod 4 is 2

Context: Programming concept

See also: %

multimeter

A meter that can be used to measure voltage, current, or resistance.
Usage: The Embedded Control tool kits each contain a digital multimeter

Context: Embedded Control equipment

See also: voltage, current, resistance

nibble

Half of a byte, 4 bits
Usage: This term is not often used in Embedded Control

Context: Microprocessor term

See also: byte

noise

Unwanted distortions to a signal caused by external interference.
Usage: Noise can sometimes be a problem in sensitive circuits like the Optical Tracking Units

Context: Electrical term

See also: filter

ohm ()

The unit of resistance. Equal to 1 volt / 1 amp.
Usage: All the resistors in the lab are measured in ohms

Context: Electronic unit

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Glossary

113

operand

The values that an operation are performed on. The subjects of the process performed by an

operator.
Usage: The operands of the + operator in (3 + 4) are 3 and 4

Context: Programming term

See also: operator

operator

An entity in a computing language that indicates a process or operation to be performed on

some values, called operands.
Usage: The C operators are grouped into mathematical, logical, relational, and bitwise operators

Context: Programming term

See also: operand, logical operator, mathematical operator, relational operator, bitwise operator

output

A signal connection that changes a voltage or logic level. The component attempts to drive the

level at that connection to the desired value. Or a value that is produced by a function.
Usage: You can think of an output as where data flows “out of” something.

Context: Computer term

See also: input

overflow

When a variable is changed to a value greater than its range, we say an “overflow” occurs. In

some cases, the value will “wrap around” and start again from 0. The variable would then be

set to the amount by which the value was outside of the variables range.
Usage: For example, let i be an unsigned char (range 0-255) that is currently set to 200. If you were to attempt to add 100 to i

and overflow would occur. The intended value was 200 + 100 = 300, but the actual value will be 300 - 256 = 44.

Context: Microprocessor term

See also: underflow, data type, unsigned, char

parameter

This is a programming term for the value that is passed to a function. It can be thought of as an

“input” to the function.
Usage: Often interchangeable with the term argument

Context: Programming term

See also: function, argument

pass by reference

This is when parameters passed to a function can be changed by that function. That is, the value

of the original variable that was used as a parameter can be changed.
Usage: To pass by reference in C, you must use pointers

Context: Programming concept

See also: pass by value, function, pointer

pass by value

This is when parameters passed to a function cannot be changed by that function. That is, the

value of the original variable that was used as a parameter cannot be changed. The function

uses a copy of the parameter rather than the original.
Usage: Pass by value is the normal parameter passing method in C

Context: Programming concept

See also: pass by reference, function

Glossary Embedded Control Lab Manual

114

period

When describing a periodic (repeating) signal, the period is the length of time for one cycle of

the repeating pattern. Measured in seconds.
Usage: period = 1/frequency

Context: Electronic term

See also: Hz

pointer

A variable whose value is the memory location of another variable or function.
Usage: You are not required to deal with pointers in Embedded Control

Context: Programming concept

See also: &, pass by reference

port

A set of connections through which a microprocessor communicates with external circuitry or

devices.
Usage: Microprocessor Concept

Context: The C8051 has 8 ports labeled 0 through 7

See also: input, output

potentiometer (pot)

A variable resistor.
Usage: The volume control on your stereo is probably a potentiometer.

Context: Electronic component

See also: resistor, power supply, ohm

power

A loose term for the connection in a circuit which supplies operating current to the circuit.
Usage: Power is usually 5 volts in Embedded Control

Context: Electrical term

See also: high

printf(), printf_fast_f()

This function allows you to produce formatted output to the screen or terminal device. In

Embedded Control, this allows you to print information to the screen of the computer (when it

is connected to the Evaluation Board).
Usage: The code printf(“hello world\n”); prints the text “hello world” and a new line to the screen

Context: C programming

See also: Evaluation Board, I/O functions

protoboard

A protoboard is used to test a circuit before it is permanently constructed. It allows the designer

to construct circuits quickly and easily. The name comes from the term prototype, which

designates an implementation of an untested design.
Usage: All of the circuits for your Embedded Control labs will be constructed on protoboards

Context: Embedded Control equipment

pulsewidth modulation (PWM)

When the width of a pulse in a rectangular waveform is varied. This pulsewidth (width of the

pulse) can be used to express a value or can represent a duty cycle.
Usage: The steering system uses a PWM signal where the pulsewidth indicates the desired position of the wheels

Context: Electronic term

See also: steering motor, drive motor, servo motor, Timer Output Compare

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Glossary

115

pushbutton switch

A switch which uses a button to make and break the connection.
Usage: Pushbutton switches are commonly used as start switches for games in Embedded Control

Context: Electrical component

See also: momentary switch, toggle switch, switch

putchar()

A function used to output a single character.
Usage: putchar(‘a’) will send an “a” from the EVB to the computer

Context: C library function

See also: printf(), getchar()

rand()

A C library function used to generate a pseudo-random number. rand() generates a number

between 0 and 32767
Usage: You should use the srand() function to set the seed of the pseudo-random number generator.

Context: C library function

See also: srand()

random number generation

The process of picking a random number (or almost random number). The random number

generator used in Embedded Control is pseudo-random, meaning it does not produce truly

random numbers in the strictest sense.
Usage: You should consult a book on microprocessor programming or engineering probability to understand random

numbers and their generation.

Context: Computer concept

See also: seed, rand(), srand()

range

Refers to the values that a variable or function can take on. Usually expressed by the minimum

and maximum values included.
Usage: The range of an unsigned char is the integers from 0 through 255 (0,1,2,3, ... ,253,254,255 or 0-255)

Context: Mathematical concept

See also: unsigned char, int

real time

Refers to events or programs that are time critical, that is, time measured with respect to real

world time (i.e. seconds, minutes, hours). Computers programs are not always concerned with

time in the outside world. A program such as a word processor is not concerned with the exact

time that a particular event takes place.
Usage: You will need to be concerned about some real time programming aspects in Embedded Control, i.e., how long your

Smart Car code takes to execute.

Context: Microprocessor concept

See also: Real-Time Interrupt

Real-Time Interrupt

An interrupt that occurs at regular time intervals. This can be used to keep track of the passing

of time in your program or to measure how long events take to occur.
Usage: You will use a Real-Time Interrupt to measure your Smart Car speed

Context: Microprocessor concept

See also: real time

Glossary Embedded Control Lab Manual

116

register

A specific memory location of a microprocessor for a particular purpose. Usually for special

functions or configuration.
Usage: The C8051 ports have data registers and output mode registers associated with them.

Context: Microprocessor concept

relational operators

Operators which determine the relationship between numbers, such as equal, greater than, less

than, etc.
Usage: The relational operators in C are ==, !=, >, <, >=, and <=.

Context: Programming term

See also: ==, !=, <, >, >=, <=

resistor

An electronic device used to introduce resistance into a circuit.
Usage: A resistor is often used to limit current flow.

Context: Electronic component

See also: resistor color codes

resistor color codes

Resistor values are shown by colored bands on the body of the resistor. There is a chart in the

lab, in this manual, and in the LITEC tutorials which describes how these colors indicate resistor

values.
Usage: You need to familiarize yourself with the resistor color codes so you do not use incorrect values.

Context: Electronic component

See also: resistor, resistance

return

This is a C keyword. It is used to pass a value back from a function and to exit the function.

Execution of the function stops after the return command so any code following it will be

ignored. If the function has no return value, it will simply exit the function.
Usage: The code return 0; will make 0 the return value of the function and then exit the function

Context: C language keyword

See also: function

sampling rate

The rate at which a microprocessor (or other device) checks the value of a signal. It is expressed

in Hz (times it is checked per second).
Usage: A typical sampling rate for the Optical Tachometer is 30 Hz

Context: Microprocessor term

See also: Hz

scanf()

A library function which receives formatted data input by the user.
Usage: You may use scanf() to input values to your program via the computer and the IDE. In <stdio.h>

Context: C Library function

See also: getchar()

seed

The starting point of a pseudo-random number generator. If a program uses the same seed each

time it is run, it will get the same sequence of “random” numbers each time.
Usage: You can set the seed using the srand() function. Random numbers are obtained using the rand() function

Context: Microprocessor concept

See also: rand(), srand()

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Glossary

117

semicolon (;)

A semicolon is used in C to end a line of code.
Usage: If you find errors with a line of code, check the lines before to make sure they have properly included semicolons.

Context: C programming language

servo motor

A motor that is controlled by a pulsewidth modulated signal. It is sensitive to the amount of

time during a period that the signal is high. A certain rotary position on the servo motor

corresponds to a specific pulsewidth.
Usage: A servo motor is used on the Smart Car to control the steering.

Context: Electrical component

See also: steering motor, stepper motor

set

Refers to the act of setting a particular register bit to 1. We say we are ”clearing” a bit when we

set it to 0, and we say we are “setting” a bit when we set it to 1.
Usage: The code P3 = P3 | 0x01; sets the rightmost bit of the data register for port 3

Context: Microprocessor term

See also: clear, &, register

setpoint

The “goal” of a control system. It is the desired value that we wish the system we are controlling

to reach.
Usage: In Embedded Control, you will use a setpoint to represent the desired speed of the Smart Car

Context: Control term

See also: deadband

shift

When each bit of a value is moved to the left (or right), we say that we have “shifted” that value

to the left (or right). Specified with the << operator for left shift and >> operator for right shift.
Usage: If we shift the binary value 0010110 one bit to the left, we get 0101100

Context: Microprocessor concept

See also: <<, >>

short circuit

This is when wires are accidentally connected together, causing the current flow in the circuit

to be much higher than intended. Alternatively, a mis-wiring that causes the load resistance to

be much lower than intended.
Usage: You should check for short circuits (shorts) in your circuits before you apply power. You can do this by using the

multimeter to measure the resistance between the power and ground connections of your circuit. Generally it should

not be less than 10 ohms.

Context: Electrical term

See also: multimeter, resistance

software

Refers to programs that are written for a computer to run. As opposed to hardware which is the

physical components which make up the computer.
Usage: We generally refer to the programs that run on a computer (word processor, spreadsheet, text editor) as software.

Context: Computer term

See also: hardware

Glossary Embedded Control Lab Manual

118

sqrt()

A math library function, returns the square root of a floating point number. Contained in the

math.h header file.
Usage: sqrt(4.84); is equal to 2.2

Context: C math library function

See also: math functions, math.h

srand()

The random seed function. This function allows you to set the seed of the random number

generator.
Usage: Including the line srand(TL1); after your program has done some I/O (especially after a getchar();) will automatically

set the seed to a different value (almost) every time.

Context: C library function

See also: seed, rand(), stdlib.h

standard include files

These files contain function prototypes and code which are helpful for many programs. They

are used with the #include statement. Include files are typically named with a .h extension.
Usage: stdio.h, stdlib.h and math.h are some common include files

Context: C programming concept

See also: #include, stdio.h, stdlib.h, math.h, c8051.h

static

A data type modifier in the C language. If a variable in a function is of type static, it does not

lose its value when the function quits. Static variables are initialized to zero automatically.
Usage: You may wish to use a static variable if you want a function to “remember” something, but you will not need to use

that variable in the rest of the program

Context: C programming language

See also: data type

stdio.h

An include file for C that contains prototypes for I/O functions such as printf() and scanf()

Usage: The C code #include <stdio.h> enables you to use the I/O library functions

Context: C language concept

See also: #include, standard include files

stdlib.h

An include file for C that contains prototypes for common functions such as abs() and rand()
Usage: The C code #include <stdio.h> enables you to use common library functions in your program

Context: C language concept

See also: #include, standard include files

steering motor

This is the servo motor used on the Smart car to turn the front wheels. We control the position

of those wheels by a pulsewidth output generated from the Evaluation Board.
Usage: You will write programs which move the steering motor in response to sensor inputs from the Optical Tracking Unit

Context: Embedded Control equipment

See also: servo motor

string

A string is a series of characters. In the C language, a string is represented by a char array. The

end of the string is indicated by a character whose value is 0. The values in the array are the

ASCII values of the characters in the string.
Usage: You won’t find much need for strings in your Embedded Control projects

Context: C programming language

See also: string functions, string.h

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Glossary

119

string functions

These are library functions for the manipulation of strings. Some of these are strlen(), strcat()

and strcpy(); which give the length of a string, concatenate two strings, and copy a string

respectively
Usage: A good C book should describe the basic string functions

Context: C programming language

See also: string, string.h

string.h

An include file for C that contains prototypes for string manipulation functions such as strcpy()

and strcmp().
Usage: The C code #include <string.h> enables you to use the string manipulation library functions

Context: C language concept

See also: #include, string, string functions

switch

A switch is an electrical device that allows a user to easily make or break a connection. We say

a switch is closed when the terminals are connected and open when they are not.
Usage: You will use several kinds of switches in Embedded Control

Context: Electrical component

See also: pushbutton switch, toggle switch, momentary switch, switch keyword

switch keyword

The word “switch” is a reserved word in the C language. This means you cannot use it as a

variable or function name. You should consult a C book if you are interested in how to use the

switch keyword in a program.
Usage: The switch keyword is rarely used in Embedded Control programs

Context: C language

See also: switch

syntax

Refers to the specific command format required by a programming language. Punctuation,

command names, etc. are all part of the syntax of a language.
Usage: You should have a good C language book to serve as a syntax reference

Context: Programming term

timer

A subsystem of a microprocessor that allows a program to keep track of time. Timers are used

to generate time sensitive output signals such as the pulse width outputs used for the Steering

and Drive motors
Usage: The C8051 has several timers that you will use

Context: Microprocessor concept

See also: Timer Output Compare

toggle switch

A switch with a lever that flips back and forth to make and break the connection.
Usage: A typical light switch is probably a kind of toggle switch

Context: Electrical component

See also: momentary switch, push button switch, switch

Glossary Embedded Control Lab Manual

120

TRUE

In C, any value that is not equal to 0 is considered to be TRUE. 0 is the only value that is

considered FALSE.
Usage: The code if (1) myvariable = 10; will result in myvariable being set to 10, since 1 is TRUE

Context: C language detail

See also: FALSE, if statement

TTL logic

Transistor-Transistor logic. This is a family of logic chips that employ this type of logic. It also

implies a certain general current driving capacities, speed, and input switching characteristics.
Usage: We use mostly TTL chips in the lab

Context: Electronic concept

See also: CMOS

typecast

In the C language, this refers to a conversion between data types.
Usage: An example would be the code int_var = ((int) float_var); which takes the variable float_var (assumed to be a

floating point number) and converts it to an integer, then assigns it to the variable int_var (assumed to be an integer).

Context: C language concept

See also: data types, int, float, double

underflow

When a variable is changed to a value less than its range, we say an “underflow” occurs. In

some cases, the value will “wrap around” and start again from the maximum value. The variable

would then be set to the amount by which the value was outside of the variables range.
Usage: For example, let i be an unsigned char (range 0-255) that is currently set to 50. If you were to attempt to subtract 100

from i an underflow would occur. The intended value was 50 - 100 = -50, but the actual value will be 256 - 50 = 206.

Context: Microprocessor term

See also: overflow, data type, unsigned, char

unsigned

This a modifier for data types, such as unsigned int. A variable of this type is always positive

or zero. This increases the range of variable since the computer does not have to store the sign

of the number.
Usage: We sometimes use unsigned int to get increased integer range. The char data type is usually assumed to be unsigned

Context: C data type

See also: char, int, signed

variable

A location in memory where a value can be stored.
Usage: The code int i; declares i to be a variable of type integer

Context: C programming

See also: data types

VCC

A designation for the “power” connection in a circuit.
Usage: In Embedded Control, VCC usually refers to 5 volts

Context: Electronic term

See also: power supply

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Glossary

121

void keyword

This is used in C to indicate that a function does not have a return value or has no parameters.
Usage: a function prototype of void myfunction(int); indicates a function which takes an integer as a parameter and has no

return value.

Context: C syntax

See also: int, prototype

volt, voltage

The unit of potential difference. For purposes of Embedded Control, it is generally assumed

that voltage is measured relative to “ground”. That is ground is assumed to be 0 volts.
Usage: 1 volt = 1 amp * 1 ohm

Context: Electrical unit

See also: ohm, amp

voltage reference (Vref)

This signal defines the input signal range of the A/D converter. The A/D converter will only

convert analog values that fall between 0 and Vref.
Usage: Vref=2.4 V for the Smart car and the Gondola

Context: EVB inputs

See also: Analog-to-digital conversion

voltage regulator

This is a component used on the Smart Car that regulates power supply voltage. The voltage

from the battery is regulated to 5 volts so it can be used to power the EVB and your logic

circuitry.
Usage: You may notice that the voltage regulator on your Smart Car gets slightly warm. This is because it must dissipate

power in order to bring the 10-13 volts of the battery down to 5 volts.

Context: Electronic component

See also: voltage, power supply

waveform

Another word referring to a changing signal. Usually one that repeats in some regular fashion.
Usage: The terms waveform and signal are often interchangeable

Context: Electronic term

See also: signal

wavelength

The period of a periodic wave multiplied by its speed in space. Comes from the physical

distance that cycle traverses in space. Usually measured in meters.
Usage: Sometimes used loosely to describe the period of a wave

Context: Physics concept

See also: period

while statement

A C statement used to create loops and other repeating structures
Usage: An example of a while statement is while (myvariable < 20) {/* repeated code */}; which repeats the code block as

long as myvariable is less than 20

Context: C language

See also: for

Glossary Embedded Control Lab Manual

122

wiring diagram

A physical representation of the connections in a circuit. It generally shows the components in

some graphical (not symbolic) way, and shows lines indicating physical connections. A wiring

diagram includes some connections that are assumed on a schematic, such as power and ground.
Usage: You should understand the difference between a wiring diagram and a schematic

Context: Electronics concept

See also: schematic

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Glossary

123

Appendix A - Programming Information Embedded Control Lab Manual

124

Appendix A - Programming Information

C functions

As mentioned many times, the C language does not really support many functions intrinsic to the language,

but allows for extensions in the C libraries. The following section outlines the most useful functions that

are available with the SDCC C compiler. Some of the functions are ANSI C standard functions, and some

are specific to the implementation on the C8051. Below is an outline of the structure of this section, along

with an example of each section.

Name

 lists the name of the function

Prototype

 shows the prototype of the function which is necessary to know what types are used in the function

call and what include file contains the prototype

Description

 describes the use and operation of the function, including options

Portability

 contains the information about the function as applied to other C compilers

Example program

 a short example of how the function is called or used

Related functions

 a list of other functions that are used for the same purpose or that are used with the function being

described

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Appendix A - Programming Information

125

abs

Prototype

 #include <stdlib.h>

 int abs(number);

 int number;

Description

 abs returns the absolute value of an integer.

Portability

 Available on most systems.

Example program
/* Absolute value test program

 This program demonstrates the use of the abs function.

*/

/* Include files */

#include <stdlib.h>

main()

{

 int i;

 i = -19;

 printf("\n The absolute value of %d is %d \n\n\n", i, abs(i));

}

Related functions

 fabs

ceil

Prototype

 #include <math.h>

 double ceil(Number);

 double Number;

Description

 ceil() is called the ceiling function. It returns the smallest integer greater than Number as a

floating point number. For example, ceil(9.3) returns 10.0, and ceil(-6.7) returns -6.0.

Portability

 ANSI C compatible

Example program
/* Ceiling function test program

 This program demonstrates the use of the ceil function

*/

/* Include files */

#include <math.h>

main()

{

Appendix A - Programming Information Embedded Control Lab Manual

126

 double i;

 i = -17.569;

 printf("\n The smallest integer greater than %f is %f \n\n", i, ceil(i));

}

Related functions

 floor

floor

Prototype

 #include <math.h>

 double floor(Number);

 double Number;

Description

 floor returns the greatest integer less than Number as a floating point number. For example

floor(9.3) returns 9.0, and floor(-6.7) returns -7.0.

Portability

 ANSI C compatible

Example program
/* Floor function test program

 This program demonstrates the use of the floor function

*/

/* Include files */

#include <math.h>

main()

{

 double i;

 i = 14.378;

 printf("\n The smallest integer less than %f is %f \n\n",i, floor(i));

}

Related functions

 ceil

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Appendix A - Programming Information

127

getchar

Prototype

 #include <c8051_SDCC.h>

 char getchar();

 int getc(FILE *stream);

Description

 getchar reads the next character from the terminal port and returns its value as a char.

Portability

 getchar is available in ANSI C, but its exact behavior is compiler dependent.

Example program
/* getchar test program

 This program demonstrates the use of the getchar function. The function waits for a character to be

sent from the terminal, then transmits a message with the character back.

*/

main()

{

 int c;

 while (1)

 {

 while(!(c = getchar()));

 printf("The character was %c and its ASCII code is %d \n",c,c);

 }

}

Related functions

 gets, putchar

getchar_nw

Prototype

 #include <c8051_SDCC.h>

 char getchar_nw();

 int getc(FILE *stream);

Description

 Similar to getch, getchar_nw reads the next character from the terminal port and returns its value

as a char, however, if no character is waiting to be read the function returns immediately with a value of

0xFF (255).

Related functions

 getchar, putchar

Appendix A - Programming Information Embedded Control Lab Manual

128

gets

(NOT PRESENTLY AVAILABLE FOR THE SDCC COMPILER)

Prototype

 #include <string.h>

 char *gets(String);

 char *String;

Description

 gets will read a line of input from the terminal port and will place it in the string pointed to by

String.

Portability

 Available everywhere.

Example program
/* gets test program

 This program illustrates the use of the gets function. It will receive a line of input from the

terminal, and return it. It will also print out the first 40 characters in columns to illustrate simple

string handling functions. The printf function can only output a string of up to 80 characters, so we

check for a string that is too long. If you need to output longer strings use the puts function instead.

*/

#include <string.h>

main()

{

 char String[80];

 int i, length;

 while (1)

 {

 printf("\nPlease enter a string\n");

 gets(String);

 length = strlen(String);

 if (length <= 60)

 {

 printf("\nThe String is \"%s\" \n",String);

 for (i=0;((i<length) && (i<40));i++)

 printf("\t%c",String[i]);

 printf("\n");

 }

 else

 printf("\nThat string is too long, try again.\n");

 }

}

Related functions

 getchar, puts

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Appendix A - Programming Information

129

kpd_input

Prototype

 #include <i2c.h>

 unsigned int kpd_input(mode);

 char mode;

Description

 The kpd_input function accepts an unsigned int (16-bit) from the keypad for a decimal integer up

to 5 digits. Number with less than 5 digits are terminated (entered) by pressing the ‘#’ key. Five-digit

numbers are automatically entered when the 5th digit is pressed. As digit keys are pressed their values

are displayed on the LCD screen at the beginning of the line of the cursor position. If mode has the value

of 0 a message is displayed on the LCD prompting the user with instuctions. If mode is nonzero the

prompt is not displayed and only the digits are echoed to the LCD as the keys are pressed. The ‘*’ key is

ignored. Any value entered outside the range of 0 – 65535 results in the value obtained from a normal

binary arithmetic overflow operation.

Example program
/* kpd_input

 This program illustrates how to use the kpd_input function

*/

main()

{

 unsigned int value;

 value = kpd_input(0);

}

Appendix A - Programming Information Embedded Control Lab Manual

130

lcd_clear

Prototype

 #include <i2c.h>

 void lcd_clear();

Description

 The lcd_clear function clears the LCD of any text that is currently being displayed on the screen.

Example program
/* lcd_clear

 This program illustrates how to clear the LCD

*/

main()

{

 lcd_clear();

}

lcd_print

Prototype

 #include <i2c.h>

 void lcd_print(controlString [, arg1] . . .);

 char *controlString;

Description

 The lcd_print function has functionality similar to printf, with the exception of special characters

that the LCD cannot print. By calling this function, the string is sent through I2C to the LCD screen

rather than the terminal (as with printf).

Example program
/* lcd_print

 This program illustrates how to print to the LCD

*/

main()

{

 char c = ’a’;

 lcd_print("The value of c is: %c", c);

}

Related functions

 printf

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Appendix A - Programming Information

131

printf

Prototype

 #include <stdio.h>

 int printf(controlString [, arg1] . . .);

 char *controlString;

Description

 The formatted input and output functions are reminiscent of the days of hardcopy terminals,

which prompted for input from the user in a specific form, and then output information, one line at a

time. This is a very simple method of communication in contrast to today’s interfaces that usually have

full-screen feedback of keyboard and mouse input. This simple interface can be used with the EVB

because the HyperTerminal program emulates a terminal to interface with other computers. Printf is

used to send information, such as variables, that must be converted to a character string form before

sending each character to the terminal. To accomplish this conversion and positioning on the line, printf

uses a control string, which instructs the function what types of input are being used and what format the

output should be in. The control string flags are listed here along with several examples of the usage of

control strings.

 When the printf function searches through the control string argument, it looks for flags in the

string that indicate that a command follows. There are two characters which are used: a backslash (\) to

indicate a control command follows, and a percent sign (%) to indicate the type of the next variable to

send to the terminal.

The control commands follow:

 \n start a new line

 \r send a carriage return without a line feed

 \t send a tab

 \b send a back space

 \ control string continues on the following line

Some data types, what they print, and the applicable variable types are given in the table below:

Type Purpose Variable Types

%c Single ASCII Character
unsigned char

signed char

%u Unsigned Decimal Number
unsigned char

unsigned int

%d Signed Decimal Number
signed char

signed int

%lu Unsigned Decimal Number unsigned long

%ld Signed Decimal Number signed long

%x
Lowercase Hexadecimal Number

 Note: Does not prepend printed value with '0x'
singed char

unsigned char

signed int

unsigned int
%X

Uppercase Hexadecimal Number

 Note: Does not prepend printed value with '0x'

Additionally, the format code %[width].[precision]f prints floating point numbers {float,double}

THIS TYPE IS ONLY AVAILABLE WHEN USING printf_fast_f when using SDCC Compiler

NOTE: Use printf_fast_f for foating point values.

Appendix A - Programming Information Embedded Control Lab Manual

132

Portability

 printf is a standard library function available on all ANSI and original C compilers.

Example program

#include <stdio.h>

void test_printf (void)

{

 char a;

 int b;

 long c;

 unsigned char x;

 unsigned int y;

 unsigned long z;

 float f,g;

 a = 1;

 b = 12365;

 c = 0x7FFFFFFF;

 x = ’A’;

 y = 54321;

 z = 0x4A6FE00;

 f = 10.0;

 g = 22.95;

 printf("Char %d int %d long %ld\n", a,b,c);

 printf("Uchar %u Uint %u Ulong %lu\n", x,y,z);

 printf("Xchar %x xint %x xlong %lx\n", x,y,z);

 // printf("%f != %f\n", f,g); NOT AVAILABLE WITH SDCC COMPILER

 // printf("%4.2f != %4.2f\n", f,g); NOT AVAILABLE WITH SDCC COMPILER

}

Related functions

printf_fast_f, scanf { scanf is not presently available in the SDCC compiler }

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Appendix A - Programming Information

133

printf_fast_f

Prototype

 #include <stdio.h>

 int printf_fast_f(controlString [, arg1] . . .);

 char *controlString;

Description

 The printf_fast_f function has the same identical functionality as printf, with the exception that

printf_fast_f will allow the output of floating point data types.

The data types and how to print them are all those included in printf plus:

float, double %[width].[precision]f

Example program
/* printf_fast_f

 This program illustrates how to print a floating point number with SDCC

*/

main()

{

 float g = 22.95;

 printf_fast_f("The value of g is: %4.2f", g);

}

Related functions

printf

Appendix A - Programming Information Embedded Control Lab Manual

134

putchar, puts

(puts NOT PRESENTLY AVAILABLE FOR THE SDCC COMPILER)

Prototype

 #include <c8051_SDCC.h>

 void putchar(Character);

 int Character;

 void puts(String);

 char *String;

Description

 Putchar sends Character to the terminal port. Character is the ASCII code (integer) for the

character to be sent. Puts sends a string to the terminal port.

Portability

 ANSI C compatible.

Example program
/* putchar & puts test program

 This program illustrates the use of the putchar and puts functions. The program will use putchar to

output the ASCII characters in the range 33-125 (the printable characters), then print a message with

the puts function.

*/

main()

{

 int i;

 char String[30];

/* use strcpy() to copy Done message into String */

 strcpy(String,"\nDone\n\n\n\n");

 puts("\n");

 for (i=33;i<=126;i++)

 putchar(i);

 puts(String);

}

Related functions

 gets, getchar

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Appendix A - Programming Information

135

rand

Prototype

 #include <stdlib.h>

 int rand(void);

Description

 Returns a pseudo-random integer between 0 and 32767. The srand() function may be used to

seed the pseudo-random number generator before calling rand().

Portability

 Available on most systems.

Example program
/* rand test program

 This program illustrates the generation of 5 random numbers*/

#include <stdlib.h>

main()

{

 int num,i;

 for (i=0;i<5;i++)

 {

 num = rand();

 printf("the random number = %d\n", num);

 }

}

Related functions

 srand

read_keypad
Prototype

 #include <i2c.h>

 char read_keypad();

Description

 Reads the key currently being pressed on the keypad and returns the character value of the key. If

no key is pressed, the function returns a value 0xFF (255).

Example program

#include <i2c.h>

void main(void)

{

 char a;

 lcd_print("Enter a character:");

 a = read_keypad();

 lcd_clear();

 lcd_print("The value you entered is %c\n", a);

}

Appendix A - Programming Information Embedded Control Lab Manual

136

scanf

(NOT PRESENTLY AVAILABLE FOR THE SDCC COMPILER)

Prototype

 #include <stdio.h>

 int scanf(controlString [, pointer1] . . .);

 char *controlString;

Description

 Reads formatted data from stdin and writes the results to memory at the addresses given by the

variable arguments. Each variable argument must be a pointer to a datum of type that corresponds to the

format of the data.

Portability

 scanf is a standard library function available on all ANSI and original C compilers

Example program

#include <stdlib.h>

#include <stdio.h>

void main(void)

{

 int a;

 printf("Enter an integer:");

 scanf("%d", &a);

 printf("The value you entered is %d\n", a);

}

Related functions

 printf

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Appendix A - Programming Information

137

srand

Prototype

 #include <stdlib.h>

 int srand(int val);

Description

 Seed the rand() function with val.

Portability

 Available on most systems.

Example program
/* srand test program

 This program demonstrates how to seed the random number generator*/

#include <stdlib.h>

main()

{

 int num;

 srand(50);

 num = rand();

}

Related functions

 rand

Appendix A - Programming Information Embedded Control Lab Manual

138

c8051f020.h header file
/*---

 Register Declarations for the Cygnal/SiLabs C8051F02x Processor Range

 Copyright (C) 2004 - Maarten Brock, sourceforge.brock@dse.nl

 This library is free software; you can redistribute it and/or

 modify it under the terms of the GNU Lesser General Public

 License as published by the Free Software Foundation; either

 version 2.1 of the License, or (at your option) any later version.

 This library is distributed in the hope that it will be useful,

 but WITHOUT ANY WARRANTY; without even the implied warranty of

 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

 Lesser General Public License for more details.

 You should have received a copy of the GNU Lesser General Public

 License along with this library; if not, write to the Free Software

 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

---*/

#ifndef C8051F020_H

#define C8051F020_H

/* BYTE Registers */

__sfr __at (0x80) P0 ; /* PORT 0 */

__sfr __at (0x81) SP ; /* STACK POINTER */

__sfr __at (0x82) DPL ; /* DATA POINTER - LOW BYTE */

__sfr __at (0x83) DPH ; /* DATA POINTER - HIGH BYTE */

__sfr __at (0x84) P4 ; /* PORT 4 */

__sfr __at (0x85) P5 ; /* PORT 5 */

__sfr __at (0x86) P6 ; /* PORT 6 */

__sfr __at (0x87) PCON ; /* POWER CONTROL */

__sfr __at (0x88) TCON ; /* TIMER CONTROL */

__sfr __at (0x89) TMOD ; /* TIMER MODE */

__sfr __at (0x8A) TL0 ; /* TIMER 0 - LOW BYTE */

__sfr __at (0x8B) TL1 ; /* TIMER 1 - LOW BYTE */

__sfr __at (0x8C) TH0 ; /* TIMER 0 - HIGH BYTE */

__sfr __at (0x8D) TH1 ; /* TIMER 1 - HIGH BYTE */

__sfr __at (0x8E) CKCON ; /* CLOCK CONTROL */

__sfr __at (0x8F) PSCTL ; /* PROGRAM STORE R/W CONTROL */

__sfr __at (0x90) P1 ; /* PORT 1 */

__sfr __at (0x91) TMR3CN ; /* TIMER 3 CONTROL */

__sfr __at (0x92) TMR3RLL ; /* TIMER 3 RELOAD REGISTER - LOW BYTE */

__sfr __at (0x93) TMR3RLH ; /* TIMER 3 RELOAD REGISTER - HIGH BYTE */

__sfr __at (0x94) TMR3L ; /* TIMER 3 - LOW BYTE */

__sfr __at (0x95) TMR3H ; /* TIMER 3 - HIGH BYTE */

__sfr __at (0x96) P7 ; /* PORT 7 */

__sfr __at (0x98) SCON ; /* UART0 CONTROL */

__sfr __at (0x98) SCON0 ; /* UART0 CONTROL */

__sfr __at (0x99) SBUF ; /* UART0 BUFFER */

__sfr __at (0x99) SBUF0 ; /* UART0 BUFFER */

__sfr __at (0x9A) SPI0CFG; /* SERIAL PERIPHERAL INTERFACE 0 CONFIGURATION */

__sfr __at (0x9B) SPI0DAT; /* SERIAL PERIPHERAL INTERFACE 0 DATA */

__sfr __at (0x9C) ADC1; /* ADC 1 DATA */

__sfr __at (0x9D) SPI0CKR;/* SERIAL PERIPHERAL INTERFACE 0 CLOCK RATE CONTROL*/

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Appendix A - Programming Information

139

__sfr __at (0x9E) CPT0CN ; /* COMPARATOR 0 CONTROL */

__sfr __at (0x9F) CPT1CN ; /* COMPARATOR 1 CONTROL */

__sfr __at (0xA0) P2 ; /* PORT 2 */

__sfr __at (0xA1) EMI0TC ; /* External Memory Timing Control */

__sfr __at (0xA3) EMI0CF ; /* EMIF CONFIGURATION */

__sfr __at (0xA4) PRT0CF ; /* PORT 0 CONFIGURATION */

__sfr __at (0xA4) P0MDOUT ; /* PORT 0 OUTPUT MODE CONFIGURATION */

__sfr __at (0xA5) PRT1CF ; /* PORT 1 CONFIGURATION */

__sfr __at (0xA5) P1MDOUT ; /* PORT 1 OUTPUT MODE CONFIGURATION */

__sfr __at (0xA6) PRT2CF ; /* PORT 2 CONFIGURATION */

__sfr __at (0xA6) P2MDOUT ; /* PORT 2 OUTPUT MODE CONFIGURATION */

__sfr __at (0xA7) PRT3CF ; /* PORT 3 CONFIGURATION */

__sfr __at (0xA7) P3MDOUT ; /* PORT 3 OUTPUT MODE CONFIGURATION */

__sfr __at (0xA8) IE ; /* INTERRUPT ENABLE */

__sfr __at (0xA9) SADDR0 ; /* UART0 Slave Address */

__sfr __at (0xAA) ADC1CN ; /* ADC 1 CONTROL */

__sfr __at (0xAB) ADC1CF ; /* ADC 1 CONFIGURATION */

__sfr __at (0xAC) AMX1SL ; /* ADC 1 MUX CHANNEL SELECTION */

__sfr __at (0xAD) P3IF ; /* PORT 3 EXTERNAL INTERRUPT FLAGS */

__sfr __at (0xAE) SADEN1 ; /* UART1 Slave Address Enable */

__sfr __at (0xAF) EMI0CN ; /* EXTERNAL MEMORY INTERFACE CONTROL */

__sfr __at (0xAF) _XPAGE ; /* XDATA/PDATA PAGE */

__sfr __at (0xB0) P3 ; /* PORT 3 */

__sfr __at (0xB1) OSCXCN ; /* EXTERNAL OSCILLATOR CONTROL */

__sfr __at (0xB2) OSCICN ; /* INTERNAL OSCILLATOR CONTROL */

__sfr __at (0xB5) P74OUT; /* PORT 4 THROUGH 7 OUTPUT MODE CONFIGURATION */

__sfr __at (0xB6) FLSCL ; /* FLASH MEMORY TIMING PRESCALER */

__sfr __at (0xB7) FLACL ; /* FLASH ACESS LIMIT */

__sfr __at (0xB8) IP ; /* INTERRUPT PRIORITY */

__sfr __at (0xB9) SADEN0 ; /* UART0 Slave Address Enable */

__sfr __at (0xBA) AMX0CF ; /* ADC 0 MUX CONFIGURATION */

__sfr __at (0xBB) AMX0SL ; /* ADC 0 MUX CHANNEL SELECTION */

__sfr __at (0xBC) ADC0CF ; /* ADC 0 CONFIGURATION */

__sfr __at (0xBD) P1MDIN ; /* PORT 1 Input Mode */

__sfr __at (0xBE) ADC0L ; /* ADC 0 DATA - LOW BYTE */

__sfr __at (0xBF) ADC0H ; /* ADC 0 DATA - HIGH BYTE */

__sfr __at (0xC0) SMB0CN ; /* SMBUS 0 CONTROL */

__sfr __at (0xC1) SMB0STA ; /* SMBUS 0 STATUS */

__sfr __at (0xC2) SMB0DAT ; /* SMBUS 0 DATA */

__sfr __at (0xC3) SMB0ADR ; /* SMBUS 0 SLAVE ADDRESS */

__sfr __at (0xC4) ADC0GTL ; /* ADC 0 GREATER-THAN REGISTER - LOW BYTE*/

__sfr __at (0xC5) ADC0GTH ; /* ADC 0 GREATER-THAN REGISTER - HIGH BYT*/

__sfr __at (0xC6) ADC0LTL ; /* ADC 0 LESS-THAN REGISTER - LOW BYTE */

__sfr __at (0xC7) ADC0LTH ; /* ADC 0 LESS-THAN REGISTER - HIGH BYTE */

__sfr __at (0xC8) T2CON ; /* TIMER 2 CONTROL */

__sfr __at (0xC9) T4CON ; /* TIMER 4 CONTROL */

__sfr __at (0xCA) RCAP2L ; /* TIMER 2 CAPTURE REGISTER - LOW BYTE */

__sfr __at (0xCB) RCAP2H ; /* TIMER 2 CAPTURE REGISTER - HIGH BYTE */

__sfr __at (0xCC) TL2 ; /* TIMER 2 - LOW BYTE */

__sfr __at (0xCD) TH2 ; /* TIMER 2 - HIGH BYTE */

__sfr __at (0xCF) SMB0CR ; /* SMBUS 0 CLOCK RATE */

__sfr __at (0xD0) PSW ; /* PROGRAM STATUS WORD */

__sfr __at (0xD1) REF0CN ; /* VOLTAGE REFERENCE 0 CONTROL */

__sfr __at (0xD2) DAC0L ; /* DAC 0 REGISTER - LOW BYTE */

__sfr __at (0xD3) DAC0H ; /* DAC 0 REGISTER - HIGH BYTE */

__sfr __at (0xD4) DAC0CN ; /* DAC 0 CONTROL */

__sfr __at (0xD5) DAC1L ; /* DAC 1 REGISTER - LOW BYTE */

__sfr __at (0xD6) DAC1H ; /* DAC 1 REGISTER - HIGH BYTE */

Appendix A - Programming Information Embedded Control Lab Manual

140

__sfr __at (0xD7) DAC1CN ; /* DAC 1 CONTROL */

__sfr __at (0xD8) PCA0CN ; /* PCA 0 COUNTER CONTROL */

__sfr __at (0xD9) PCA0MD ; /* PCA 0 COUNTER MODE */

__sfr __at (0xDA) PCA0CPM0 ; /* CONTROL REGISTER FOR PCA 0 MODULE 0 */

__sfr __at (0xDB) PCA0CPM1 ; /* CONTROL REGISTER FOR PCA 0 MODULE 1 */

__sfr __at (0xDC) PCA0CPM2 ; /* CONTROL REGISTER FOR PCA 0 MODULE 2 */

__sfr __at (0xDD) PCA0CPM3 ; /* CONTROL REGISTER FOR PCA 0 MODULE 3 */

__sfr __at (0xDE) PCA0CPM4 ; /* CONTROL REGISTER FOR PCA 0 MODULE 4 */

__sfr __at (0xE0) ACC ; /* ACCUMULATOR */

__sfr __at (0xE1) XBR0 ; /* DIGITAL CROSSBAR CONFIGURATION REGISTER 0*/

__sfr __at (0xE2) XBR1 ; /* DIGITAL CROSSBAR CONFIGURATION REGISTER 1*/

__sfr __at (0xE3) XBR2 ; /* DIGITAL CROSSBAR CONFIGURATION REGISTER 2*/

__sfr __at (0xE4) RCAP4L ; /* TIMER 4 CAPTURE REGISTER - LOW BYTE */

__sfr __at (0xE5) RCAP4H ; /* TIMER 4 CAPTURE REGISTER - HIGH BYTE */

__sfr __at (0xE6) EIE1 ; /* EXTERNAL INTERRUPT ENABLE 1 */

__sfr __at (0xE7) EIE2 ; /* EXTERNAL INTERRUPT ENABLE 2 */

__sfr __at (0xE8) ADC0CN ; /* ADC 0 CONTROL */

__sfr __at (0xE9) PCA0L ; /* PCA 0 TIMER - LOW BYTE */

__sfr __at (0xEA) PCA0CPL0;/* CAPTURE/COMPARE REGISTER FOR PCA 0 MODULE 0 – LOW BYTE*/

__sfr __at (0xEB) PCA0CPL1;/* CAPTURE/COMPARE REGISTER FOR PCA 0 MODULE 1 - LOW BYTE*/

__sfr __at (0xEC) PCA0CPL2;/* CAPTURE/COMPARE REGISTER FOR PCA 0 MODULE 2 - LOW BYTE*/

__sfr __at (0xED) PCA0CPL3;/* CAPTURE/COMPARE REGISTER FOR PCA 0 MODULE 3 - LOW BYTE*/

__sfr __at (0xEE) PCA0CPL4;/* CAPTURE/COMPARE REGISTER FOR PCA 0 MODULE 4 - LOW BYTE*/

__sfr __at (0xEF) RSTSRC ; /* RESET SOURCE */

__sfr __at (0xF0) B ; /* B REGISTER */

__sfr __at (0xF1) SCON1 ; /* UART1 CONTROL */

__sfr __at (0xF2) SBUF1 ; /* UART1 DATA */

__sfr __at (0xF3) SADDR1 ; /* UART1 Slave Address */

__sfr __at (0xF4) TL4 ; /* TIMER 4 DATA - LOW BYTE */

__sfr __at (0xF5) TH4 ; /* TIMER 4 DATA - HIGH BYTE */

__sfr __at (0xF6) EIP1 ; /* EXTERNAL INTERRUPT PRIORITY REGISTER 1*/

__sfr __at (0xF7) EIP2 ; /* EXTERNAL INTERRUPT PRIORITY REGISTER 2*/

__sfr __at (0xF8) SPI0CN ; /* SERIAL PERIPHERAL INTERFACE 0 CONTROL */

__sfr __at (0xF9) PCA0H ; /* PCA 0 TIMER - HIGH BYTE */

__sfr __at (0xFA) PCA0CPH0;/* CAPTURE/COMPARE REGISTER FOR PCA 0 MODULE 0 – HIGH BYTE*/

__sfr __at (0xFB) PCA0CPH1;/* CAPTURE/COMPARE REGISTER FOR PCA 0 MODULE 1 - HIGH BYTE*/

__sfr __at (0xFC) PCA0CPH2;/* CAPTURE/COMPARE REGISTER FOR PCA 0 MODULE 2 - HIGH BYTE*/

__sfr __at (0xFD) PCA0CPH3;/* CAPTURE/COMPARE REGISTER FOR PCA 0 MODULE 3 - HIGH BYTE*/

__sfr __at (0xFE) PCA0CPH4;/* CAPTURE/COMPARE REGISTER FOR PCA 0 MODULE 4 - HIGH BYTE*/

__sfr __at (0xFF) WDTCN ; /* WATCHDOG TIMER CONTROL */

/* WORD/DWORD Registers */

__sfr16 __at (0x8C8A) TMR0 ; /* TIMER 0 COUNTER */

__sfr16 __at (0x8D8B) TMR1 ; /* TIMER 1 COUNTER */

__sfr16 __at (0xCDCC) TMR2 ; /* TIMER 2 COUNTER */

__sfr16 __at (0xCBCA) RCAP2 ; /* TIMER 2 CAPTURE REGISTER WORD */

__sfr16 __at (0x9594) TMR3 ; /* TIMER 3 COUNTER */

__sfr16 __at (0x9392) TMR3RL ; /* TIMER 3 CAPTURE REGISTER WORD */

__sfr16 __at (0xF5F4) TMR4 ; /* TIMER 4 COUNTER */

__sfr16 __at (0xE5E4) RCAP4 ; /* TIMER 4 CAPTURE REGISTER WORD */

__sfr16 __at (0xBFBE) ADC0 ; /* ADC 0 DATA WORD */

__sfr16 __at (0xC5C4) ADC0GT ; /* ADC 0 GREATER-THAN REGISTER WORD */

__sfr16 __at (0xC7C6) ADC0LT ; /* ADC 0 LESS-THAN REGISTER WORD */

__sfr16 __at (0xD3D2) DAC0 ; /* DAC 0 REGISTER WORD */

__sfr16 __at (0xD6D5) DAC1 ; /* DAC 1 REGISTER WORD */

__sfr16 __at (0xF9E9) PCA0 ; /* PCA COUNTER */

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Appendix A - Programming Information

141

__sfr16 __at (0xFAEA) PCA0CP0 ; /* PCA CAPTURE 0 WORD */

__sfr16 __at (0xFBEB) PCA0CP1 ; /* PCA CAPTURE 1 WORD */

__sfr16 __at (0xFCEC) PCA0CP2 ; /* PCA CAPTURE 2 WORD */

__sfr16 __at (0xFDED) PCA0CP3 ; /* PCA CAPTURE 3 WORD */

__sfr16 __at (0xFEEE) PCA0CP4 ; /* PCA CAPTURE 4 WORD */

/* BIT Registers */

/* P0 0x80 */

__sbit __at (0x80) P0_0 ;

__sbit __at (0x81) P0_1 ;

__sbit __at (0x82) P0_2 ;

__sbit __at (0x83) P0_3 ;

__sbit __at (0x84) P0_4 ;

__sbit __at (0x85) P0_5 ;

__sbit __at (0x86) P0_6 ;

__sbit __at (0x87) P0_7 ;

/* TCON 0x88 */

__sbit __at (0x88) IT0 ; /* EXT. INTERRUPT 0 TYPE */

__sbit __at (0x89) IE0 ; /* EXT. INTERRUPT 0 EDGE FLAG */

__sbit __at (0x8A) IT1 ; /* EXT. INTERRUPT 1 TYPE */

__sbit __at (0x8B) IE1 ; /* EXT. INTERRUPT 1 EDGE FLAG */

__sbit __at (0x8C) TR0 ; /* TIMER 0 ON/OFF CONTROL */

__sbit __at (0x8D) TF0 ; /* TIMER 0 OVERFLOW FLAG */

__sbit __at (0x8E) TR1 ; /* TIMER 1 ON/OFF CONTROL */

__sbit __at (0x8F) TF1 ; /* TIMER 1 OVERFLOW FLAG */

/* P1 0x90 */

__sbit __at (0x90) P1_0 ;

__sbit __at (0x91) P1_1 ;

__sbit __at (0x92) P1_2 ;

__sbit __at (0x93) P1_3 ;

__sbit __at (0x94) P1_4 ;

__sbit __at (0x95) P1_5 ;

__sbit __at (0x96) P1_6 ;

__sbit __at (0x97) P1_7 ;

/* SCON 0x98 */

__sbit __at (0x98) RI ; /* SCON.0 - RECEIVE INTERRUPT FLAG */

__sbit __at (0x98) RI0 ; /* SCON.0 - RECEIVE INTERRUPT FLAG */

__sbit __at (0x99) TI ; /* SCON.1 - TRANSMIT INTERRUPT FLAG */

__sbit __at (0x99) TI0 ; /* SCON.1 - TRANSMIT INTERRUPT FLAG */

__sbit __at (0x9A) RB8 ; /* SCON.2 - RECEIVE BIT 8 */

__sbit __at (0x9A) RB80 ; /* SCON.2 - RECEIVE BIT 8 */

__sbit __at (0x9B) TB8 ; /* SCON.3 - TRANSMIT BIT 8 */

__sbit __at (0x9B) TB80 ; /* SCON.3 - TRANSMIT BIT 8 */

__sbit __at (0x9C) REN ; /* SCON.4 - RECEIVE ENABLE */

__sbit __at (0x9C) REN0 ; /* SCON.4 - RECEIVE ENABLE */

__sbit __at (0x9D) SM2 ; /* SCON.5 - MULTIPROCESSOR COMMUNICATION ENABLE */

__sbit __at (0x9D) SM20; /* SCON.5 - MULTIPROCESSOR COMMUNICATION ENABLE */

__sbit __at (0x9D) MCE0; /* SCON.5 - MULTIPROCESSOR COMMUNICATION ENABLE */

__sbit __at (0x9E) SM1 ; /* SCON.6 - SERIAL MODE CONTROL BIT 1 */

__sbit __at (0x9E) SM10 ; /* SCON.6 - SERIAL MODE CONTROL BIT 1 */

__sbit __at (0x9F) SM0 ; /* SCON.7 - SERIAL MODE CONTROL BIT 0 */

__sbit __at (0x9F) SM00 ; /* SCON.7 - SERIAL MODE CONTROL BIT 0 */

__sbit __at (0x9F) S0MODE ; /* SCON.7 - SERIAL MODE CONTROL BIT 0 */

Appendix A - Programming Information Embedded Control Lab Manual

142

/* P2 0xA0 */

__sbit __at (0xA0) P2_0 ;

__sbit __at (0xA1) P2_1 ;

__sbit __at (0xA2) P2_2 ;

__sbit __at (0xA3) P2_3 ;

__sbit __at (0xA4) P2_4 ;

__sbit __at (0xA5) P2_5 ;

__sbit __at (0xA6) P2_6 ;

__sbit __at (0xA7) P2_7 ;

/* IE 0xA8 */

__sbit __at (0xA8) EX0 ; /* EXTERNAL INTERRUPT 0 ENABLE */

__sbit __at (0xA9) ET0 ; /* TIMER 0 INTERRUPT ENABLE */

__sbit __at (0xAA) EX1 ; /* EXTERNAL INTERRUPT 1 ENABLE */

__sbit __at (0xAB) ET1 ; /* TIMER 1 INTERRUPT ENABLE */

__sbit __at (0xAC) ES0 ; /* SERIAL PORT 0 INTERRUPT ENABLE */

__sbit __at (0xAC) ES ; /* SERIAL PORT 0 INTERRUPT ENABLE */

__sbit __at (0xAD) ET2 ; /* TIMER 2 INTERRUPT ENABLE */

__sbit __at (0xAF) EA ; /* GLOBAL INTERRUPT ENABLE */

/* P3 0xB0 */

__sbit __at (0xB0) P3_0 ;

__sbit __at (0xB1) P3_1 ;

__sbit __at (0xB2) P3_2 ;

__sbit __at (0xB3) P3_3 ;

__sbit __at (0xB4) P3_4 ;

__sbit __at (0xB5) P3_5 ;

__sbit __at (0xB6) P3_6 ;

__sbit __at (0xB7) P3_7 ;

/* IP 0xB8 */

__sbit __at (0xB8) PX0 ; /* EXTERNAL INTERRUPT 0 PRIORITY */

__sbit __at (0xB9) PT0 ; /* TIMER 0 PRIORITY */

__sbit __at (0xBA) PX1 ; /* EXTERNAL INTERRUPT 1 PRIORITY */

__sbit __at (0xBB) PT1 ; /* TIMER 1 PRIORITY */

__sbit __at (0xBC) PS0 ; /* SERIAL PORT PRIORITY */

__sbit __at (0xBC) PS ; /* SERIAL PORT PRIORITY */

__sbit __at (0xBD) PT2 ; /* TIMER 2 PRIORITY */

/* SMB0CN 0xC0 */

__sbit __at (0xC0) SMBTOE ; /* SMBUS 0 TIMEOUT ENABLE */

__sbit __at (0xC1) SMBFTE ; /* SMBUS 0 FREE TIMER ENABLE */

__sbit __at (0xC2) AA ; /* SMBUS 0 ASSERT/ACKNOWLEDGE FLAG */

__sbit __at (0xC3) SI ; /* SMBUS 0 INTERRUPT PENDING FLAG */

__sbit __at (0xC4) STO ; /* SMBUS 0 STOP FLAG */

__sbit __at (0xC5) STA ; /* SMBUS 0 START FLAG */

__sbit __at (0xC6) ENSMB ; /* SMBUS 0 ENABLE */

__sbit __at (0xC7) BUSY ; /* SMBUS 0 BUSY */

/* T2CON 0xC8 */

__sbit __at (0xC8) CPRL2 ; /* CAPTURE OR RELOAD SELECT */

__sbit __at (0xC9) CT2 ; /* TIMER OR COUNTER SELECT */

__sbit __at (0xCA) TR2 ; /* TIMER 2 ON/OFF CONTROL */

__sbit __at (0xCB) EXEN2 ; /* TIMER 2 EXTERNAL ENABLE FLAG */

__sbit __at (0xCC) TCLK ; /* TRANSMIT CLOCK FLAG */

__sbit __at (0xCD) RCLK ; /* RECEIVE CLOCK FLAG */

__sbit __at (0xCE) EXF2 ; /* EXTERNAL FLAG */

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Appendix A - Programming Information

143

__sbit __at (0xCF) TF2 ; /* TIMER 2 OVERFLOW FLAG */

/* PSW 0xD0 */

__sbit __at (0xD0) P ; /* ACCUMULATOR PARITY FLAG */

__sbit __at (0xD1) F1 ; /* USER FLAG 1 */

__sbit __at (0xD2) OV ; /* OVERFLOW FLAG */

__sbit __at (0xD3) RS0 ; /* REGISTER BANK SELECT 0 */

__sbit __at (0xD4) RS1 ; /* REGISTER BANK SELECT 1 */

__sbit __at (0xD5) F0 ; /* USER FLAG 0 */

__sbit __at (0xD6) AC ; /* AUXILIARY CARRY FLAG */

__sbit __at (0xD7) CY ; /* CARRY FLAG */

/* PCA0CN 0xD8H */

__sbit __at (0xD8) CCF0 ; /* PCA 0 MODULE 0 INTERRUPT FLAG */

__sbit __at (0xD9) CCF1 ; /* PCA 0 MODULE 1 INTERRUPT FLAG */

__sbit __at (0xDA) CCF2 ; /* PCA 0 MODULE 2 INTERRUPT FLAG */

__sbit __at (0xDB) CCF3 ; /* PCA 0 MODULE 3 INTERRUPT FLAG */

__sbit __at (0xDC) CCF4 ; /* PCA 0 MODULE 4 INTERRUPT FLAG */

__sbit __at (0xDE) CR ; /* PCA 0 COUNTER RUN CONTROL BIT */

__sbit __at (0xDF) CF ; /* PCA 0 COUNTER OVERFLOW FLAG */

/* ADC0CN 0xE8H */

__sbit __at (0xE8) ADLJST ; /* ADC 0 RIGHT JUSTIFY DATA BIT */

__sbit __at (0xE8) AD0LJST ; /* ADC 0 RIGHT JUSTIFY DATA BIT */

__sbit __at (0xE9) ADWINT ; /* ADC 0 WINDOW COMPARE INTERRUPT FLAG */

__sbit __at (0xE9) AD0WINT ; /* ADC 0 WINDOW COMPARE INTERRUPT FLAG */

__sbit __at (0xEA) ADSTM0 ; /* ADC 0 START OF CONVERSION MODE BIT 0 */

__sbit __at (0xEA) AD0CM0 ; /* ADC 0 START OF CONVERSION MODE BIT 0 */

__sbit __at (0xEB) ADSTM1 ; /* ADC 0 START OF CONVERSION MODE BIT 1 */

__sbit __at (0xEB) AD0CM1 ; /* ADC 0 START OF CONVERSION MODE BIT 1 */

__sbit __at (0xEC) ADBUSY ; /* ADC 0 BUSY FLAG */

__sbit __at (0xEC) AD0BUSY ; /* ADC 0 BUSY FLAG */

__sbit __at (0xED) ADCINT ; /* ADC 0 CONVERISION COMPLETE INTERRUPT FLAG*/

__sbit __at (0xED) AD0INT ; /* ADC 0 CONVERISION COMPLETE INTERRUPT FLAG*/

__sbit __at (0xEE) ADCTM ; /* ADC 0 TRACK MODE */

__sbit __at (0xEE) AD0TM ; /* ADC 0 TRACK MODE */

__sbit __at (0xEF) ADCEN ; /* ADC 0 ENABLE */

__sbit __at (0xEF) AD0EN ; /* ADC 0 ENABLE */

/* SPI0CN 0xF8H */

__sbit __at (0xF8) SPIEN ; /* SPI 0 SPI ENABLE */

__sbit __at (0xF9) MSTEN ; /* SPI 0 MASTER ENABLE */

__sbit __at (0xFA) SLVSEL ; /* SPI 0 SLAVE SELECT */

__sbit __at (0xFB) TXBSY ; /* SPI 0 TX BUSY FLAG */

__sbit __at (0xFC) RXOVRN ; /* SPI 0 RX OVERRUN FLAG */

__sbit __at (0xFD) MODF ; /* SPI 0 MODE FAULT FLAG */

__sbit __at (0xFE) WCOL ; /* SPI 0 WRITE COLLISION FLAG */

__sbit __at (0xFF) SPIF ; /* SPI 0 INTERRUPT FLAG */

/* Predefined SFR Bit Masks */

#define PCON_IDLE 0x01 /* PCON */

#define PCON_STOP 0x02 /* PCON */

#define PCON_SMOD0 0x80 /* PCON */

#define TF3 0x80 /* TMR3CN */

#define CPFIF 0x10 /* CPTnCN */

#define CPRIF 0x20 /* CPTnCN */

Appendix A - Programming Information Embedded Control Lab Manual

144

#define CPOUT 0x40 /* CPTnCN */

#define TR4 0x04 /* T4CON */

#define TF4 0x80 /* T4CON */

#define ECCF 0x01 /* PCA0CPMn */

#define PWM 0x02 /* PCA0CPMn */

#define TOG 0x04 /* PCA0CPMn */

#define MAT 0x08 /* PCA0CPMn */

#define CAPN 0x10 /* PCA0CPMn */

#define CAPP 0x20 /* PCA0CPMn */

#define ECOM 0x40 /* PCA0CPMn */

#define PWM16 0x80 /* PCA0CPMn */

#define PORSF 0x02 /* RSTSRC */

#define SWRSF 0x10 /* RSTSRC */

#define RI1 0x01 /* SCON1 */

#define TI1 0x02 /* SCON1 */

#define RB81 0x04 /* SCON1 */

#define TB81 0x08 /* SCON1 */

#define REN1 0x10 /* SCON1 */

#define SM21 0x20 /* SCON1 */

#define SM11 0x40 /* SCON1 */

#define SM01 0x80 /* SCON1 */

#endif

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Appendix A - Programming Information

145

c8051_SDCC.h header file
//---

// This file is for use in Embedded Control when using the SDCC compiler

//

// Directions:

//

// This file should be saved to the following directory on your laptop:

// C:\Program Files\SDCC\include\mcs51

// Save as c8051_SDCC.h

//

// In your program, you need to include this header file as #include <c8051_SDCC.h>

// and in the main() program, call the function Sys_Init();

//

// Another approach is to put this file in the working directory and call it as

// #include "c8051_SDCC.h" and in the main() program, call the function Sys_Init();

//---

//---

// Includes

//---

#include <c8051f020.h> // Special Function Register (SFR) declarations

//---

// Global CONSTANTS

//---

#define SYSCLK 22118400 // SYSCLK frequency in Hz

#define BAUDRATE 38400 // Baud rate of UART in bps

//---

// Initialization Subroutines

//---

//---

// SYSCLK_Init

//---

//

// This routine initializes the system clock to use an 22.1184MHz crystal

// as its clock source.

//

void SYSCLK_Init (void)

{

 int i; // delay counter

 OSCXCN = 0x67; // start external oscillator with

 // 22.1184MHz crystal

 for (i=0; i < 256; i++); // wait for oscillator to start

 while (!(OSCXCN & 0x80)); // Wait for crystal osc. to settle

 OSCICN = 0x88; // select external oscillator as SYSCLK

 // source and enable missing clock

 // detector

}

//---

Appendix A - Programming Information Embedded Control Lab Manual

146

// UART0_Init

//---

//

// Configure the UART0 using Timer1, for <baudrate> and 8-N-1.

//

void UART0_Init (void)

{

 SCON0 = 0x50; // SCON0: mode 1, 8-bit UART,

 // enable RX

 TMOD = 0x20; // TMOD: timer 1, mode 2, 8-bit reload

 TH1 = -(SYSCLK/BAUDRATE/16); // set Timer1 reload value for

 // baudrate

 TR1 = 1; // start Timer1

 CKCON |= 0x10; // Timer1 uses SYSCLK as time base

 PCON |= 0x80; // SMOD00 = 1 (disable baud rate

 // divide-by-two)

 TI0 = 1; // Indicate TX0 ready

 P0MDOUT |= 0x01; // Set TX0 to push/pull

}

//---

// Sys_Init

//---

//

// Disable watchdog timer and call other Init functions.

//

void Sys_Init (void)

{

 WDTCN = 0xde; // disable watchdog timer

 WDTCN = 0xad;

 SYSCLK_Init (); // initialize oscillator

 UART0_Init (); // initialize UART0

 XBR0 |= 0x04;

 XBR2 |= 0x40; // Enable crossbar and weak pull-ups

}

void putchar(char c)

{

 while(!TI0);

 TI0=0;

 SBUF0 = c;

}

//--

// getchar()

//--

char getchar(void)

{

 char c;

 while(!RI0);

 RI0 =0;

 c = SBUF0;

 putchar(c); // echo to terminal

 return SBUF0;

}

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Appendix A - Programming Information

147

i2c.h header file
/* Copy this header file to: C:\Program Files\SDCC\include\mcs51

 This has the functions to use the SMBus and functions for the LCD

 display and number pad. */

//#include <stdio.h> //this line should already be in your .c code

#include <stdarg.h>

#include <stdlib.h> //this may already be in your .c code

#include <string.h>

//--

// Value Definitions - sometimes these are useful

//--

#define TRUE 0x01 //Value representing TRUE

#define FALSE 0x00 //Value representing FALSE

#define ON 0x01 //Value representing ON

#define OFF 0x00 //Value representing OFF

#define HIGH 0x01 //Value representing ON

#define LOW 0x00 //Value representing OFF

#define addr_accel 0x30

#define addr_accelC 0x3A

//--

// I2C Bus (SMBus) register bit definitions

//--

/* The following lines are an example of setting up sbit names for the SMBus

 the c8051F020.h file creates the sbit names that are used in this code */

__sbit __at 0xC7 BUS_BUSY; //SM Bus Busy (bit 7)

__sbit __at 0xC6 BUS_EN; //SM Bus Enable (bit 6)

__sbit __at 0xC5 BUS_START;//SM Bus Start (bit 5)

__sbit __at 0xC4 BUS_STOP; //SM Bus Stop (bit 4)

__sbit __at 0xC3 BUS_INT; //SM Bus Interrupt (bit 3)

__sbit __at 0xC2 BUS_AA; //SM Bus ACK (bit 2)

__sbit __at 0xC1 BUS_FTE; //SM Bus Clock timeout - high (bit 1)

__sbit __at 0xC0 BUS_TOE; //SM Bus Clock timeout - low (bit 0)

__sbit __at 0x83 BUS_SCL;

//---

// Global CONSTANTS

//---

#define DELAY_WRITE 5000 //~5 ms delay write time (about 1000 cycles/ms)

#define DELAY_BLINK 50000 //Value for delay time - blink

//---

// Global VARIABLES

//---

unsigned char Data2[3];

//---

// Function PROTOTYPES

//---

#define high_byte(x) ((x & 0xFF00) >> 8) //define a high byte as a shift right

extern void delay_time (unsigned long time_end); //Delay function

Appendix A - Programming Information Embedded Control Lab Manual

148

extern void lcd_print(const char *fmt, ...);//Print to LCD screen

extern void lcd_clear(); //Clear LCD screen

extern unsigned int kpd_input(char mode); //Input a multidigit value on keypad

//extern void lcd_cursor(bit show); //Unused

extern void key_test(); //Test the functionality of the Keypad, unused

unsigned char i2c_read(void);

unsigned char i2c_stop_and_read(void);

void i2c_write(unsigned char output_data);

void i2c_write_and_stop(unsigned char output_data);

void i2c_write_data(unsigned char addr, unsigned char start_reg, unsigned char *buffer,

unsigned char num_bytes);

void i2c_read_data(unsigned char addr, unsigned char start_reg, unsigned char *buffer,

unsigned char num_bytes);

unsigned char i2c_read_and_stop(void);

void i2c_start(void);

void Accel_Init(void);

void Accel_Init_C(void);

void lcd_print(const char *fmt, ...)

{

 unsigned char len, i; //assign counter variables

 unsigned static char __xdata text[80]; //character array

 va_list ap; //initialize a pointer

 if (strlen(fmt) <= 0) return; //If there is no data to print, return

 va_start(ap, fmt);

 vsprintf(text, fmt, ap);

 va_end(ap);

 len = strlen(text);

 for(i=0; i<len; i++)

 {

 if(text[i] == (unsigned char)'\n') text[i] = 13;

 }

 i2c_write_data(0xC6, 0x00, text, len);

}

void lcd_clear()

{

 unsigned char NumBytes=0, Cmd[2];

 while(NumBytes < 64) i2c_read_data(0xC6, 0x00, &NumBytes, 1);

 Cmd[0] = 12;

 i2c_write_data(0xC6, 0x00, Cmd, 1);

}

unsigned char read_keypad()

{

 unsigned char i=0, Data[2]; //Initialize variables

 i2c_read_data(0xC6, 0x01, Data, 2); //Read I2C data on address 192, register 1, 2 bytes

of data.

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Appendix A - Programming Information

149

 if(Data[0] == 0xFF) return 0; //No response on bus, no display

 for(i=0; i<8; i++) //loop 8 times

 {

 if(Data[0] & (0x01 << i)) //find the ASCII value of the keypad read, if it is the

current loop value

 return i+49;

 }

 if(Data[1] & 0x01) return '9'; //if the value is equal to 9 return 9.

 if(Data[1] & 0x02) return '*'; //if the value is equal to the star.

 if(Data[1] & 0x04) return '0'; //if the value is equal to the 0 key

 if(Data[1] & 0x08) return '#'; //if the value is equal to the pound key

 return 0xFF; //else return a numerical -1 (0xFF)

}

///

// Function to enter a multidigit positive digit on the keypad, entered when '#' is pressed.

// When passed an argument of 0 it displays instructions on the LCD

// Otherwise it just displays the key characters on the next line as they are pressed.

// The '*' key is ignored and the '#' key is the <Enter> key.

// Values are automatically entered after 5 key presses. Overflows larger than the max

// allowed in an unsigned 16-bit int follow normal 2's-complement bit overflow operations.

///

unsigned int kpd_input(char mode)

{

 unsigned sum;

 unsigned char key=0xFF, i;

 sum = 0;

// lcd_clear(); //clear the screen

// If mode is 0, output prompt on LCD

 if(mode==0)lcd_print("\nType digits; end w/#");

// Clear 5 spaces on LCD for 5-digit maximum number to be input

 lcd_print(" %c%c%c%c%c",0x08,0x08,0x08,0x08,0x08);

 delay_time(500000); //Add 20ms delay before reading i2c in loop

 //Helps reduce i2c bus lockup crashes

// For each digit, display character on LCD

// Automatically return value after 5 digits or after '#' is entered

 for(i=0; i<5; i++)

 {

 while(((key=read_keypad()) == 0xFF) || (key == '*'))delay_time(10000);

 if(key == '#')

 {

 while(read_keypad() == '#')delay_time(10000);

 return sum;

 }

 else

 {

 lcd_print("%c", key);

 sum = sum*10 + key - '0';

 while(read_keypad() == key)delay_time(10000); //wait for key to be released

 }

 }

 return sum;

}

Appendix A - Programming Information Embedded Control Lab Manual

150

//

// Routine: delay_time

// Inputs: counter value to stop delaying

// Outputs: none

// Purpose: to pause execution for pre-determined time

//

void delay_time (unsigned long time_end)

{

 unsigned long index; //counter variable

 for (index = 0; index < time_end; index++); //for loop delay

}

void i2c_start(void)

{

 while(BUSY); //Wait until SMBus0 is free

 STA = 1; //Set Start Bit

 while(!SI); //Wait until start sent

 STA = 0; //Clear start bit

 SI = 0; //Clear SI

}

void i2c_write(unsigned char output_data)

{

 SMB0DAT = output_data; //Data to be written put into register

 while(!SI); //Wait until send is complete

 SI = 0; //Clear SI

}

void i2c_write_and_stop(unsigned char output_data)

{

 SMB0DAT = output_data; //Data to be written put into register

 STO = 1; //Set stop bit

 while(!SI); //Wait until send is complete

 SI = 0; //Clear SI

}

unsigned char i2c_read(void)

{

 unsigned char input_data;

 while(!SI); //Wait until we have data to read

 input_data = SMB0DAT; //Read the data

 SI = 0; //Clear SI

 return input_data; //Return the read data

}

unsigned char i2c_read_and_stop(void)

{

 unsigned char input_data;

 while(!SI); //Wait until we have data to read

 input_data = SMB0DAT; //Read the data

 SI = 0; //Clear SI

 STO = 1; //Set stop bit

 while(!SI); //Wait for stop

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Appendix A - Programming Information

151

 SI = 0;

 return input_data; //Return the read data

}

void i2c_write_data(unsigned char addr, unsigned char start_reg, unsigned char *buffer,

unsigned char num_bytes)

{

 unsigned char i; //counter variable

 EA = 0; //Don't allow interrupts during I2C work

 i2c_start(); //Initiate I2C transfer

 i2c_write(addr & ~0x01); //Write the desired address to the bus

 i2c_write(start_reg); //Write the start register to the bus

 for(i=0; i<num_bytes-1; i++) //Write the data to the register(s)

 i2c_write(buffer[i]);

 i2c_write_and_stop(buffer[num_bytes-1]); //Stop transfer

 EA = 1; //Re-Enable interrupts

}

void i2c_read_data(unsigned char addr, unsigned char start_reg, unsigned char *buffer,

unsigned char num_bytes)

{

 unsigned char j;

 EA = 0; //Don't allow interrupts during I2C work

 i2c_start(); //Start I2C transfer

 i2c_write(addr & ~0x01); //Write address of device that will be written to, send 0

 i2c_write_and_stop(start_reg); //Write & stop the 1st register to be read

 i2c_start(); //Start I2C transfer

 i2c_write(addr | 0x01); //Write address again, this time indicating a read operation

 for(j = 0; j < num_bytes - 1; j++)

 {

 AA = 1; //Set acknowledge bit

 buffer[j] = i2c_read(); //Read data, save it in buffer

 }

 AA = 0;

 buffer[num_bytes - 1] = i2c_read_and_stop(); //Read the last byte and stop, save it in

the buffer

 EA = 1; //Re-Enable interrupts

} //End function

//---

// Accelerometer Initialization

//---

// NOTE: Writing multiple registers in one call to i2c_write_data()

// doesn't work correctly, multiple calls are required for LSM303DLM!

void Accel_Init(void)

{

// unsigned char Data2[1];

 Data2[0]=0x23; //normal power mode, 50Hz ODR, y & x axes enabled

// Data2[0]=0x3B; //normal power mode, 1kHz ODR, y & x axes enabled

 Data2[1]=0x00; //default - no filtering

 Data2[1]=0x10; //filtered data selected, HPF = 1.0->0.125Hz

 Data2[2]=0x00; //default - no interrupts enabled

// Data2[3]=0x80; //setting Block Data Update bit locks up I2C bus

 i2c_write_data(addr_accel, 0x20, Data2, 1);

// i2c_write_data(addr_accel, 0xA0, Data2, 3); // This only works after calling the

previous line

Appendix A - Programming Information Embedded Control Lab Manual

152

// i2c_write_data(addr_accel, 0x21, Data2, 1);

// i2c_write_data(addr_accel, 0x22, Data2, 1);

// i2c_write_data(addr_accel, 0x23, Data2, 1);

}

void Accel_Init_C(void)

{

// unsigned char Data2[3];

// Setting Block Data Update bit locks up I2C bus

 Data2[0]=0x04; //set register address auto increment bit

 i2c_write_data(addr_accelC, 0x23, Data2, 1);

 Data2[0]=0x6B; //R20 normal power mode, 800Hz ODR, y & x axes enabled

// Data2[0]=0x3B; //R20 normal power mode, 100Hz ODR, y & x axes enabled

 Data2[1]=0x00; //R21 Default - no HP filtering

// Data2[1]=0x13; //R21 filtered data selected, HPF = 1.0->0.125Hz

 Data2[2]=0x00; //R22 Default - no interrupts enabled

 i2c_write_data(addr_accelC, 0x20, Data2, 1);

}

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Appendix A - Programming Information

153

Appendix B - Helpful Information Embedded Control Lab Manual

154

Appendix B - Helpful Information

Resistor Color Code

Table B.1 - Resistor color code table

Color
Nominal

(1st & 2nd band)

Multiplier

(3rd band)

Tolerance

(4th band)

Reliability

(5th band)

Black 0 1 N/A N/A

Brown 1 10 N/A 1.0%

Red 2 100 N/A 0.1%

Orange 3 1,000 N/A 0.01%

Yellow 4 10,000 N/A 0.001%

Green 5 100,000 N/A N/A

Blue 6 1,000,000 N/A N/A

Violet 7 10,000,000 N/A N/A

Gray 8 100,000,000 N/A N/A

White 9 1,000,000,000 N/A N/A

Gold N/A 0.1 5% N/A

Silver N/A 0.01 10% N/A

No Band N/A N/A 20% N/A

The first and second bands represent digits, while the third band indicates the power of 10 by

which to multiply. The fourth band indicates the tolerance of the indicated value. A silver band

represents a tolerance of 10%, and a gold band indicates 5%.

Example:

 Red, Black, Orange, Gold

 2 0 3 → 20 x 103 = 20kOhm, 5% tolerance

 Yellow, Violet, Black, Silver

 4 7 0 → 47 x 100 = 47Ohm, 10% tolerance

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Appendix B - Helpful Information

155

Connections on the Smart Car

Figure B.1 - Connections on the Smart Car

Figure B.1 shows a diagram of the board for all the power, input, and output connections to

the Smart Car’s components (i.e. servo motor, tachometer, DC drive motor, battery, power

supply). It is located on the base of the Smart Car chassis. All connections to the smart car, other

than the EVB, will be made through this powerboard.

Before you make connections to your protoboard, make sure that the battery connector is

securely attached to the power board. Then, check the power and ground connections on the

protoboard for shorts using the ohmmeter. If there are no shorts, you can connect the wires to the

power blocks. If all is ok, the LED should remain lit once the car has been turned on. If not, you

probably have a wiring problem somewhere and already blown the fuse. Correct your wiring first

since the fuse will not be replaced until the wiring is corrected. A buzzer has been included as an

audible warning for low battery power. The buzzer will begin to chirp once the battery needs to be

charged and will increase in frequency as the battery gets lower. To recharge the battery, plug in

the charger connector to the power board.

Please make sure that there are secure +5 Volts as well as Ground connections to your wired

protoboard. Loose wires may cause damage to the components. Also, be careful when attaching

the +12 Volts to the drive motor chip so that this connection is isolated from all other connections

on your protoboard.

Fuse

Battery

Connection

Charger

Connection+12 Volts Ground +5 Volts

+ - A B
ServoDrive Encoder

Buzzer

All Smart Car Connections

OutOutMotor

Poly-Fuse

5V Regulator

Appendix B - Helpful Information Embedded Control Lab Manual

156

More Specifications on the C8051F020 EVB

Figure B.2 - Block Diagram of the C8051F020 Evaluation Board

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Appendix B - Helpful Information

157

Frequently Asked Questions

1. How do I create and enter a new project using the SiLabs IDE, compile it, execute it,

etc.?

The LMS handout “Installing_SiLabs-SDCC-Drivers_Win” will always have the latest

instructions for these tasks. Additionally, there are more troubleshooting hints towards the back

of that document under “Common Problems”.

2. How do I print my program?

Select Print from the “File” menu of the SiLabs IDE. Then select “Print” from the Print

Document window after the appropriate selections are set. There are two printers in the LITEC

Studio, and the print server will spool the document to either printer depending on current

usage.

3. I gave the command for printing out my file long ago, but the printer has not printed it

yet.

If your computer is still processing the print file, a printer icon will appear in the toolbox in

the lower right corner of the screen. Double-click on the printer icon to view the status of your

print job. If the printer icon is not present, your print job was probably already sent to the print

server and will soon be printed. Do not issue multiple print commands at any time. If your

print job does not come out, please inform your TA of the problem. Also, inform the TA if the

printer runs out of paper. Occasionally jobs get stuck in the printer queue and can take a while

to come out.

4. The EVB on my workbench does not respond.

Have you switched the power supply on? Have you reset the EVB before downloading your

program? If not, do so and try downloading your code again. If this step fails even after two or

three attempts, switch the power supply off, and check the connections of all cables, including

the serial cables and the ribbon cables. Also, make sure that none of the fuses on the Smart Car

connection board have blown. If this does not work, request assistance from a TA, but DO

NOT switch EVBs between workbenches.

5. Why is my car beeping?

The cars are designed to “chirp” when the battery supply is low. Make sure you keep your

charger plugged in when working at your stations. If you plug the charger in and the car

continues to “chirp”, inform a TA.

6. What is causing the car to beep rapidly when I turn it on.

The beep indicates a low voltage to the battery voltage sensor. If the beep is slowly beeping,

the car just needs to be plugged in to the charger. If the car is beeping rapidly as soon as it is

turned on, it is much more serious. The rapid beeping indicates a severe drain on the circuit.

This is usually caused by a short (detectable by measuring the resistance between power and

ground on the board with everything else detached). A wiring error that often causes this is

reversing power and ground on one of the 74 series chips (or putting the chip in backwards).

You can tell if this is the problem by touching the chips to see if they have heated up

significantly.

Appendix B - Helpful Information Embedded Control Lab Manual

158

7. How do I reset the EVB?

The EVB can be reset by pressing by pressing the reset button on the C8051 board.

8. Why doesn't my code compile?

Write your code in a 'top-down' fashion. You should compile the code after each small addition

- NOT when you are ready to test the whole thing.

9. What is wrong with my code?

For debugging a C program, use printf statements at various points in your program to

determine the flow of control when the program is being executed.

10. How do I get my code back?

It is difficult to retrieve files from a damaged disk. Be sure to save and back-up your files on a

regular basis. If you have submitted a softcopy of your code in the past, your TA can retrieve

that copy.

11. Why is my time printing out as 0 all the time?

If you have declared seconds as a “long int” then it is a 32-bit number. If you are using “%d”

(for printing 16 bit number) in your format string to print it, you will only print the first 16 bits

of the number. So, any positive number less than 65536 will show up as 0. Correct this by

changing the format string to “%ld” (see printf command in Appendix A).

12. Why is my pulsewidth printing out as a negative number?

The pulsewidth is a 16 bit UNSIGNED number (0 - 65535). The “%d” format for printf

assumes a 16 bit SIGNED number (-32768 to 32767). Above 32767, an unsigned number will

appear as negative in signed notation. Correct this by changing the format string to “%u” (see

printf command in Appendix A).

13. Why does it take a while for changes to variables to show up on the screen?

The text that you are printing out takes a certain amount of time to be displayed on the screen.

If more text is changing on the screen, it takes longer. If you are printing out information faster

than it can be displayed on the screen, the screen will fall behind. To correct this, try using “\r”

in the format string instead of “\n”. This will cause the cursor to go back and let you re-write

over the same line so only 1 line on the screen needs to be updated instead of the entire screen

and the screen will update faster.

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Appendix B - Helpful Information

159

Appendix C - Course Syllabus & Policies Embedded Control Lab Manual

160

Appendix C - Course Syllabus & Policies

(Listed for convenience only; the updated current version is on LMS.)

Staff
Dr. Russell Kraft, Course Instructor and Coordinator, kraftr2@rpi.edu

Dr. Jeff Braunstein, Course Instructor, braunj4@rpi.edu

Dr. Kyle Wilt, Course Instructor, wiltk2@rpi.edu

Dr. Paul Schoch, Course Instructor & Advisor, schocp@rpi.edu

Dr. Paul Moon, Course Instructor (as needed), moonp@rpi.edu

Dr. Mark Embrechts, Course Instructor (as needed), embrem@rpi.edu

Course Administration Office Hours

By appointment (send email to the administrative TA: see LMS). These office hours are primarily

for grading concerns, course comments and administration problems. Instructor office hours are

posted on the course website and in the open shop schedule.

Open Shop Hours

The Open Shop schedule will be posted in JEC 4201 and on the Embedded Control course LMS

website. No open shop hours will be held the first week of class.

Location

JEC (JONSSN) 4201 - Core Engineering Studio Laboratory

Course Objectives

On completion of this course, the student will:

1. Be able to design interface hardware and software to sense, display, command, and control

simple engineering processes.

2. Be able to write software for a real-time embedded control system.

3. Be able to prototype, implement, and debug the hardware for an embedded control system.

4. Understand the basic operation of microcontrollers and their role in embedded control

systems.

5. Understand the role of sensors and actuators and how they are applied to systems.

6. Understand and be able to use the laboratory voltmeters and logic probes required to build

and troubleshoot these systems.

Course Format

The course follows a combined lecture/laboratory studio format. Not all classes have lectures and

some lectures take up more of the class time than others with whatever remaining time devoted to

lab exercises. During lectures students are expected to halt all other activities and keep their laptops

closed. This closed-computer policy for lectures will be strictly followed.

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Appendix C - Course Syllabus & Policies

161

Texts

– Required: (Note: Any part of the manual may be printed from the Rensselaer LMS site.)

Check LMS or the handouts for possible errata sheets with last-minute manual updates.

Embedded Control Lab Manual (available on the course LMS site)

SiLabs C8051F020 Reference Manual (free download on LMS or www.silabs.com)

– Recommended

Programming With C, Schaum’s Outlines.

C, The Pocket Reference

– Optional for reference (available as down load from the course LMS site)

SDCC Compiler Manual

Grading Criteria

You must submit ALL of the laboratory reports and complete all laboratories to receive a passing

grade for the course. The grade weighting is posted on the course RPILMS web site and below.

The chart outlines the relative contribution of each component for your overall grade in this class.

Components in bold are individual grades. The others are team grades (note that some these

assessments have individually graded components.)

Grade Component Contribution to Average (out of 100%)

Exam 1 23%

Exam 2 23%

5 Quizzes 16%

12 Homework Assignments 11%1

6 Laboratories (pre-lab, check-off, questions) 12%

Lab Preparation/Participation/Performance 6% (ranges from -3% to +6%)

Reports (Compass/Ranger, Accelerometer, Gondola) 9%2 (2%, 3%, 4%)
1 The lowest score of assignments will be dropped.

2 No reports will be accepted if the labs required for the reports have not been completed fully and checked off. Lab

related grades are scaled to equalize between TA grading variations within a section. Sections are assigned grades

independently from each other.

Late Policy

– Homework assignments are due by 10:00am on the due date as indicated by the course calendar

for your section and are considered late if not submitted by then. No credit is given for late

submissions.

– The LITEC Calendar on the web page indicates the laboratory due dates (for preparation &

check-off). The penalty for late submission for these components is also listed on the calendar.

– All Lab Reports are due by the date shown on the schedule for your particular section. All late

lab reports will be discounted 20% per school day for lateness.

Appendix C - Course Syllabus & Policies Embedded Control Lab Manual

162

Homework

All homework assignments are contained and submitted on LMS. The due date for each homework

is listed on the class calendar. The due time for each homework is by10:00am on that date.

Programming assignments containing compiler and/or linker errors will not be accepted (i.e.

given a grade of 0). Each individual is responsible for ensuring this and submitting their file with

their name, section number and side in the program header comments. Note that the file required

to be submitted must be the C source file: extension of *.c, NOT *.wsp, *.asm, etc. Open shop and

class time prior to the due date and time may be used to obtain help with the assignments and to

ensure it operates correctly. All homework assignments are considered to be individual

assignments, whether C coding or assessments however Homework 10 may be completed as a

team. Homework assignments 8 and 12 are teammate evaluations. The lowest graded homework

score is dropped.

Quizzes

On-line LMS Quizzes will be given over the course of the semester as noted on the course calendar.

Students are allowed to use printed references (lecture notes, worksheets, & lab manual) and

calculators, but no sharing of material is allowed. Also no other computer programs may be

running on the laptop other than the LMS browser window, and no copies of old quizzes are

permitted. Pertinent information will be given by the instructor prior to the quiz. All quizzes start

at the beginning of class. Solutions will be available after all sections have completed the quiz and

make-ups have been administered. Students may view their quizzes by asking their instructor or

TA. Late arrivals should not expect to be given extra time to complete quizzes. The quizzes end

typically 30 minutes after the start of class so that all students may start lab work or lectures may

begin on time.

Lab Preparation/Participation/Performance:

Students will be assigned a grade for this component based on several factors: attendance,

observation of professionalism, class commitment, and engagement from the instructor and TAs,

and evaluation from teammates. Do not assume that high lab scores indicate good lab performance.

While all partners will receive the same grades for lab reports, lab performance is based on

individual contribution to materials and coursework and ability to debug/troubleshoot. You will

evaluate your teammates twice during the semester. Note that fully 75% of your grade (comprised

of items in bold) is dependent on your individual performance. For this reason, teams with

successful projects may find that individual members receive very different final grades.

Attendance Policy

Attendance is required for all scheduled sections unless you are told otherwise. If for any officially

approved reason you cannot make it to lab, you should inform your TA and lab partner(s) in

advance, and make arrangements to work in the lab at another time. You will have to provide

documentation of this fact to your TA (e.g., a note from your doctor, dean of students, etc.).

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Appendix C - Course Syllabus & Policies

163

Lab Equipment

– ID or other identification will not be required to sign-out equipment (logic probe, voltmeter)

for use during the lab session. This may change at any time if students are irresponsible.

– Please be considerate of others by taking good care of the lab equipment provided for you.

Make sure all tools are returned and the voltmeter is turned off. Carelessness that results in

equipment damage can affect the grade received in this course.

– This policy requiring an ID and TA verification to sign out and return tools may be instituted

during the semester if deemed necessary.

General Lab Guidelines and Lab Check off Policies

The following guidelines are minimum recommended guidelines for LITEC. Students should

consult their TA or Professor for more specific requirements.

General

− Only pick your own protoboard and equipment from the cabinet.

− If there is something wrong with your protoboard or you need more parts, DO NOT TAKE

SOMEONE ELSE’S PROTOBOARD OR PARTS.

− In case your protoboard is damaged or you need more parts, ask the TA to give you a new

protoboard or parts.

− Start returning your board, parts, toolkits etc. AT LEAST 5 MINUTES before the end of

class. Make sure you remove shared items from your protoboard and return them to the center

table. Limited supply items (speakers, accelerometers, LCD/Keypads, RF link) should NEVER be

left on protoboards because they are needed by all classes and there are not enough for everyone.

Protoboards or part bags found containing such parts will be confiscated and stripped down.

− Start cleaning up your desktop and wires 5 minutes before the end of your class and do not

wait until the class time has ended. We need to get out of the way for the next class.

Pre-Lab

− Carefully read the lab description available on LMS.

− Make sure that you understand the requirements of the lab and what is the eventual outcome.

− If you find any discrepencies in lab description or feel that the lab description is missing

some information, contact your professor or TA and ask them for clarification. DO NOT assume

anything because you may end up working on different aspects of the lab that were never required.

− Pseudocode is due when a new lab begins for a section by the course calendar. It must be

turned in on time for the first 2 points of the lab check-off. Use the pseudocode when you start

writing your C-code.

Appendix C - Course Syllabus & Policies Embedded Control Lab Manual

164

Lab Check off

− Read the lab check-off grade sheet given to you at the start of the class (Front and Back) for

all the information regarding lab grading, lab check-off etc.

− Your preparation must be checked off and scores written in the grade sheet before you ask

the TA to check off your lab. Prelab worksheets must be submitted to Gradescope by the due dates

specified on the course calendar.

− Make sure your lab is working according to the lab description provided on LMS before

you ask the TA to check you off.

− If you ask the TA to check you off but your lab is not working according to the lab

description or you have not completed all the requirements, the TA WILL DEDUCT POINTS

and you will be asked to redo the lab to make your lab compatible with the lab description.

− In order to obtain good scores on lab check-off your circuit must be wired very neatly, the

software must be well commented and you must answer all the questions asked by the TA.

− You should only answer the question asked to you.

− You are allowed to look at anything including the lab manual, lectures, worksheets, etc. to

answer a question but you should not start browsing through the material and start reading it all

over. The only purpose of allowing you to refer to the material is that you can get to the page and

instructions related to the question and refresh your memory. It does not mean that you should start

understanding that material after the question was asked because you are required to develop that

understanding before lab check-off and not after the lab check-off.

− You SHOULD NOT TRY TO ANSWER ANY QUESTION DIRECTED AT YOUR

PARTNER(S).

− If the TA has asked your partner some question, you should not give your partner any hint

or show him the part of code. If you do so, the TA CAN TAKE OFF POINTS FOR THAT

QUESTION.

− In order to be checked off, you must ask the TA to check you off AT LEAST 15 MINUTES

before the end of the class or open shop. The check-off procedure can take up to 15 minutes and

in order to be checked off before the end of class or open shop, THE DEADLINE FOR CHECK-

OFF REQUEST IS 15 MINUTES before end of class or open shop.

− If you ask the TA to check you off and there is not enough time (15 minutes) to complete

the check-off before the end of class or open shop, the TA can deny you the check-off request and

you will have to be checked off in the next class or next available open shop hours. This also

applies for labs with check-off and report deadlines.

Reports

− You are required to submit 3 brief summary reports in the class:

Car Compass/Ranger report (Lab 4), Car Accelerometer report (Lab 5) and Gondola

report (Lab 6).

− Make sure that you read the grading rubric and grading scheme for these reports on LMS.

You must include all the items mentioned in the grading rubric. If you miss some item you

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Appendix C - Course Syllabus & Policies

165

will not be given a chance to resubmit it and you will get a ZERO FOR THE MISSING

ITEM.

− Make sure to consult your TA regarding the report format and what to write in the report.

− If you do not submit your report on time, you will LOSE 20 POINTS for every school day

late.

Computers

Personal laptop computers will be used to complete the laboratory exercises in this course. Quizzes

and parts of homework are also done on your personal computers. You are expected to bring your

computer to every class.

– You will start the semester working in groups of 3, and stay that way for the entire semester.

Make sure that everybody has working course software on his or her laptop. Make sure that

everybody has the latest version of the C-code available to them. If a partner is missing, you are

still required to do the session assignments, so you need to have your computer, the code and the

course software.

Always make backups of your programs & any other files, and save your work frequently. Make

sure that you and your partners each have all the program files. Lost code will have to be

regenerated.

Questions / Problems

Teaching assistants are in the lab to guide you in the right direction and to clarify the assignments

if necessary. They are NOT a substitute or alternative to completion of the reading assignments,

multimedia tutorials, and attendance of the sections. Nor are they to do your lab work for you. If

you have a question, first look in the lab and course resource information, and if you still cannot

find the answer, then ask the TA. Be prepared to describe the problem and what diagnostics you

have already tried. Saying “It doesn’t work.” is of little value. If you have a problem that your TA

cannot resolve or have a disagreement with the TA, then you should bring it to the attention of the

course instructors. Remember, there are lists of common problems and solutions in Appendix D

of the Lab Manual and on the LMS main page in the Installing_SiLabs-SDCC-Drivers_Win

handout. Becoming familiar with these fixes to the most frequently occurring problems can save a

lot of time compared to waiting for TA help!

Lab Partners

You are responsible for finding lab partners in your section. This is a very important choice for

you to make in the course. It should be made on the basis of complementary backgrounds, talents

and commitment. Failure of a partner to do their share can be harmful to all partners. Irresolvable

problems with your partners should be brought to the attention of your grading TA and instructor.

Appendix C - Course Syllabus & Policies Embedded Control Lab Manual

166

Academic Dishonesty

Academic dishonesty is a very serious matter, and we suggest that you read the remainder of this

statement carefully:

Student-teacher relationships are built upon trust. For example, students must trust that

teachers have made appropriate decisions about the structure and content of the courses they

teach, and teachers must trust that the assignments that students turn in are their own. Acts that

violate this trust undermine the educational process.

The Rensselaer Handbook defines various forms of Academic Dishonesty and procedures

for responding to them. All forms are violations of the trust between students and teachers.

Students should familiarize themselves with this portion of the Rensselaer Handbook and should

note that the penalties for plagiarism and other forms of cheating can be quite harsh.

Any portion of work handed in that is not your own, should cite the author. Just as you

would not write a history paper by copying text from the encyclopedia, you should not take credit

for another person’s engineering work. See A few words on plagiarism: on page 164 for more

information.

Collaboration on assignments is both allowed and encouraged between lab partners.

However, having one partner always work on hardware aspects and another on the software will

be detrimental to all partners. Each partner should understand and participate in all aspects of the

lab exercises in order to learn the necessary topics that will be required for lab check-off and

covered on the exams. Collaboration on assignments is not allowed between lab groups, either

within or between lab sections. Turning in similar out-of-class assignments (homeworks or lab

reports), which suggest that copying (in part or in total) has taken place, will be considered as

academic dishonesty.

The material presented in the course and the equipment and components used in the labs

may change each semester. If you receive help from another student who previously took this

course, make sure that the information is current and applicable to the work that you are required

to perform. DO NOT use or copy assignments from previous semesters. Using out-of-date

materials will be considered as academic dishonesty, whether you copied it or were told by a

previous student. Please consider any help you receive from outside sources critically and check

the information against that in this manual. Also, if you are taking this course again, make sure

any work you use from the previous semester is updated to reflect changes in the course. It may

be mistaken as academic dishonesty.

Cheating on an exam or quiz will be considered as academic dishonesty and will generally

result in a failing grade for the course. In particular, all mobile devices (cell/smart phones,

computers, pagers, etc.) must be stored securely away during exams and are not to be used unless

specifically directed otherwise by the instructor. Use of (or ANY interaction with) a mobile

device during an exam without explicit permission of the instructor will be interpreted as the

illicit transfer of exam data, will be considered an act of cheating and will be treated as such.

At all times, we reserve the right to take formal action against anyone engaging in academic

dishonesty. This action may range from failing an assignment to failing the course, or to being

reported to the Dean of Students. If you have any questions about these rules or how they apply

to any specific assignment or exam, discuss it with one of the instructors or course administrators.

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Appendix C - Course Syllabus & Policies

167

Monitoring Homework and Lab Reports

Due to our extensive database of previous assignments and advances in software programs for

document and code comparison, the number of identified cases of plagiarism has grown

tremendously. We reserve the right to utilize all available methods that verify that documents are

the original work of the submitter(s) and if necessary change grades retroactively when

discrepancies are discovered.

As a Final Note:

 This policy and the statements included should not be interpreted as an assumption on our part

that every student will commit acts of academic dishonesty. We strive to treat every student fairly

and make LITEC an enjoyable and valuable class. As such, every effort must be made to uphold

the integrity of Rensselaer degrees by discouraging acts of academic dishonesty.

Appendix C - Course Syllabus & Policies Embedded Control Lab Manual

168

A few words on plagiarism:

Plagiarism is defined as: “1: a piece of writing that has been copied from someone else and is

presented as being your own work 2: the act of plagiarizing; taking someone's words or ideas as if

they were your own” (WordNet ® 1.6, © 1997 Princeton University).

Plagiarism is a serious breach of honesty in any venue; in an academic setting it will not only

have a significant negative impact on your grade, but it will prevent you from learning writing

(both code and report) skills that will be needed in future academic and professional work. In a

professional setting, it can be grounds for dismissal from a job or from professional societies, as

well as casting doubt on the integrity of your work as a whole.

Some examples of plagiarism include:

– Copying sentences, parts of sentences, paragraphs, or longer pieces of text from the lab

manual, the online tutorials, books, articles, or other people’s writing in any form, and

using them in your writing assignments without attribution. Changing some of the words,

or rearranging the sentences or portions of sentences still constitutes plagiarism.

– Copying schematics, graphics, illustrations, charts, graphs, tables, or other illustrative

material from the lab manual, the online tutorials, books, articles, or other people’s

writing in any form, and using them in your writing assignments without attribution.

Avoiding plagiarism is not difficult, and will benefit you in the long run. The following

guidelines may help:

1. Do not share your group's produced code or accept code from someone else.

2. In the course of your lab work, try to make notes on what you are doing, what you have

tried, problems encountered.

3. When you go to write your lab reports or other technical writing, use these notes as a

starting point for describing in your own words the goals, concepts, techniques, results,

and other components of the development process.

4. If there are certain things that you feel are best described by text from the lab manual or

other source, make sure you reference that material. A word-for-word copy should be

placed in quotation marks, and a footnote or endnote reference placed at the end of the

quoted portion. A paraphrase or idea-by-idea copy should have a footnote or endnote

reference placed at the end of that portion of text.

Plagiarism, even if inadvertent, will have serious consequences on your future career - now is the

time to learn the skill of writing about your own work, and referencing others’ writing appropriately.

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Appendix D - Lab Assignments

169

Appendix D - Lab Assignments

Six Laboratories will be assigned during the semester.

1. Lab 1 Digital input/output, Timer overflows - An introduction on how to configure the

Port pins for input/output operation, initializing and reading from special function

registers, using timer registers to measure periods of time, application of the A/D

capabilities of the microprocessor

2. Lab 2 Interactive Game - Further sophistication in the software and hardware

developed in the previous Laboratory to design a game that reacts to user inputs

3. Lab 3 PCA, Pulse width modulation, System Bus - Using the Programmable Counter

Array to generate a pulse width modulated signal, implementing the System Bus to

communicate with an external device, control the speed or direction of the car

4. Lab 4 Steering the car - Merge codes to communicate with multiple devices, control

both the speed and direction of the car, simple linear control

5. Lab 5 Control Systems - Develop more sophisticated responses to new accelerometer

sensors to detect the tilt of a slope and change the heading of the car to drive up the

slope at the steepest angle and stop at the top when the slope levels off

6. Lab 6 Gondola Control - Modifying software for the car to drive the gondola and

develop more sophisticated responses to correct heading and position of the gondola

on a turntable, exploring the effects of different feedback control responses

See LMS for details on the Laboratory assignments for specific details regarding each laboratory.

 Embedded Control Lab Manual

170

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Index

171

Index

-, 22

--, 22

!, 22, 99

!=, 21, 99

", 102, 132

#define, 99

#include, 100

%, 20, 100, 132

&, 21, 22, 100

&&, 21

&=, 99

*, 22

;, 104

^, 21, 99

{}, 104

|, 21, 99

||, 21, 99

|=, 99

~, 22, 99

+, 22

++, 22

+=, 21

<, 21, 101

<<, 21, 101

<<=, 101

<=, 21

=, 101

==, 21

>, 21

>=, 21

>>, 21

0x, 100

74F04, 100

74F05, 100

74F365, 71

74LS04, 73, 100

74LS05, 72, 100

A

A Simple Program in C, 16

A/D Conversion, 102

A/D converter, 56

A/D Converter, 55

A/D result, 56

abs(), 102, 126

Academic Dishonesty, 166

address, 102

analog, 102

analog circuits, 102

analog to digital conversion, 102

anode, 74, 102

ANSI C, 103

array, 19, 103

ASCII, 103

assembly code, 25

assembly language, 103

assignment operator, 21

associativity, 23, 103

asynchronous, 103

Attendance Policy, 163

B

battery connection, 156

baud, 103

binary, 103

bit, 103

bit mask, 103

bitwise AND, 21

bitwise operator, 21, 104

bitwise OR, 21

bitwise XOR, 21

brace, 104

bracket, 104

breadboard, 104

buffer, 71, 104

bus, 104

byte, 105

C

C programming, 15

C51, 105

C51 Compiler, 105

C8051, 105

c8051.h, 105, 139, 146, 148

C8051F020, 105, 157

c8051f020.h, 105, 139

carriage return, 101

cathode, 74, 105

ceil(), 106, 126

char, 17, 106

charger connection, 156

chip, 70

Circuitry Basics, 69

clear, 106

clock, 106

closed-loop control, 87

CMOS, 6, 107

Index Embedded Control Lab Manual

172

color band, 106

comments, 25

comparator, 106

computers, 7

Computers, 166

connections on the Smart Car, 156

constant, 107

control algorithm, 88, 91

Control Terms, 89

counter, 107

Course Objectives, 161

critically damped, 91

Crossed Wiring, 96

curly bracket, 104

Cx51, 105

D

Darlington, 107

data types, 17, 107

DC Motor, 84

debugging, 69

decimal, 107

declaration, 17, 107

decrement, 108

Development Tools, 7

diagnostic tools, 5

digital, 108

diode, 74, 108

diskette, 108

double, 108

downloading, 11

driver, 83

duty cycle, 84

E

embedded control, 1, 4, 108

equal to, 21

equality operator, 20

error, 88

Evaluation Board, 108
EVB, 27, 108, 157

EVB Not Responding, 96, 158

exams, 4

exp(), 127

F

FALSE, 5, 108

filter, 108

flag, 109

float, 17, 109

floor(), 109, 127

for loop, 18

for statement, 109

Free Running Counter, 35

frequency, 89

Frequently Asked Questions, 158

function, 16

fuse, 109, 156

G

gain, 90

gate, 109

General Lab Guidelines and Lab Check off Policies, 164

getchar(), 109, 128

gets(), 129

Grading, 162

greater than, 21

greater than or equal to, 21

ground, 69, 71

H

HCMOS, 107

header file, 16, 109, 139, 146

HEDS-5120, 110

hex, 110

hex inverter, 72

hexadecimal, 110

high, 5

high-pass filter, 110

Hz, 110

I

IC, 111

if statement, 110

increment, 110

indentation, 110

index, 110

input, 29, 110

int, 17, 111

integer, 111

integrated circuit, 111

interface, 111

interrupt flag, 40

interrupt handler, 25, 40

interrupt service routine, 40, 111

Interrupts, 40, 111

inverter, 72, 111

ISR, 111

K

Kernighan & Ritchie, 112

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Index

173

keyword, 112

kpd_input(), 130

L

Lab Assignments, 170

lab equipment, 5

Lab Equipment, 5, 164

Lab Manual, 10

lcd_clear(), 131

lcd_print(), 131

LED, 112

LED connections, 74

left shift, 21

less than, 21

less than or equal to, 21

library functions, 24

Light Emitting Diode, 112

LITEC, 2, 112

LITEC Multimedia Tutorials, 10

logic levels, 5

logic probe, 5, 6, 112

logic state, 5, 6

Logic transitions, 6

logical AND, 21

Logical Errors, 96

logical negation, 22

logical operator, 20

logical OR, 21

long, 17, 112

loop, 112

low, 5

M

main(), 16

Malfunctioning EVB, 96

mask, 112

masking, 29

math.h, 113

mathematical operators, 20

microcomputer, 113

microcontroller, 113

Microsoft Excel, 113

Microsoft Word, 113

mod, 20, 113

modular programming style, 24

momentary switch, 113

motor, 83

Motor Control, 83

Motorola SN74LS04N, 73

Motorola SN74LS05N, 72

MRD 821 Photodiode, 63

multimeter, 7, 113

N

n, 101, 132

National Science Foundation, 113

new line, 101

nibble, 113

noise, 69, 113

normally-closed, 75

normally-open, 75

not equal to, 21

O

ohm, 113

ones complement, 22

open-collector, 72

operand, 114

Operators, 20, 114

Optical Tracking Unit, 114

oscilloscope, 7, 114

output, 29, 114

overdamped, 90

overflow, 114

overshoot, 89

P

parameter, 114

pass by reference, 114

pass by value, 114

period, 89, 115

photodetector, 115

PI Control, 92

pin numbers, 70

pointer, 115

pointer dereference, 22

port, 115

post-decrement, 22

post-increment, 22

pot, 115

potentiometer, 115

power, 71, 115

precedence, 23

pre-decrement, 22

pre-increment, 22

printf(), 115, 132

printf_fast_f(), 134

printing, 158

program, 115

Programming in C, 15

programming structure, 23

Proportional + Derivative Control, 93

Proportional + Integral Control, 92

Proportional Control, 90

Index Embedded Control Lab Manual

174

protoboard, 11, 115

Pulse Accumulator, 54, 115

pulse width modulation, 47, 115

push button switch, 116

Push-button switches, 75

putchar(), 116, 135

puts(), 135

PWM, 47

Q

quantized, 116

R

r, 101

rand, 136

rand(), 116

Random Access Memory, 116

random number generation, 116

range, 116

RCS, 25

real time, 116

Real-Time Interrupt, 116

reference (pointer) of, 22

reference materials, 117

register, 117

relational operators, 20, 117

Rensselaer Polytechnic Institute, 117

Repetitive Structures, 18

resistance, 117

resistor, 117

resistor color codes, 117, 155

resolution, 55

return, 117

right shift, 21

ripple, 117

rise time, 89

S

sampling rate, 117

saturation, 117

scanf(), 117, 136, 137

schematic, 70, 117

seed, 117, 138

semicolon, 118

serial, 118

servo motor, 83, 118

set, 118

setpoint, 118

settling band, 89

settling time, 89

shift, 118

short, 17

short circuit, 118

signed, 17, 118

sin(), 118

SMBus, 63

SMBus diagram, 67

SMBus sequence, 63, 64

software, 118

solenoid, 119

sqrt(), 119

square bracket, 104

srand(), 119, 138

Staff, 161

standard include files, 119

static, 119

stdio.h, 119

stdlib.h, 119

steady state response, 89

steering motor, 119

string, 119

string functions, 120

string.h, 120

switch, 75, 120

switch keyword, 120

switches, wiring, 76

Syllabus & Policies, 161

syntax, 16, 120

System Clock, 35

T

t, 102

tab, 102

target systems, 2

Texts, 162

Time, 35

timer, 120

Timer Functions, 35

toggle switch, 75, 120

Troubleshooting Software, 97

TRUE, 5, 121

TTL logic, 5, 121

tutorials, 10

typecast, 121

U

unary minus, 22

unary operator, 21

unary plus, 22

underdamped, 90, 91

underflow, 121

unsigned, 17, 121

unstable, 91

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

Embedded Control Lab Manual Index

175

V

variable, 121

variable resistor, 115

VCC, 121

void keyword, 122

volt, 122

voltage, 122

voltage reference high, 122

voltage regulator, 97, 122

VRL, 122

W

waveform, 122

wavelength, 122

while loop, 18

while statement, 122

Windows 2000, 123

wiring diagram, 123

wiring methods, 12, 69

Index Embedded Control Lab Manual

176

file:///C:/Documents%20and%20Settings/C/Application%20Data/Microsoft/Word/BOOKTOC.rtf%23BOOKTOC

ASCII Table

XBR0

Register

CP0E

Comparator 0

Output

Enable

ECI0E

PCA0 Exter-

nal Counter

Input Enable

PCA0ME

PCA0 Module I/O Enable

UART0EN

UART0 I/O

Enable

SPI0EN

SPI0 Bus

I/O Enable

SMB0EN

SMBus

I/O Enable

Priority

Order

7 6 5 1 2 3

2
0

2
1

1
8

1
9

1
6

1
7

1
4

1
5

1
2

1
3

1
0

1
1

6

9

4

5

2
9

3
0

2
7

2
8

2
4

2
5

2
2

2
3

Crossbar on the C8051

EVB Pin:

Priority Crossbar Decode Table

7 6 5 4 3 2 1 0

5 4 3
0 0 0 No CEXn
0 0 1 CEX0
0 1 0 CEX0, CEX1
0 1 1 CEX0, CEX1, CEX2
1 0 0 CEX0, CEX1, CEX2, CEX3
1 0 1 CEX0, CEX1, CEX2, CEX3, CEX4

XBR0: Port I/O Crossbar Register 0 and Priority Order

 DGND

P1.7

P1.5

P1.3

P1.1

P0.7

P0.5

P0.3

P0.1

P2.7

P2.5

P2.2

P2.0

P3.6

P3.4

P3.2

P3.1

/RST

DAC1

CP1+

CP0+

AIN0

AIN2

AIN4

AIN6

AGND

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

P1.6

P1.4

P1.2

P1.0

P0.6

P0.4

P0.2

P0.0

P2.6

P2.4

P2.3

P2.1

P3.7

P3.5

P3.3

P3.0

DAC0

CP1-

CP0-

VREF

AIN1

AIN3

AIN5

AIN7

PORT 3

PORT 2

PORT 0

PORT 1

PORT 1

PORT 0

PORT 2

PORT 3

C8051 EVB Port Connector

*Do not use – reserved for RS-232 serial communication

*

*

+3.3V

