ENGR-2300

Electronic Instrumentation

Quiz 2
Fall 2017
Name 50/a
Section
Question I (20 points)
Question II (20 points)
Question III (20 points)
Question IV (20 points)
LMS Question is worth an additional 20pts
Total (80 points)

On all questions: SHOW ALL WORK. BEGIN WITH FORMULAS, THEN SUBSTITUTE VALUES <u>AND UNITS</u>. No credit will be given for numbers that appear without justification. Read the entire quiz before answering any questions. Also it may be easier to answer parts of questions out of order.

1. Thevenin Equivalent And Circuit Concepts

The Thevenin Equivalent Circuit consists of a voltage source in series with a resistor, which provides a very simple replacement for much more complex circuits. If we have this simple source, analyzing changing loads becomes quite easy.

In this problem, you are to find the Thevenin voltage and resistance for various parts of the circuit below. For clarity, the circuit will be redrawn at each step.

a) Circuit 1: Find and sketch the Thevenin Equivalent Voltage source for the part of the circuit inside the dashed line (i.e. resistors R1 and R2 and the voltage source V1). {4pts}

2

b) Circuit 2: Find and sketch the Thevenin Voltage source for the part of the circuit inside the enlarged dashed line (i.e. resistors R1, R2, R3, R4 and the voltage source V1). {4pts}

c) Circuit 3: Find and sketch the Thevenin Voltage source for the entire circuit (i.e. resistors R1, R2, R3, R4, R5 and the voltage source V1). {4pts}

d) Using the Thevenin equivalent circuit obtained in part c, find the current through load resistor when Rload = 4kO and 8kO (4nts)

IBH = 42 H+34 20H 2200 MA

$$(I_{Rload})_{4k} = \underbrace{0.125 \text{ A}}_{0.2k}$$

$$(I_{Rload})_{8k} = \underbrace{0.22 \text{ A}}_{0.2k}$$

$$2 \text{ W. A}$$

e) Circuit concepts: Strain Gauge. The circuit shown the strain gauge used in Exp. 5. Assume that if the beam is unstressed, R3 and R4 are both 300Ω . Determine Vout if the beam is moved so that R3=330 Ω and R4=270 Ω . Be sure to note the polarity. {4pts}

2. Harmonic Oscillators and Math

50/a

The velocity measured for an oscillating cantilever beam is shown in graphical form as:

The horizontal scale is time (0.05 sec per division) and the vertical scale is velocity (0.25m/s per division).

a. Find the decay constant α and the angular frequency ω for this function. Mark the points

a. Find the decay constant α and the angular frequency ω for this function. Mark the points used on the plot. $\{5pts\}$ $\begin{cases}
4 & \text{cycles} & \text{in} & \text{o. 25.5e} \\
4 & \text{o. 25.5e}
\end{cases}$ $\begin{cases}
6 & \text{d. 25.5e} \\
4 & \text{o. 25.5e}
\end{cases}$ $\begin{cases}
6 & \text{d. 25.5e} \\
4 & \text{d. 25.5e}
\end{cases}$ $\begin{cases}
6 & \text{d. 25.5e} \\
4 & \text{d. 25.5e}
\end{cases}$ $\begin{cases}
6 & \text{d. 25.5e} \\
4 & \text{d. 25.5e}
\end{cases}$ $\begin{cases}
6 & \text{d. 25.5e} \\
4 & \text{d. 25.5e}
\end{cases}$ $\begin{cases}
6 & \text{d. 25.5e} \\
4 & \text{d. 25.5e}
\end{cases}$ $\begin{cases}
6 & \text{d. 25.5e} \\
4 & \text{d. 25.5e}
\end{cases}$ $\begin{cases}
6 & \text{d. 25.5e} \\
4 & \text{d. 25.5e}
\end{cases}$ $\begin{cases}
6 & \text{d. 25.5e} \\
4 & \text{d. 25.5e}
\end{cases}$ $\begin{cases}
6 & \text{d. 25.5e} \\
4 & \text{d. 25.5e}
\end{cases}$ $\begin{cases}
6 & \text{d. 25.5e} \\
4 & \text{d. 25.5e}
\end{cases}$ $\begin{cases}
6 & \text{d. 25.5e} \\
4 & \text{d. 25.5e}
\end{cases}$ $\begin{cases}
6 & \text{d. 25.5e} \\
4 & \text{d. 25.5e}
\end{cases}$ $\begin{cases}
6 & \text{d. 25.5e} \\
4 & \text{d. 25.5e}
\end{cases}$ $\begin{cases}
6 & \text{d. 25.5e} \\
4 & \text{d. 25.5e}
\end{cases}$ $\begin{cases}
6 & \text{d. 25.5e} \\
4 & \text{d. 25.5e}
\end{cases}$ $\begin{cases}
6 & \text{d. 25.5e} \\
4 & \text{d. 25.5e}
\end{cases}$ $\begin{cases}
6 & \text{d. 25.5e} \\
4 & \text{d. 25.5e}
\end{cases}$ $\begin{cases}
6 & \text{d. 25.5e} \\
4 & \text{d. 25.5e}
\end{cases}$ $\begin{cases}
6 & \text{d. 25.5e} \\
4 & \text{d. 25.5e}
\end{cases}$ $\begin{cases}
6 & \text{d. 25.5e} \\
4 & \text{d. 25.5e}
\end{cases}$ $\begin{cases}
6 & \text{d. 25.5e} \\
4 & \text{d. 25.5e}
\end{cases}$ $\begin{cases}
6 & \text{d. 25.5e} \\
4 & \text{d. 25.5e}
\end{cases}$ $\begin{cases}
6 & \text{d. 25.5e} \\
4 & \text{d. 25.5e}
\end{cases}$ $\begin{cases}
7 & \text{d. 25.5e} \\
4 & \text{d. 25.5e}
\end{cases}$ $\begin{cases}
7 & \text{d. 25.5e} \\
4 & \text{d. 25.5e}
\end{cases}$ $\begin{cases}
7 & \text{d. 25.5e} \\
4 & \text{d. 25.5e}
\end{cases}$ $\begin{cases}
7 & \text{d. 25.5e} \\
4 & \text{d. 25.5e}
\end{cases}$ $\begin{cases}
7 & \text{d. 25.5e} \\
4 & \text{d. 25.5e}
\end{cases}$ $\begin{cases}
7 & \text{d. 25.5e} \\
4 & \text{d. 25.5e}
\end{cases}$ $\begin{cases}
7 & \text{d. 25.5e} \\
4 & \text{d. 25.5e}
\end{cases}$ $\begin{cases}
7 & \text{d. 25.5e} \\
4 & \text{d. 25.5e}
\end{cases}$ $\begin{cases}
7 & \text{d. 25.5e} \\
4 & \text{d. 25.5e}
\end{cases}$ $\begin{cases}
7 & \text{d. 25.5e} \\
4 & \text{d. 25.5e}
\end{cases}$ $\begin{cases}
7 & \text{d. 25.5e} \\
4 & \text{d. 25.5e}
\end{cases}$ $\begin{cases}
7 & \text{d. 25.5e} \\
4 & \text{d. 25.5e}
\end{cases}$ $\begin{cases}
7 & \text{d. 25.5e} \\
4 & \text{d. 25.5e}
\end{cases}$ $\begin{cases}
7 & \text{d. 25.5e} \\
4 & \text{d. 25.5e}
\end{cases}$ $\begin{cases}
7 & \text{d. 25.5e} \\
4 & \text{d. 25.5e}
\end{cases}$ $\begin{cases}
7 & \text{d. 25.5e} \\
4 & \text{d. 25.5e}
\end{cases}$ $\begin{cases}
7 & \text{d. 25.5e} \\
4 & \text{d. 25.5e}
\end{cases}$ $\begin{cases}
7 & \text{d. 25.5e} \\
4 & \text{d. 25.5e}
\end{cases}$ $\begin{cases}
7 & \text{d. 25.5e} \\
4 & \text{d. 25.5e}
\end{cases}$ $\begin{cases}
7 & \text{d. 25.5e} \\
4 & \text{d. 25.5e}
\end{cases}$ $\begin{cases}
7 & \text{d$

b. Write the mathematical expression for the velocity in the form $v(t) = Ae^{-\alpha t} \cos \omega t$ in m/s.

Use real values for the constants and provide units where appropriate. {4pts}

V(4) = 2e -2.71 tos 101+ m/sec

c. Find the approximate acceleration a(t) of the beam from your answer to part b. Again, use real values for the constants and provide units where appropriate. Hint: Keep only the largest term in your expressions. (fg)' = fg' + f'g {4pts}

largest term in your expressions. $(fg)' = fg' + f'g \{4pts\}$ $a(t) = \frac{1}{4} (x(t)) = \frac{1}$

d. A guess is made for the amplitude of the beam position x(t). The consensus of the team partners is that the displacement is about 2cm or 0.02m. Write the mathematical expression for the position in the form $x(t) = Be^{-\alpha t} \sin \omega t$ in meters, find the approximate velocity v(t) and compare the result with your answer to part b. Was the guess high, low or about right? {4pts}

 $x(t) = 0.02e^{-2.71t} \sin(100t) \text{ meters}$ $\frac{dx(t)}{dt} = 0.01t + tropt \text{ second term } again$ $\frac{dx(t)}{dt} = 0.01(x + tropt) + second + term + again}{(x + 2.02)(x + 2.77t)(-101)(x + 2.01t)}$ $\frac{dx(t)}{dt} = 0.02(x + 2.02t) + second + term + again}{(x + 2.02)(x + 2.77t)(-101)(x + 2.01t)}$ $\frac{dx(t)}{dt} = 0.02(x + 2.02t) + second + term + again}{(x + 2.02)(x + 2.02t)(x + 2.02t)}$ $\frac{dx(t)}{dt} = 0.02(x + 2.02t) + second + term + again}{(x + 2.02)(x + 2.02t)(x + 2.02t)}$ $\frac{dx(t)}{dt} = 0.02(x + 2.02t) + second + term + again}{(x + 2.02)(x + 2.02t)(x + 2.02t)}$ $\frac{dx(t)}{dt} = 0.02(x + 2.02t) + second + term + again}{(x + 2.02)(x + 2.02t)(x + 2.02t)(x + 2.02t)}$ $\frac{dx(t)}{dt} = 0.02(x + 2.02t)(x + 2.02t)$

e. Assume that you would like to build an LC oscillator circuit that operates at the same frequency as the beam above. You have an 6800 μF capacitor and need to make an inductor. What value of inductance is necessary to achieve this frequency? {3pts}

 $W = \sqrt{2c'} \qquad 101 = \sqrt{2c} \qquad L = (101)^{2}c$ $Lc = 1.02 \times 10^{4} = 1.4 \times 10^{4}$

3. Operational Amplifier Applications

a. {2pts}For diagram shown determine Vout(t) if:

Vin(t)=0.4sin5000t Volts

$$R_{in}=1k\Omega$$

$$R_f=5k\Omega$$

V. + - - Rf =

b. For the circuit shown:

 $Rin=1k\Omega$

 $Rf=20k\Omega$

Cf=0.2uF

i. {4pts}AC Steady State: if Vin is a sinusoidal waveform with a frequency of 5kHz, determine ω and determine the transfer function $H(i\omega)$ plugging the component values.

ii. {2pts}At what value of the input frequency will the answer given in part i. not be valid? Give the frequency in Hz not in radians per second.

A W = Not valid if w in not >> test

iii. {2pts}What will be the transfer function, Vout/Vin, if Vin is a dc signal?

Cap = open circuit

c. Vin of the circuit shown is a triangle waveform with a peak-to-peak amplitude of 200mV and a frequency of 5kHz. Draw Vin in the graph below and annotate the graph. {2pts} period = 200m 5

d. In the graph below draw Vout for the circuit in part c. The input is the one given in part c. Rf=1k Ω and Cin=0.2uF. Pick and label appropriate values for the y scale. Assume the opamp is ideal. Annotate the plot as would be done for a report. {4pts}

$$= -(100)(2+10^{-7})\frac{200-V}{100ms} = -0.4V$$

e. For the circuit shown, determine Vout in terms of Vin1, Vin2, Ra, Rb, R1, R2, and Rf. (Hint: It may help to first determine the output signal from U3){4pts}

9

4) Concepts, Troubleshooting and Data Analysis

- a. Real components compared to ideal: In Experiment 5 you built this circuit:
 - i. But you didn't need to add the 40Ω resistor. Why not? $\{1pt\}$

It represents the internal resistance of the inductor.

ii. Energy is lost as a function of time in the harmonic oscillator circuit as Vout was oscillating. Which component in the circuit shown in part i. of this problem causes the energy loss? {1pt}

causes the energy loss? {1pt} Only Reauses energy to the first that the causes energy to the first that the cause energy to the first that the causes energy the causes energy the first that the causes energy th

iii. Continuing with the energy loss question, will the energy loss be most rapid when the voltage on the capacitor is at the maximum, or at 0V or energy loss doesn't vary with time? Circle one. {2pts}

peak energy loss at: Vcap is at a peak Vcap=0 doesn't vary while Vc = 0

iv. The capacitor used in for this circuit is a 0.1uF capacitor. If by mistake your partner used a 0.2uF capacitor, would the resonant frequency go up or down, and by what percentage would the frequency change, to the nearest 1%? {3pts}

w= Te if C doubles

o Ve increases by V2

o w drops by factor of to

Ve

b. Classroom Knowledge and Tasks {4pts} True or False

The only way to know that you have the correct resistor is to take a new one each i. time from the bin labeled with that value.

The Analog Discovery board should be calibrated at the beginning of the

ii. semester.

iii. Before beginning a lab, at least one team member must read over and be generally acquainted with the experiment or project write-up and the other required reading materials listed on the EILinks page.

Before beginning a lab, hand-drawn circuit diagrams must be prepared for all iv. circuits either to be analyzed using PSpice or physically built and characterized using your Analog Discovery board.

c. Which of the following op-amp configurations is used to convert the accelerometer output to get a velocity measurement. Circle one. {2 pts}

Voltage Follower

Inverting

Non-Inverting

Differential

Adder

Integrator

Differentiator

d. The strain gauge on the beam provides 2 voltage signals. The difference between the signals is a measure of the beam deflection. Which of the following op-amp configurations works best to amplify that deflection measurement? Circle one. {2 pts}

Voltage Follower

Inverting

Non-Inverting

Differential

Adder

Integrator

Differentiator

e. The following is from the 741 data sheet:

Parameter	Conditions	LM741A			LM741			LM741C			Units
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Large Signal Voltage Gain	$T_A = 25^{\circ}C, R_L \ge 2 k\Omega$					-					
	$V_{s} = \pm 20V, V_{o} = \pm 15V$	50						2			V/mV
	$V_S = \pm 15V, V_O = \pm 10V$				50	200		20	200		V/mV
	$T_{AMIN} \le T_A \le T_{AMAX}$					1	-				
	$R_L \ge 2 k\Omega$,					1					
	$V_S = \pm 20V, V_O = \pm 15V$. 32				Redukas					V/mV
	$V_S = \pm 15V, V_O = \pm 10V$				25	1		15			V/mV
	$V_S = \pm 5V, V_O = \pm 2V$	10									V/mV
Output Voltage Swing	$V_s = \pm 20V$										
	$R_L \ge 10 \text{ k}\Omega$	±16									V
	$R_L \ge 2 k\Omega$	±15	Later Control	No. of Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of	** Control of the second	Charles and					V
	Vs = ±15V	A STATE OF THE PARTY.	2007-300			Va	- Comment				
C	$R_1 \ge 10 \text{ k}\Omega$				±12(±14	THE REAL PROPERTY.	±12	±14		V
	R _L ≥2kΩ				±10	±13		±10	±13		V
Output Short Circuit	T _A = 25°C	10	25	35	6	25			25		mA
Current	TAMIN & TA & TAMAX	10		40	-	STATE OF THE PARTY	/				mA

Using this data sheet answer the following:

i. If LM741 op-amp is powered with a +15V supply and a -15V supply, (V_S in data sheet), what is the maximum output voltage you would typically expect the opamp to be able to achieve if the load resistance is $10k\Omega$? {2pts}

+140 =

ii. If the LM741 op-amp uses +15V and -15V supplies and has typical performance at 25°C. For what value of the load resistance, Rload, would you expect that the output voltage to be limited to no more than 5V due to the current limit of the opamp? Give the value of Rload, {2pts}

f. Name the professor and a TA who is typically in your section of EI. First names count. {1pts}