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INTRODUCTION

Analog control systems have been used in industrial environments for many years. An average
plant uses many controllers, each controlling one small segment, or control loop, of the entire plant.
These controllers are independent and used to be set and monitored by human operators. Digital
control systems are now popular in control applications. In Direct Digital Control (DDC) systems,
the computer replaces the analog controllers altogether. A typical DDC application is shown in FIG.
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FIGURE 1. Typical direct digital control application.

The main advantage of a DDC system is its flexibility. Changing a few operating parameters or
implementing a complete new control strategy in most cases is just a matter of recompiling a
program module, whereas with hardware based controllers, delicate and expensive hardware must
be modified or rendered unusable. The computer is reprogrammable; several control programs can
be stored and may be switched quickly to provide a variety of control operations. Typical operations

of the DDC programs are:

1) Co-ordination of several control loops

1

digital State Feedback controller.

Four sessions for 2 of the 3 PID controllers, an FST controller (with or without delay), and an analog or



2) Adjusting to changes in the dynamics of the process

3) Providing a fast and orderly system shut-down and restart when needed
4) Providing preventative maintenance and test services

5) Providing printed data and reports for plant personnel.

Microprocessor based systems with their relatively low cost and high computational speeds can
provide these services for almost any size process. Minicomputers that used to handle applications
in process control for large systems, rapidly give way to fast 32bit single board computers. Such is
the power of today's microprocessor based control systems, that specialized interrupt driven real
time operating systems, or real time extensions to industry standard operating systems (UNIX)
exist, and control engineers do their development in high level languages assisted by powerful
software and hardware debugging tools. Typical examples of microprocessor based control systems
range from car fuel controllers, to the advanced F-18 fighter plane whose complete flight controls are
implemented in high level software (ADA). Computer control systems combine the disciplines of
Automatic control and Software Engineering as well as analog devices and digital hardware to give
Electrical and Computer Systems Engineers many opportunities for challenging and creative design
work.

This experiment will involve the use of a digital computer to implement the closed loop control.
Different control schemes will be studied along with the effects of sampling time and time delays.
The student is encouraged to explore as many of the topics presented as time permits. The
experiment gives an excellent chance to apply control theory in an interactive way to gain a better
understanding of hybrid simulation techniques and control theory in general.

EXPERIMENTAL OBJECTIVES

Several aspects of digital control will be explored in this experiment. Four digital
implementations of analog controllers and two types of direct digital controllers will be used.
Different controller design schemes will be compared and the effects of sampling rate and time
delays will be explored. It should be noted here that all process time delays will be implemented on
the PC. This is only done to simulate a process with a delay with relative ease?.

A single control loop will be used in this experiment. Both the general time and s-plane
(Laplace Transform) representations of a typical closed loop system are shown on FIG. 2. More
analytically the process Gp(s) gives the response y(f) (Y(s)), to a control input u(t) (U(s)). The

controller G.(s) calculates the control signal using the error signal e(?) (E(s)), that is the difference

between the desired output (reference input) r(f) (R(s)) and the process output. The transducer is
used for scaling and unit of measure conversions and will be assumed unity here. Furthermore it
will be assumed that no disturbance or other type of noise enters the process.

2 1In practice, process time delays are harmful and affect the stability of the controlled system. A controller
should never purposely insert a delay. Unavoidable delays could be caused by slow processes, converters, or
remote sensing devices (e.g. Earth-Mars remote control signals).
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FIGURE 2. t and s Domain block diagram of a closed loop system.

CONTROLLER CALCULATIONS

Three types of digital controllers are investigated in this experiment. The discrete PID
controller, the FST controller, and the State Feedback controller. The discrete Proportional +
Integral + Derivative (PID) controller to be used is a digital approximation of the continuous PID
controller. Three design schemes with different assumptions about the process dynamics model are
investigated. The Finite Settling Time (FST) controller is designed specifically for digital control,
and one design scheme is presented. The State Feedback controller uses a Pole Placement
design scheme and is implemented in both the continuous and the discrete cases.

PID CONTROLLER

The continuous PID controller has been widely used in industry for many years. It is easy to
implement, gives a wide range of control characteristics, and is easily adapted to meet changes in
control requirements. Its complete transfer function is very intuitive to conceive, containing a term
proportional to the present error (Kp), a term representing the error history (K;), and an error

anticipatory term (K;) and is given in equation (1):

K;
Guls) = K, + 5+ Kys 1)

where:
Kp is the proportional gain
K; is the integral gain
K is the derivative gain.

Depending on what terms are actually present when a PID controller is implemented, there are
several variations to basic transfer function:
1) Proportional (P) controller: the K; and K; terms are zero.

2) Proportional + Integral (PI) controller: the K; term is zero.
3) Proportional + Derivative (PD) controller: the K; term is zero.
4) Proportional + Integral + Derivative (PID) controller: all terms are non zero.

The digital PID controller is a discrete approximation formed from the above transfer function.



Its derivation stems from the approximation of the derivative with a difference as shown in equation
(2). Thus the integral term is replaced with a sum and the derivative term is replaced with a simple
difference. A more thorough discussion of the digital PID controller can be found in Cadzow and

Martens!! p. 100.
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The difference equation for the digital PID controller is:
uk) = Kyeq(k) + Kjego(k) + Kgeos(k) 3)

where:
U(k) is the control at the kth sample instant,
e1(k) = r(k) - y(k), the error term,
ego(k) = ego(k - 1) + Teq(k) the integral approximation,
egg(k) = [e1(k) - e1(k - 1)]/T the derivative term,
T 1s the sampling time in seconds, r(k) is the reference signal and y(k) is the output signal.

The digital controller is a good approximation of the continuous controller when the sampling
time 7 is short relative to the time constants of the system.

Many design schemes exist for finding the PID controller gains. Schemes using the root-locus or
frequency response calculations are required when design specifications are rigid. In other
applications, simpler design schemes may be used. Three such schemes will be considered, namely
the methods of:

1) Ziegler-Nichols.
2) Gallier-Otto.
3) Graham-Lathrop.

In the first two schemes, parameters are used to characterize the process. The controller gains
are defined in terms of these parameters. The third scheme is based on the characteristic equation
of the closed loop system; the controller gains are chosen such that the characteristic equation
matches one of a set of standard forms.

A. Ziegler-Nichols Design

The process is characterized by two parameters derived from the unit step response of the
process. These parameters, R and L, represent the speed and the reaction time of the process. They
are found from a plot of the unit step response as shown in FIG. 3. Note that for systems with unity
gain (output settles to the same value as the input), FIG. 3 would have a y-axis scale value of 1.0 for
the steady state value of output to the unit step.
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FIGURE 3. Example of a unit step response.

A line, tangent to the curve, is drawn at the point of maximum slope. This line can be
represented by the equation:
c(®) = R@- L) (4)

where:
R is the maximum slope of the curve,
L is the time where the tangent line crosses the time axis.

dJ. G. Ziegler and N. B. Nichols have developed a design scheme using these parameters. This
scheme gives controllers with a fast response time but with significant overshoot. For most
processes, the system closed loop transfer function will have dominant poles near the rays as shown
in FIG. 4. Ziegler and Nichols give the following gain settings for the various PID controller

implementations!2l:

For the P control:
Kp =1/RL

For the PI control:
Kp =.9/RL, K;= .3Kp/L

For the PID control:
Kp =12/RL, K;= .5Kp/L, K;= .5LKp



Im[s]

P, A

.22

P, and P, are the dominant
poles of tle process.

A

Re[’S]

P,

FIGURE 4. Approximate system dominant poles using Ziegler-Nichols gains.
As an example, consider a process with the transfer function:

1
Gp) = G+ D@s + 1) )

The graph of the unit step response is shown in FIG. 3. The parameter values may be read from the
graph as
R=0.25and L =0.38

The Ziegler-Nichols gains are then:
For the P control:
Kp: 10.5, Ki:KdZ 0

For the PI control:
Kp =947, K;=7.48, Ky =0

For the PID control:
Kp =12.63, K;=16.62, K;=240

B. Gallier-Otto Design

Many processes exhibit behavior like that of a second order time-invariant linear system with
time delay. These processes may be approximated by the transfer function



Ke Tps
Gp®) = (Tps + D(Tys + 1) ©)

where:
K is the process gain,
T is the smaller time constant,

T is the larger time constant,
Tpis the time delay.

In practice, this approximation is made by inputting a step or a short pulse to the process and
recording the output. The parameters K, Tq, T9, and Tp are then found by applying regression

analysis to fit the transfer function to this response.

A simple transformation of the parameters facilitates the comparison of the different processes.
The ratio of the time constants is defined as:

A=T4/Ty
Time is normalized using the normalization constant
T,=T1+Ty+Tp
The normalized time delay (normalized deadtime) is then
tp=Tp/T,

P. W. Gallier and R. F. Ottol3] have developed a design scheme which uses the transformed
parameters A, T, and tp. The scheme is based on the minimization of the integrated absolute error

performance index IAE given by equation (7):
IAE = [le(t)dt (7)
0

The optimal values for the controller

1
Gq(s) = K,(1 + Te

S+ Tad) ®

were found for various values of A and ¢p,.

Gallier and Otto compiled graphs relating the controller parameters to the process parameters A
and ¢p, for both PI and PID control. In particular, these graphs give optimal values for the

normalized parameters:
Ky= KpK, the loop gain of the closed loop system,

t; = T,/T,, the normalized reset time,
tg = T4/T,, the normalized derivative time.

The gains for the PID controller used in this experiment are then derived in terms of these
parameters. Thus, for the PID controller



GC(S) = Kp + Ki/s + de

the three coefficients become:

Ky
K =K
A o
T 4Ty,
Kd = KpTd = Kpthn

Continuing with the example transfer function as in equation (5), the process parameters are:

Kzl, T1:1, T2:2, TD:O

Thus, the transformed parameters are:

Referring to graphs of FIG. 5, the controller gains become:
K,=4, K;=112,
for PI control and
K,=175 K;=2.78 K ;=45
for PID control.

C. Graham-Lathrop

D. Graham and R. C. Lathrop[4] have derived standard forms for the characteristic equation of
the closed loop system as shown on TABLE 1.

The derivation is based on the minimization of the integrated time absolute error (ITAE) given in
(10):

ITAE = [ tle(t)|dt (10)
0

The ITAE performance index gives less weight to the initial error signal than the IAE index.
The resulting system has a more oscillatory response than the one derived from the IAE index. The
roots of the standard forms for orders 1, 2, 3, and 4 are shown in FIG. 6.

Recall that the characteristic equation of a closed loop system is the denominator of the Closed
Loop Transfer Function (CLTF), and for a system like the one shown in FIG. 2 the CLTF is given by

(remember H(s) is unity):
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Closed Loop Characteristic Equations as derived by Graham & Lathrop
1 s + wg
2 s2 + l4wys + u)g
? s3 + 1.75w( s% + 2.15&)(2)8 + m§
4 st + 2.1w, s3 + 3.4w(2) s2 + 2.7(033 + wg
5 $9 + 2.8w, st + 5.0(»(2) s3 + 5.50)2 s2 + 3.4(033 + (ug
6 s6 + 3.25m, $9 + 6.60)(2) st + 8.6(1)3 s3 + 7.45(1)3 s2 + 3.950383 + wg
T sT+ 4.470, 5 + 10.42(»3 s2 + 15.0&»3 st + 15.540)3 s3 + 10.64mg s2 + 4.580)33 + mg
5 |58+ 5.20 s + 12.8(»(2) 56+ 21.6u)g s5+25.75u{)1 st + 22.220)(5) s3 + 13.3wg s? + 5.150)33 + mg

TABLE 1. Graham-Lathrop standard forms.

Y(s) _ Gs)Gp(s)
Ris) 7 1+ Gs)Gp(s) (11)

According to their scheme the closed loop system characteristic equation is first normalized by
dividing through by the coefficient of the highest order term. It is then compared with the standard
form of the same order from TABLE 1, and the coefficients of each order of s are equated. The
resulting equations are then solved for the controller gains.
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FIGURE 6. Roots for 15t, 2nd’ 3rd’ and 4th order Graham-Lathrop forms.
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Continuing with the original example, the normalized characteristic equation for the closed loop
system is:

p8+

3
57+ Ty 2

3+Kd 1 + K Ki
s + 5 =0 (12)

* For P control, equation (12) is reduced to
2+ 1.55 +.5(1 + K, =0
The second order standard form, from TABLE 1 row 2, is
52 + 1.4wgs + wg =0
Thus the coefficient matching results in
l.4wp = 1.5, wg =.5(1+ Kp)
Solving for the unknowns yields the controller gain:
wg =107, K,=1.296
* For the PI control the characteristic equation (12) becomes
s34+ 1.5s2 + .5(1 + Kp)s +.5K; =0

The third order standard form is

2 3
3 + 1.7500s2 + 2.15m, s+

Thus,
2 3
1.75m9 =15, 2.15w, = b1+ Kp), wy =.5K;

Solving for the gains:
wo=0.857, K,=2159, K;=1.252

* For PID control the standard form is still the TABLE 1 row 3 equation and we end up having three
equations with four unknowns (one degree of freedom). Values of 1.0 and 1.5 will be chosen for wy,.
wg = 1.0 yields:

K,=330, K;=200, Kz=0.50

g = 1.5 yields:
K,=868, K;=6.75, K;=2.25

As can be verified from FIG. 6, the larger the o) is, the faster the response becomes.

11



FINITE SETTLING TIME CONTROLLER
A. FST Controller for a 2nd Order Process without Time Delay

At low sampling rates, controllers designed using discrete time theory must be used because
digital approximations to continuous controllers result in poor performance. One such controller is
the Finite Settling Time (FST) ripple free controller. This controller is designed to drive the process
to a set point in a small finite number of sample periods. FIG. 7 shows the sampled data version of
the same closed loop control system as in FIG. 2. The error is the input to the controller at the
sample instants t = kT, k=0, 1, ..., where T is the sampling period. The controller sends an output
at each sample instant to a Zero Order Hold, which sends it to the process for the entire sample
period. FIG. 8 shows the z-transform block diagram and the signal flow.

A g L\

r(t) _/ ZERO ORDER y(t)
—p| CONTROLLER — HoLD ] PROCESS -

FIGURE 7. Sampled data version of the continuous system of FIG. 2.

R(=) E(z) U(z) Y(z)
G (z) P Gp(z) -

+

FIGURE 8. Typical z-plane block diagram.
To illustrate the rules that apply to ripple free design, consider the second order process given in
a Laplace form as:

1
Gpls) = Trs ¥ DTy + 1 (13)
The process transfer function with a zero order hold on it's input is given by:
1-e7Ts
Gp() = 5(Tps + D(Tgs + D) (14)

The process pulse transfer function is given by:

12



[1- @ +dpp; - A + dopglz’l + [p1pg + dipy + dopy 1z

2

G = 1 - p1zHA - pezh

where:
= o TIT,
o-TITs
-Ty
Ty - Tq
T
Ty - T

The process pulse transfer function can be transformed into the general form:

c1z’l + cgz2
(1 - p1zHA - pgz'))

Gpl@) =

where:

c1=1-@0+dppy - 01 + dopy
¢g = p1pg + dipy + dopg

The general FST controller has the form

Ne Nu
u(k) = E Kek-1) + E K, u(k - i)
1=0 =1

where:
e(k - 1) 1s the error term at the kth sample instant

u(k - i) 1s the control term at the kth sample instant
K, is the vector of gains for the error terms

K,, is the vector of gains for the control terms
N, is the order of the error sum
N,, is the order of the control sum

(15)

(16)

(17)

(18)

(19)

The design procedure developed by Ragazzini and Franklinl®l was applied to the above transfer

function for a unit step input. The resulting parameters are:

Koo = c1 + ¢

-P1 - P9
Kel
c1 + ()
DP1P9
2 7 cp + ¢

13

(20)



‘1

Kul = Cl + C2
€9
Kug = c1 + ¢y

The resulting controller has the following difference equation:
uw(k) = Kype(k) + Kyje(k-1) + Kyge(k-2) + K jqu(k-1) + K ou(k - 2) (21)

Note that as T gets smaller, the K, terms increase. For 7' < 1 second the control values which
are proportional to the K, terms will need to exceed their maximum value of 10 Volts to properly

control the system, unless the input step size is very small. For the purposes of this experiment,
sampling time 7 for the FST controller should be greater than 1 second.

B. FST Controller for a 21d Order Process with Time Delay
The process with time delay may be approximated by the transfer function

_ e Tps
Gp) = Tys + D(Tgs + 1) 22)

where
Ty and Ty are the process time constants.

Tp1is the time delay implemented as an integral number of sample periods (T'p = MT).

The process transfer function with zero order hold is given by:

B 1 - e—TS)e—MTs
Gp() = 5(Tys + D(Tgs + 1) 23)

where
M is the number of sample periods of time delays.
T is the sampling period.

The process pulse transfer function? is
(c12’] + coz2)zM

Gyl = 7 (24)

1 - p1z A - poz’h)

where cq, cg, p1, and pg were defined in the previous section. Applying the same procedure as before
(system without time delay), one can find that the controller equation given in equation (25) is
exactly the same as the equation (21), except for the fact that the control history is delayed by M
samples.

w(k) = Kype(k) + Kyje(k-1) + Kyoe(k-2) + K ju(k-1-M) + K, ou(k -2 - M) (25)

where all the coefficients are given by equations (20).

3 Ts —

Remember e z
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STATE FEEDBACK CONTROLLER USING THE POLE PLACEMENT METHOD

A. Introduction to State Variable and Pole Placement

In all previous cases the Input/Output representation is used as the plant model. Under this
representation the plant always starts from rest (all initial conditions assumed zero) and more
importantly it is assumed to be a "closed black box", accessible only though the input and the output
ports. The controller is an entirely different unit cascaded in front of the plant, with possibly a
transducer measuring, unit-converting and feeding back the output. When the controller is fast
enough to be assumed continuous, then the analysis is done in the s domain using the Laplace
transforms of the controller and plant transfer functions G.(s), Gp(s) respectively. When sampling

rate is too slow, or other factors are forcing the whole process to be assumed discrete, then the
analysis is done in the z domain using the z-transforms of the transfer functions G.(2), Gp(z).

Even though this representation is still very popular among control engineers, the resulting
controller isn't always as successful as would be expected when initially designed, or, in rare cases, it
may completely fail to control the plant. These failures can be attributed to unexpected initial
conditions, unsuccessful pole cancellation or excitation of hidden oscillatory modes. Further
discussion of these cases is beyond the scope of this experiment, yet the student can find more

examples and explanation inl[6l and [7].

As a remedy to the above problems the state variable representation is used extensively. The
plant is modeled using the state and output equationsl8l | thus all the information about oscillatory
modes or initial conditions is readily available. A typical second order, time invariant plant with two
state variables x; and x9 is shown in FIG. 9.

x(£) v (t)

-3,

FIGURE 9. Block diagram of a typical ond grder plant.

The plant is represented in state variable form (assuming ¢ > 0) by a set of differential equations
as

x l(t) = xz(t) xl(O) = xlo
X 9) = -a1x1(t) - agxg(t) + bu(t) x9(0) = x90 (26)
y(®) = cxq1(d)
or in matrix form:
xX(t) = Agx(t) + Bou(t) x(0) = x
y() = Cex() 27

15



where:

x1(t)] 0 1 0 [xlo]
x() = [DCZ(t> ’ Ac = [-al -(12] ’ BC = [b] ) Cc = [c 0], Xy = X9

To return to the familiar s plane input/output representation, we must assume that the initial
conditions x() are zero, take the Laplace transform of equations (26) and eliminate the state variables

x1 and xg from them. The student can verify that the resulting transfer function G,(s), and the
system characteristic equation are given by equations (28):

Y(s) bc

=H® =5
() 82+a23+a1

(28)
det [sI-A,] = s2 + ags + a; = 0

As mentioned before, when we are using the state variable representation the classic notion of a
separate controller with its own transfer function, being cascaded with the plant (as in FIG. 2) is no
longer valid. Instead we achieve the desired output y(f) by feeding back#? the system states amplified
by properly selected gains, thus in essence by modifying the state equations.

Depending upon what the overall design specifications for the system behavior are, there are
several methodologies that can be applied to yield a set of state feedback gains. The Pole

Placement Method[9/[10] to be employed here, requires that such feedback gains K, be found, so

that the poles of the characteristic equation of the new system match a set of preselected (desired)
values. The gains are found following the steps below:
* a desired polynomial is calculated that has as its roots the desired set of poles;
the new (augmented) system characteristic equation is found as an expression of the
unknown gains;
* by matching the coefficients of the above two polynomials, a set of simultaneous equations is
constructed;
* solving the above equation set yields the feedback gains (if a unique set can be found).

B. Pole Placement for the Continuous Case

We'll be using the same general plant introduced in FIG. 9 and require that the closed loop
system has pq, and pg as its poles. Thus the desired characteristic polynomial becomes:

(s-p1)(s-p2)=s2 + (-p1-p2)s + (pip2) = 0
2+ ms+n=0, -m=p;+py, n=ppy (29)

The augmented system with the unknown feedback gains k., k.9 and a reference input signal
r(t) all present, is shown in FIG. 10. For this type of system-control combination it is necessary to
amplify the reference signal with a feedforward gain g (to be found), if we want zero steady state
error (output matching the input) under a step input.

4 This implies that we have full access to all states, introducing the notions of controllability and

observability that go beyond the scope of this experiment.

16
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FIGURE 10. Augmented system with feedback controller and reference.
Assuming zero initial conditions as before, the new state equations are:
x 1) = x9(0)
.9.(?2(t) = -alxl(t) - a2x2(t) - kclbxl(t) - kc2bJC2(t) + gbr(t) (30)

y(@) = cxq(D)

From direct comparison between equations (30) and (26) it's easy to note that the control law u(f) is
given by:
u(t) = grt) - [ke1x1(®) + keoxo(®] = gr®) - Kgx(t) (31)

with K, = [k.; k.o ] which precisely is the formula for the state feedback control. Equations (30)
can be written in matrix form as:

%(t) = (A, - BKpx(t) + Bgr(t) , x(0) = x
y(t) = Cex(t) (32)

As in the open loop case (equations (28)), the overall transfer function and the characteristic
equation of the closed loop system are:

Yis) Hs) = gbc
Us) T2+ (ag + bk.g)s + (a; + bk.p)

(33)
det [sI-Ag] = s2 + (ag+ bkeg)s + (a3 + bkey) = 0

and by coefficient matching with equation (29) the gains are found. With no loss of generality from
now on the c coefficient in equations (33) is assumed to be equal to 1.

The unknown feedforward gain g is calculated as follows: The error between the reference signal

r(t) and the output y(¢) is: e(t) = r(¢) - y(t), and since our reference input is a step function of size R,
the error becomes e(t) = R - y(f). Thus the steady state error e;; becomes:

17



egs = ltlglg R - y®) =R - yg (34)

Applying the Final Value theorem to equation (32a) and noting that R(s) = R/s, we calculate y

R
gb~

o L L _ __ 8bR
Yss = {gm 0 = U s¥(s) = fm s 5 (ag + bkeg)s + (ag + bkey) @1 + bkey

We want zero steady state error hence y,, must be equal to R, which identifies g as a function of the
gains K.

a1
g=7 tka (35)

Assuming that the gain matrix K, is already found by polynomial coefficient matching in the pole
placement part, the feedforward gain g is also known.

C. Pole Placement for the Discrete Case
When the sampling period T becomes very large the analysis should be done in the z (discrete)

domain in order to ensure accurate control. Thus the desired closed loop poles specified in the s
domain are converted to the z domain by using the relationship:

z; = esiT (36)
where T is the sampling time.
As in the continuous case the discrete desired second order polynomial is
22+ qgz+p=0, with -¢= z1 + 29, P = 2129 37
Furthermore the equivalent discrete-time system is derived from the continuous [11] as:

x(k+1) = Agx(k) + Bgu(k)
y(k) = Cgx(k) (38)

where Ag, By, and Cg are the discrete counterparts of A;, B, and C, determined by

T
Ag = AT, By= [eAchB, du = (A4-DAY) B, Cq = C, (39)
0
The key element in equations (39) is the State Transition Matrix ede”. This is computed using

equation[12] (40) either analytically as the inverse Laplace transform of the matrix [(sI - Ac)'l], or
numerically from the infinite sum:

Apt = -1 1 = 2t2 313
edel = L {(sI-Ac)}—I+Act+Ac2,+A03,+... (40)
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In order to compute the K; gains the desired polynomial (37) must be coefficient matched with
the discrete system closed loop characteristic equation:

det [z - (Ag - BgKg) 1 = 0 (41)
Again the discrete control u(k) has the same form as its continuous counterpart in (31):
w(k) = gr(k) - [kgix1(k) + kgoxo(R) ] (42)
with r(k), x1(k), x9(k) the discrete equivalent of the reference and state signals.

The discrete closed loop transfer function is given by equation (43):

Y@ _

H@E) = 3 = Cal2l-(Agq - BgKy1'Bg (43)

The feedforward gain is calculated as before, using the discrete Final Value Theorem, the output

R
Y(2) = R(2)H(2), the transfer function H(z) from (43), and the unit step R(z) = 12D

Yss = lim y(k) = lim (1 -z Y() = lim (1-2z1) REHE = limQd-z1) H(z) = RH(1)
kDo 201 201 201

(1-27)

The steady state error e;, = R - y4¢ is required to be zero, thus y,, = R, and from the above

formulas we conclude that H(1) = 1, which determines the gain g. Remember that H(1) is the H(2)
from (43), evaluated atz=1,and Cy=C, = 1.

EXPERIMENTAL PROCEDURE

PROBLEM FORMULATION
The objective of the experiment is to investigate the control of a process with transfer function:

e Tps
Gp(®) = Q05 + D@5 + 1)

in the presence of a step input of size R (default value R = 1 volt).

The experiment is run on a Comdyna analog computer serving as the process simulator, and a
PC serving as the digital controller. The analog computer's ability to produce an exact replica of a
system's dynamic model, running in real time, combined with the digital computer's ability to
perform complex calculations and make diverse decisions with speed and accuracy, result in a highly
flexible hybrid system that can handle a wide variety of problems with minimum programming
effort.

The process will be implemented on the Comdyna analog computer using the analog computer
simulation diagram of FIG. 11 for the PID and FST part, and FIG. 12 for the State Feedback part.
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The student is urged to verify that the two plant analog simulation diagrams represent the same
transfer function. There are 2 separate analog computers available for the lab. One is configured for
Parts A, B, and C while the second is configured for Part D. Before dismantling a wired Comdyna,
check to see if a correctly wired one is available first to save yourself a lot of time.

The PID, FST and State Feedback controllers will be designed using the methods presented

previously, and implemented using the PC program. The experiment will include investigation of
the following topics:

1) Comparison of the PID controllers designed by the various schemes.

2) Study of the effect of increased sample time on control.

3) Study of the effects of time delay.

4) Study of the FST controller especially when using very long sampling times.

5) Study of the State Feedback controller both in the continuous and the discrete domain.

6) Comparison between the PID, FST and State Feedback controllers both at the transient and
at the steady state level, with long sample times, and with time delays.

7) Steady state error® analysis.

u(t)

- o~y ()

k )
\*

AO 0 PC ' RUNNING ALO

FST-PID CONTROLLER

F

FIGURE 11. Analog process simulation for PID and FST controllers.

The theory covered in the previous topics is so broad that the instructions have to be as general
as possible. It is hoped that initiative will be used in the study of the various controllers. If an area
seems interesting, spend time exploring it.

HARDWARE SETUP - COMPUTER USAGE

The hardware to be used consists of the Comdyna analog computer implementing the ond grder
process, the PC running the Hybrid Controller DAQmx+.vi feedback control program, a digital

5 For the closed loop system shown in FIG. 2 the transient and steady state error are:

— R(9 — SR(s)
) +G,9649° " {826,969
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storage oscilloscope (DSO) to record the control signal and the states or the process response, and a
set of cables.

The parallel realization of FIG. 11 is to be built for the PID and FST cases. The process output y
is to be connected to the PC by BNC-2110 input port AI 0, and the process input u to the PC BNC-
2110 output port AO 0. The cascaded realization of FIG. 12 is to be built for the State Feedback
part. State x; must be connected to the PC input port AI 0, state xy to the PC input port AI 1, and

the system input u to the PC output port AO 0. In either case all unused ports are to be left free. It
is suggested that the Comdyna manual is at least browsed before starting the experiment. Special
care must be taken when implementing the gains because of the sign inversions at the output of the
amplifiers. The Comdyna dial must be on the Pot Set position during setup; during operation the
pushbuttons must be switched back and forth between the OP (operate) and the IC (reset initial
conditions) states, at the start and end of each run. The DSO must be thoroughly understood and its
various input scaling options mastered, before any useful work can be done. Omne of the DSO
channels must be connected to the control output (AO 0) and the other to the process output (Al 0).
Use the maximum voltage range possible for more detailed results. Scale settings on the DSO
frequently should be checked periodically.

u(t) x, (L)
05 L .
AO O AI O

PC-AT COMPUTER
@:

FIGURE 12. Analog Process simulation for pole placement controller.

/\

To access the LabVIEW program do the following:

¢ Turn the PC on (if off) and go the HYBRID subdirectory (My Computer\Local Disk):
C:\CStudio\RTA_lab\Hybrid.

*  Double click Hybrid Controller DAQmx+.vi to load the program. A LabVIEW program will
open with six different tabs at the top of the screen. When moving through the parameter fields,
the tab button will not work. You must use the mouse to manually select them.

*  Be sure to push the operate button (OP) on the analog computer before starting the VI program,
otherwise the controller will not behave properly. Push IC when done to reset the plant for the
next run.

*  Press the right arrow button at the top left-hand corner of the screen in order to start execution.
In order to pause; press the STOP button on the screen, not the stop sign at the top-left of
the page (this will help to calculate actual sampling times, and reset the output to 0
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Volts). It may take a few seconds for the program to respond.

+ Although some values can be changed during execution by user input, it is important, in order to
properly ensure correct measurement, to stop the controller (by using the STOP button) before
altering parameters values as necessary.

+ If you notice the controller isn’t working properly:

0 Press the stop button then run the LabVIEW program. This should reset the program and
enable you to start from scratch.

o Wiggle the T-connectors; make sure the connection is good. If when wiggling you notice a
difference in the response, change connectors. Occasionally the PC may need to be restarted.

In almost all the cases data entry consists of the sampling period 7' in ms, the reference step size
R and the precalculated coefficients/gains that are usually a function of 7. Even though a software
implemented clipper prevents the control output from "wrapping" around by forcing it to stay
within its respective max/min values, there are cases when the signal remains at these levels very
long (saturated) the results will be erroneous. It is suggested that R be reduced until the maximum
non-saturating value is found.

A suggested reference input R value is 1 volt, even though other acceptable values can be used.
Sampling time 7T depends on the algorithm used to derive the gains, and for the continuous
implementations the general notion is the faster the sampling, the closer the computer controller
resembles the analog model (10 ms or less).

The time delay is T = MT where T is the sampling time and M is the number of periods.

IMPLEMENTATION - INVESTIGATION
A. Step Response Mode (Uncontrolled Open Loop)

This mode is used to observe the open loop step response of a process under the “Apply Step
Input” tab. The computer outputs -on AO 0- a step of magnitude R defined by the user. It must be
run first, as it is used for the calculating the L and R coefficients for the Ziegler-Nichols PID
controller. The sampling time 7T is currently of no use (placeholder for the future) even though a
value must be entered. Several runs are suggested, using different R and settings on the time and
voltage ranges, until the most detailed curve is produced.

B. PID Control Mode

This mode implements the PID controller given in equation (3). The “PID Controller” tab
contains fields for Kp (proportional gain), Ki (integral gain), Kd (derivative gain), R (reference input)
and T (sampling time in ms). The computer outputs -on AO 0- a step of magnitude R defined by the
user. The computer inputs -on AI 0 (y(t))-, the response of the system. Remember to press the
operate mode on the Analog Computer before beginning execution of the Step Response. It is also
important to remember to end execution of the program by pressing the STOP button on the screen.
Since all variations of the controller are to be investigated, it's strongly advised that the sets of
coefficients be calculated ahead of time for various sampling and delay times (wherever applicable).
More specifically the equations between (4) and (5) will be used for the Ziegler-Nichols; equations (6),
(8), and (9) for the Gallier-Otto method (use several delay times with values comparable to the
process time constant); and TABLE 1 will be used for the Graham-Lathrop forms.

It is suggested that the pure proportional (P) control be implemented first, so that a feel for the

scaling and the process response is acquired. After several runs using different sampling times, vary
the controller gain and observe the results in the control effectiveness. It is very important to have
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precalculated the Routh-Hurwitz[13] test stability test for the closed loop characteristic equation, so
that the stability limits of the system can be investigated.

Progressively start implementing the other PID variations using a standard set of sampling
periods. Compare the various PID designs (Ziegler-Nichols, Gallier-Otto, and Graham-Lathrop) for
the system with no time delays. The Graham-Lathrop PI and PID controllers should be studied for
several values of the natural frequency w( and the best controller should be selected. Comparisons

should be based on
1) Rise time.
2) Overshoot.
3) Settling time.
4) Steady state error.

Select several of the controller designs that give good control. Increase the sample time and
observe the effects in the control. Using a "good" set for the controller gains as obtained from the
previous steps, start adding time delays to the system and observe it's effect on the control quality.
If during any run the controller output seems to saturate at either of the extreme points (£10 volts),
rerun the case using a smaller step input. Note that the derivative term of the control signal is
calculated by dividing by T, the sampling period. For small T (~1 ms) 1/T is 1000 and multiplying the
quantized slightly noisy voltages by such a large value results in a control signal that may rapidly
jump above and below an average value by a volt or more. This will be visible on the scope. It may be
reduced by increasing T, thus reducing the large multiplying factor.

C. FST Control Mode

This mode implements the FST controller given in equation (25), using the definitions of
equation (20). The computer outputs -on AO 0 (u(t))- a step of magnitude R defined by the user. The
computer inputs -on AI 0 (y(t))- the response of the system. The “FST Controller” tab contains
fields for R (reference input) and T (sampling time in ms), control of error terms Ke0, Kel, Ke2, the
coefficients for the control history terms Kul, Ku2, and the delay factor M. The routine assumes
that a sampled data version of the process is used, and the sampling time is sufficiently large (> 500
ms) to ensure non-saturated control. The FST controller with delay tab has provision for long delays
as an integral number of sample periods and can be disabled by entering zero in the relevant field.
The FST controller (without delay) is wired to the analog computer the same way as the PID
controller with the control output from AO 0 goes to the analog plant input and the plant output
going to AI 0. AO 0 and AI 0 signals are to be displayed on the scope and recorded. Due to the way
the delay is simulated in LabVIEW the wiring must be modified to observe the responses for the FST
controllers with plant delays. For these runs, AO 0 and AI 0 are still connected to the plant input
and output respectively, but the control signal to be observed and recorded on the scope comes from
AO 1, which is compared to the same plant output on AI 0.

The response of the process to FST control for several sample periods should be recorded and
analyzed. The effects of time delay should be investigated. The above responses should be compared
to the responses of similar systems with PID control. How does the steady state error in the FST
case compare to those of the PID variations?

D. State Feedback Control Mode

This mode implements the State feedback controller given in equations (31) and (42). The “Pole
Placement Controller” tab contains fields for R (reference input) and T (sampling time in ms), the
state feedback k1, k2, (both continuous and discrete cases) and the feedforward gain g. The computer
outputs -on AO 0 (u(t))- a step of magnitude R defined by the user. LabVIEW reads from AI 0
(x1(t)), and AI 1 (x2(t)) the different states of the system. In this part of the experiment, the
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student will calculate gains of the state feedback controller for the second order plant given, by using
the pole placement method. The closed loop process response requirements are an underdamped
unit step response, with damping ratio T = 0.707, and settling time 7T; < 4 seconds. The closed loop

poles are to be calculated using the above specifications.

For small sampling time the continuous domain equations should be used. The desired
polynomial is to be constructed according to (29). Before proceeding the A,, B, and C, must be

correctly identified. The student is urged to spend ample time matching the block diagram of FIG.
10 with the simulation diagram of FIG. 12 and the process transfer function given. When done, the
closed loop characteristic equation is to be evaluated from (33) and the gains K, found as explained

on the relevant section. Equation (35) is to be used for the feedforward gain g. For the actual runs
start with very small sampling time (< 10 ms) and progressively increase it, recording the effects in
the system response.

For large values of sampling time the discrete analysis should be used. First evaluate the
desired characteristic polynomial from equations (36) and (37). The state transition matrix must
then be evaluated either analytically or through your favorite math package (e.g. MATLAB). Apply
equations (39) to calculate Ay, By and Cg. Again the closed loop characteristic equation is to be

found from (41), and by coefficient matching, the gains K. The discrete transfer function (43) must

next be found and evaluated at z = 1, thus specifying the feedforward gain g. Since most of the above
variables depend on 7T (used in seconds here rather than milliseconds) and several runs with
different sampling periods are expected, it is suggested that their values be computed using a
spreadsheet program or any other similar package.

Be warned that since the control algorithm is exactly the same in both the continuous and the
discrete cases, it is the students' responsibility to calculate the gains using the formulas suitable for
each case. In general the scaling factor W will be set at 1. Also try running both cases with g = 1
(unity feedforward gain), and compare the experimental steady state error with the theoretical one.

E. Further Studies

As an extension to the previously described experiments, (time permitting) you may try the
following:

1) Study the effects of a disturbance input to the system. A disturbance input can be simulated
by adding a small voltage to some point in the analog computer simulation diagram.
2) Change the transfer function of the process. Investigate poles close to the imaginary axis.
Use your initiative to try as many combinations and pole placements as time may permit.
3) Most controllers are not designed with time delays in mind. Could you suggest any
modifications that would add this capability into their formulas.

WRITE UP ANALYSIS - CONCLUSIONS

The write-up should include the following:

1) Analytical calculations for the various PID controllers. Printouts of all software-calculated
variables.

2) For the FST controller, the difference equations for the process should be derived and one set of
controller gains calculated.

3) For the Pole Placement controllers, detailed calculations of the transfer functions, characteristic
equations and gains. For the discrete part tables with the values of all variables as functions of
the sampling 7.

3) A list of all the runs, including comments on the individual runs. All saved DSO screen shots
must contain scaling info and be labeled with the controller name and coefficient set. A subject
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numbering scheme (e.g. P 1, G-O PID 1, etc) can prove to be very helpful.

4) An analysis of the assigned areas of study, and any other observations that may seem interesting.
DSO screen shots should be used to illustrate your results at every stage.

5) A net conclusion giving in a table the pros and cons of each design. This should serve as a
selection guide to a "design engineer" as to what controller he should use under his specs for
sampling, delays, overshooting, etc.
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APPENDIX - ANALOG COMPUTER WIRING DIAGRAMS

— OPERATOR'S MANUAL HYBR ID
PARTS A, 8,C 3. GP-6 PATCH PANEL
LY
.l'“\/T - ’ T A " REFERENCE
s ic sl [ EEREEE e
©) rovelri o O © © 0 0
sJ o sJ 9. COEFFICIENT POTENTIOMETERS

7<

@7 :

3 3 ©F &3r*3

SwW

POT 3

Ao 0 PC—AT RUNNING A1 0

FST-PID CONTROLLER

F

26



HY&R\D

- OPERATOR’S MANUAL

PART D 3. GP-6 PATCH PANEL
AN
Sf—-\%j sJ IC + — + “FE.R_ENCE + — sJ’ ic sJ' IC
hQ " © © © © © OO
COEFFICIENT POTENTIOMETERS
5 6 (3> s

w
i 1
O

s 2
2 1 .05 ol 3():05’
(f)— 7 O ®

—y

—©O

33

03 95 ©F 03
0T b—o
73

(S

At
oT ®

+ PC-AT COMPUTER
+ -l
\ (_g>:

_______________________________________________________________________

See OPTIMAL CONTROL experiment analog closed loop wiring diagram for pure analog controller.



