
 Page 23

OperandsAndConstraints.txt

A Complete List of GCC ARM Assembly Operand Modifiers and Constraints

Valid as of Saturday, July 22, 2017.

######################### ASM Operand modifiers #########################

Valid operand modifiers for use in asm statements.

A : A memory operand for a VLD1/VST1 instruction.

a : Print as a memory address.

c : Don't print "#" before an immediate operand.

P : Print a VFP double precision register.

q : Print a NEON quad precision register.

y : Print a VFP single precision register as indexed double.

B : Bitwise inverse of integer or symbol without a preceding #.

L : The low 16 bits of an immediate constant.

M : A register range suitable for LDM/STM.

m : The base register of a memory operand.

R : The most significant register of a pair.

Q : The least significant register of a pair.

e : The low doubleword register of a NEON quad register.

f : The high doubleword register of a NEON quad register.

H : The highest-numbered register of a pair.

h : A range of VFP/NEON registers suitable for VLD1/VST1.

0-9 : %0 means "first operand, regardless of whether it's input or output," %1 means "the next operand listed after the first one," etc.

Example: Using %P[thing] in an asm instruction explicitly defines that a double is located at the memory address represented by variable

"thing"

Above operands were found in LLVM's ARMAsmPrinter.cpp.

################## Input/Output Operand Constraint Modifiers #################

These are placed in front of constraints in operands if needed (like "=r" for a write-only output general register).

"=" : Can write to the operand only.

"+" : Can read from and write to the operand.

"&" : Output operand is stored before the need for the input operands (and their index registers) is over.

"%" : This operand and the next operand are commutative (order interchangeable).

######################### GCC Common Constraints #######################

Register constraints

"r" : Matches any general register.

"g" : Any register, memory or immediate integer operand is allowed, except for registers that are not general registers.

Memory constraints

"m" : Matches any valid memory.

"o" : Matches an offsettable memory reference.

Normal constraints

"0-9" : Use this operand for the #th operand (for example: asm("mov %0, r1" : "=r" (value) : "0" (value)); means use the same (value)

register that is used for input for output)

 (#) Similar to +

 Page 24

"V" : Matches a non-offsettable memory reference.

 (#) "V" matches TARGET_MEM_CONSTRAINTs that are rejected by "o".

 (#) This means that it is not a memory constraint in the usual sense, since reloading the address into a base register would make the

address offsettable.

 (#) "o" and "V" are like components of "m" in a way.

"<" : Matches a pre-dec or post-dec operand.

">" : Matches a pre-inc or post-inc operand.

 (#) Like "V", "<" and ">" are not memory constraints, since reloading the address into a base register would cause it not to match.

"i" : Matches a general integer constant.

"s" : Matches a symbolic integer constant.

"n" : Matches a non-symbolic integer constant.

"E" : Matches a floating-point constant.

"F" : Matches a floating-point constant.

 (#) There is no longer a distinction between "E" and "F".

"X" : Matches anything.

Address constraints

"p" : Matches a general address.

####################### ARM-SPECIFIC CONSTRAINTS ####################

==

NOTE: Anything marked @internal should NOT BE USED in inline asm statements.
These are included purely for edification and completeness.

==

The following register constraints have been used:

 - in ARM/Thumb-2 state: t, w, x, y, z

 - in Thumb state: h, b

 - in both states: l, c, k, q, Cs, Ts, US

In ARM state, 'l' is an alias for 'r'

'f' and 'v' were previously used for FPA and MAVERICK registers.

The following normal constraints have been used:

 - in ARM/Thumb-2 state: G, I, j, J, K, L, M

 - in Thumb-1 state: I, J, K, L, M, N, O

'H' was previously used for FPA.

The following multi-letter normal constraints have been used:

 - in ARM/Thumb-2 state: Da, Db, Dc, Dd, Dn, Dl, DL, Do, Dv, Dy, Di, Dt, Dp, Dz

 - in Thumb-1 state: Pa, Pb, Pc, Pd, Pe

 - in Thumb-2 state: Pj, PJ, Ps, Pt, Pu, Pv, Pw, Px, Py

 - in all states: Pf

The following memory constraints have been used:

 - in ARM/Thumb-2 state: Uh, Ut, Uv, Uy, Un, Um, Us

 - in ARM state: Uq

 - in Thumb state: Uu, Uw

 - in all states: Q

Register constraints

"t" : The VFP registers s0-s31.

"w" : The VFP registers d0-d15, or d0-d31 for VFPv3.

"x" : The VFP registers d0-d7.

"y" : The Intel iWMMX co-processor registers.

"z" : The Intel iWMMX GR registers.

"l" : In Thumb state the core registers r0-r7.

"h" : In Thumb state the core registers r8-r15.

"Ts" : For arm_restrict_it the core registers r0-r7. GENERAL_REGS otherwise.

@internal "k" : The stack register.

@internal "q" : In ARM state with LDRD support, core registers, otherwise general registers.

 Page 25

@internal "b" : Thumb only. The union of the low registers and the stack register.

@internal "c" : The condition code register.

@internal "Cs" : The caller save registers. Useful for sibcalls.

Normal constraints

"j" : A constant suitable for a MOVW instruction. (ARM/Thumb-2)

"I" : In ARM/Thumb-2 state a constant that can be used as an immediate value in a Data Processing instruction. In Thumb-1 state a constant

in the range 0-255.

"J" : In ARM/Thumb-2 state a constant in the range -4095 to 4095. In Thumb-1 state a constant in the range -255 to -1.

"K" : In ARM/Thumb-2 state a constant that satisfies the "I" constraint if inverted. In Thumb-1 state a constant that satisfies the "I"

constraint multiplied by any power of 2.

"L" : In ARM/Thumb-2 state a constant that satisfies the "I" constraint if negated. In Thumb-1 state a constant in the range -7 to 7.

"M" : In Thumb-1 state a constant that is a multiple of 4 in the range 0-1020.

"N" : Thumb-1 state a constant in the range 0-31.

"O" : In Thumb-1 state a constant that is a multiple of 4 in the range -508 to 508.

"G" : In ARM/Thumb-2 state the floating-point constant 0.

"Pf" : Memory models except relaxed, consume or release ones.

@internal The ARM state version is internal...

@internal In ARM/Thumb-2 state a constant in the range 0-32 or any power of 2.

 (#) The above two lines are not typos.

@internal "Pj" : A 12-bit constant suitable for an ADDW or SUBW instruction. (Thumb-2)

@internal "PJ" : A constant that satisfies the Pj constrant if negated.

@internal "Pa" : In Thumb-1 state a constant in the range -510 to 510.

@internal "Pb" : In Thumb-1 state a constant in the range -262 to 262.

@internal "Pc" : In Thumb-1 state a constant that is in the range 1021 to 1275.

@internal "Pd" : In Thumb state a constant in the range 0 to 7.

@internal "Pe" : In Thumb-1 state a constant in the range 256 to 510.

@internal "Ps" : In Thumb-2 state a constant in the range -255 to 255.

@internal "Pt" : In Thumb-2 state a constant in the range -7 to 7.

@internal "Pu" : In Thumb-2 state a constant in the range +1 to 8.

@internal "Pv" : In Thumb-2 state a constant in the range -255 to 0.

@internal "Pw" : In Thumb-2 state a constant in the range -255 to -1.

@internal "Px" : In Thumb-2 state a constant in the range -7 to -1.

@internal "Py" : In Thumb-2 state a constant in the range 0 to 255.

@internal "Pz" : In Thumb-2 state the constant 0.

@internal "Dz" : In ARM/Thumb-2 state a vector of constant zeros.

@internal "Da" : In ARM/Thumb-2 state a const_int, const_double or const_vector that can be generated with two Data Processing insns.

@internal "Db" : In ARM/Thumb-2 state a const_int, const_double or const_vector that can be generated with three Data Processing insns.

@internal "Dc" : In ARM/Thumb-2 state a const_int, const_double or const_vector that can be generated with four Data Processing insns.

This pattern is disabled if optimizing for space or when we have load-delay slots to fill.

@internal "Dd" : In ARM/Thumb-2 state a const_int that can be used by insn adddi.

@internal "De" : In ARM/Thumb-2 state a const_int that can be used by insn anddi.

@internal "Df" : In ARM/Thumb-2 state a const_int that can be used by insn iordi.

@internal "Dg" : In ARM/Thumb-2 state a const_int that can be used by insn xordi.

@internal "Di" : In ARM/Thumb-2 state a const_int or const_double where both the high and low SImode words can be generated as

immediates in 32-bit instructions.

@internal "Dn" : In ARM/Thumb-2 state a const_vector or const_int which can be loaded with a Neon vmov immediate instruction.

@internal "Dl" : In ARM/Thumb-2 state a const_vector which can be used with a Neon vorr or vbic instruction.

@internal "DL" : In ARM/Thumb-2 state a const_vector which can be used with a Neon vorn or vand instruction.

@internal "Do" : In ARM/Thumb2 state valid offset for an ldrd/strd instruction.

@internal "Dv" : In ARM/Thumb-2 state a const_double which can be used with a VFP fconsts instruction.

@internal "Dy" : In ARM/Thumb-2 state a const_double which can be used with a VFP fconstd instruction.

@internal "Dt" : In ARM/ Thumb2 a const_double which can be used with a vcvt.f32.s32 with fract bits operation.

@internal "Dp" : In ARM/ Thumb2 a const_double which can be used with a vcvt.s32.f32 with bits operation.

Memory constraints

@internal "Ua" : An address valid for loading/storing register exclusive.

@internal "Uh" : An address suitable for byte and half-word loads which does not point inside a constant pool.

@internal "Ut" : In ARM/Thumb-2 state an address valid for loading/storing opaque structure types wider than TImode.

@internal "Uv" : In ARM/Thumb-2 state a valid VFP load/store address.

@internal "Uy" : In ARM/Thumb-2 state a valid iWMMX load/store address.

@internal "Un" : In ARM/Thumb-2 state a valid address for Neon doubleword vector load/store instructions.

@internal "Um" : In ARM/Thumb-2 state a valid address for Neon element and structure load/store instructions.

 Page 26

@internal "Us" : In ARM/Thumb-2 state a valid address for non-offset loads/stores of quad-word values in four ARM registers.

@internal "Uq" : In ARM state an address valid in ldrsb instructions.

@internal "Q" : An address that is a single base register.

@internal "Uu" : In Thumb state an address that is valid in 16bit encoding.

@internal "Uw" : In Thumb state an address that is valid in 16bit encoding, and that can be used for unaligned accesses.

 (#) The 16-bit post-increment LDR/STR accepted by thumb1_legitimate_address_p are actually LDM/STM instructions, so cannot be

used to access unaligned data.

@internal "US" : US is a symbol reference.

@internal "Uz" : A memory access that is accessible as an LDC/STC operand.

We used to have constraint letters for S and R in ARM state, but all uses of these now appear to have been removed.

Additionally, we used to have a Q constraint in Thumb state, but this wasn't really a valid memory constraint. Again, all uses of this now

seem to have been removed.

All GCC constraints were found in /gcc/config/arm/contraints.md and /gcc/common.md.

