ECSE 1010 Introduction to ECSE

Course Syllabus

Spring 2024

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Information</td>
<td>2</td>
</tr>
<tr>
<td>Teaching Staff</td>
<td>2</td>
</tr>
<tr>
<td>Online Tools</td>
<td>3</td>
</tr>
<tr>
<td>Course Description</td>
<td>4</td>
</tr>
<tr>
<td>Course Text</td>
<td>4</td>
</tr>
<tr>
<td>Supplemental Reference</td>
<td>4</td>
</tr>
<tr>
<td>Required Software</td>
<td>4</td>
</tr>
<tr>
<td>Student Learning Outcomes</td>
<td>4</td>
</tr>
<tr>
<td>Course Assessment Measures</td>
<td>5</td>
</tr>
<tr>
<td>Grading Criteria</td>
<td>5</td>
</tr>
<tr>
<td>Assessment Policies</td>
<td>6</td>
</tr>
<tr>
<td>Quizzes:</td>
<td>6</td>
</tr>
<tr>
<td>Proof of Skills:</td>
<td>6</td>
</tr>
<tr>
<td>Laboratories:</td>
<td>7</td>
</tr>
<tr>
<td>Alpha Experiment and Omega Explorations</td>
<td>8</td>
</tr>
<tr>
<td>Problem Sets (PS):</td>
<td>9</td>
</tr>
<tr>
<td>General Course Policy</td>
<td>10</td>
</tr>
<tr>
<td>Center for Global Communication + Design (Comm+D)</td>
<td>11</td>
</tr>
<tr>
<td>Covid-19 Related Information</td>
<td>11</td>
</tr>
</tbody>
</table>

ECSE Department
Rensselaer Polytechnic Institute, Troy NY
ECSE 1010 Introduction to ECSE
Spring 2024

Course Syllabus

Course Information

Course Credits: 4 credit hours
Class Time: Mondays & Thursdays: 12:00PM to 1:50PM
Class Location: Sage 3510
Course Website: https://ecse.rpi.edu/courses/S24/ECSE-1010/

Teaching Staff

Prof. Santiago Paternain
Contact information: paters@rpi.edu
Office Hours: Wednesday 2pm – 4pm in JEC 6034

<table>
<thead>
<tr>
<th>Section</th>
<th>Name</th>
<th>Email</th>
<th>Role</th>
<th>Hours</th>
<th>Open Shop Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All open shop hours held in JEC 4201 unless otherwise noted
Online Tools

The following online tools will be used to support this course. **If you do not have access to any of these tools, please inform the instructor as soon as possible.**

WebEx Teams: [WebEx Teams](#) for this class will be created for group work outside of class, office hours, and open shop hours. Make sure to download the app on your desktop or Smartphone. Please note: the browser doesn’t have as much functionality as the desktop version. Please check to see if you’ve been added to an [Intro to ECSE WebEx Teams](#) Space.

Gradescope: All Labs, activities, problem sets and quiz submissions and grading will be done through this platform. If you aren’t familiar with this tool, we’ll go over submission in class.

Link to Section 01: https://www.gradescope.com/courses/695921

YouTube: Playlist to host pre-recorded video content that students are required to watch before the class when Labs begin. Video links are on the course website (under Resources by Class Day).
Course Description
The overall goal of this course is to help EE and CSE students build a broad analysis skill set so that through experimentation, simulation and the application of science, mathematics and engineering fundamentals, they can develop useful systems models that enable engineered solutions addressing a broad array of societal needs. Additionally, broader topics such as planning a course of undergraduate study, engineering ethics, learning from failure, the importance of quality documentation, and the variety of career options in ECSE disciplines are covered.

Course Text
None

Supplemental Reference
See https://sites.ecse.rpi.edu/courses/S24/ECSE-1010/

Required Software
(Installation instructions in the Skills Development Document from the Proof of Skills)

1. LTspice (circuit simulation)
2. Scopy (if using ADALM2000, also known as M2K) or Waveforms (if using Analog Discovery 2)
3. Matlab (numerical analysis and Simulink)

Student Learning Outcomes

1. **Experimental Methodology**: Students will be able to build and make reliable time-dependent measurements of simple analog and digital circuits, export data to display and analysis tools (e.g. Excel, MATLAB), demonstrate understanding of results by describing key data features and comparing with simulation and analysis, and extract useful information from component datasheets.

2. **Simulation Methodology**: Students will be able to create circuit simulations using a commercial SPICE program and produce reliable voltage and current plots (functions of both time and frequency), export simulated data to display and analysis tools and demonstrate understanding of results by describing key data features and comparing with experiment and analysis.

3. **Mathematics and Analytic Methodology**: Students will be able to apply precollege circuit knowledge to real circuits, analyze simple circuits based on voltage dividers and inverting/non-inverting op-amps, apply phasor analysis to simple combinations of R, L and C components, apply all analysis skills to demonstrate understanding of experimental and simulated data for simple circuits, and apply the basic matrix arithmetic used in circuit analysis, circuit simulation and in the display and analysis of data using tools like Excel and MATLAB.

4. **Design Methodology**: Students will be able to modify existing circuit designs for specific applications and fully characterize the operation of the circuit using experimental, simulation and analytic methods.
Course Assessment Measures

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Due Date</th>
<th>Learning Outcome #s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quiz 1</td>
<td>February 20(^{th}), 12pm – 1:50pm, Sage 3510</td>
<td>1, 2, 3, 4</td>
</tr>
<tr>
<td>Quiz 2</td>
<td>See course calendar for deadlines</td>
<td>1, 2, 3, 4</td>
</tr>
<tr>
<td>Quiz 3</td>
<td>See course calendar for deadlines</td>
<td>1, 2, 3, 4</td>
</tr>
<tr>
<td>Final Quiz</td>
<td>See course calendar for deadlines</td>
<td>1, 2, 3, 4</td>
</tr>
<tr>
<td>Proof of Skills</td>
<td>See course calendar for deadlines</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>Laboratories</td>
<td>After Proof of Skills: daily except quiz days</td>
<td>1, 2, 3, 4</td>
</tr>
<tr>
<td>Problem Sets</td>
<td>When indicated (on course calendar)</td>
<td>1, 2, 3</td>
</tr>
</tbody>
</table>

Grading Criteria

<table>
<thead>
<tr>
<th>Category</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quizzes</td>
<td>30%</td>
</tr>
<tr>
<td>Final Quiz</td>
<td>15%</td>
</tr>
<tr>
<td>Laboratories</td>
<td>30%</td>
</tr>
<tr>
<td>Proof of Skills</td>
<td>15%</td>
</tr>
<tr>
<td>Problem Sets</td>
<td>5%</td>
</tr>
<tr>
<td>Attendance and Participation</td>
<td>5%</td>
</tr>
</tbody>
</table>

Assessment Policies

ECSE Department
Rensselaer Polytechnic Institute, Troy NY
Quizzes:
- All students are expected to take Quiz 1, Quiz 2, and Quiz 3 during the semester.
- The Final Quiz will be an option if students meet all criteria for Omega Exploration Objectives (see [Alpha Experiments – Omega Lab Explorations](#) Link).
- The quizzes will be on quiz days mentioned in “Course Assessment Measures” section above.
- Each quiz duration will be 1 hour 50 minutes.
- Logistical details about quizzes will be provided before quiz days.
- Quizzes are individual assessments, and each student is expected to work through them independently.
- All quizzes are open book, open notes, however all notes must be printed out or handwritten. Only non-communicating calculators are allowed.
- Students are expected to take quizzes on the scheduled dates located in the table above and on the course website, unless arrangements are made with the instructor ahead of time. *Although RPI no longer requires a written excuse from Student Health Services for absences of 5 days or shorter, you are still required to communicate with the instructor prior to missing a scheduled assignment or exam.*
- If you require adjustments for learning disabilities, letters from the Dean are to be submitted at the beginning of the semester.

Proof of Skills:
The goal of Proof of Skills is two-fold:
1. To ensure that all students have the necessary skills for completing the laboratory assignments. Labs are a central learning activity of the course that teaches students fundamental skills through applying knowledge from the lecture material to hands-on problems.
2. To teach students the skill of self-directed learning. Self-directed learning is a vital skill for all engineers, as much knowledge and many skills that are acquired during one’s career must be self-learned. Students will acquire the needed skills through using the provided resources (Self-Directed Skills Guide and Proof of Skills Rubric) and seeking assistance from course staff.

- All students must **actively** participate in the Proof of Skills Days at the beginning of the semester in-class and prepare outside of class. It is their only homework during this time!
- Each day they should sign up for a category and follow the [Proof of Skills Document](#)
- Students should prepare for their in-class work **before** coming to class to help the learning community This is a part of the participation grade and IS a skill!
- Students may iterate to get the maximum points throughout the semester. Students can use proof of concepts in their Labs to fulfil Proof of Skill content after the Proof of Skills days are done. At certain points during the semester as indicated by the course calendar, opportunities will be provided for students to submit updated Proof of Skills documentation to potentially gain more points.
- **These skills WILL be used in the Labs throughout the course AND in future courses. Strive for 100% competency!**
- **Students are encouraged to work on Proof of Skills together, but they must submit their own, individual work. Submissions between two or more students that consist of identical images**
will be considered academic dishonesty. The involved students will face consequences as outlined in the section “Collaboration and Academic Dishonesty” below.

Laboratories:
Labs begin after the Proof of Skills and Alpha/Omega Planning Days and teach students fundamental skills through applying the lecture material to hands-on problems. Each lab consists of multiple sections that all students complete regardless of their plans for an Alpha Lab or Omega Exploration (the Core Sections), followed by a section in which students choose to complete an Alpha Lab or Omega Exploration.

The Core Sections of the lab guide students in applying course material to specific hands-on examples to teach individual concepts. Students must then prove that they have mastered that concept by completing a “Proof of Concept” for each concept in that section (see instructions below). Alpha Labs and Omega Explorations, which are contained in the final section of each lab, have students apply what they learned in the Core Sections of the lab to solve a design problem. While Alpha Labs offer a more guided experience, Omega Explorations are open-ended and students choose their own project to complete. As with the Core Sections of the lab, students must prove via their Alpha Lab or Omega Exploration that they have mastered the section’s concepts by completing Proofs of Concept.

- All students must follow each lab and at the end of each lab students have a choice between Alpha Design Experiments and Omega Design Explorations.
- Omega Design Explorers can choose to opt out of the final if:
 1. They complete each of the following assessments with a grade of 80% or above:
 - Proof of Concepts
 - 5-minute or less Demonstration Video (Presentation)
 - Exploration Map
 2. They complete 100% of your individual Proof of Skills
 3. They complete 2 out of 3 Omega Lab explorations (meaning you can switch to Alpha one time!)
- Three Laboratories are scheduled throughout the semester:
 1. Lab01: Basic Analysis and Engineering Practices
 2. Lab02 Part A: Linear Systems and Beyond...
 3. Lab03: The Signals and the Noise

with checkpoints to keep current with in the course schedule on the website.

- Student groups can decide to switch back and forth between Alpha and Omega between each Lab
Alpha Experiment and Omega Explorations

<table>
<thead>
<tr>
<th>Highlighted Differences</th>
<th>Alpha Experiments</th>
<th>Omega Explorations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning Approach</td>
<td>Bottom-up, step-by-step, guided design</td>
<td>Open-ended explorations of design ideas</td>
</tr>
<tr>
<td>Relationship to Concepts in Class</td>
<td>Automatically written to be directly related</td>
<td>Student must create and show how the design is directly related</td>
</tr>
</tbody>
</table>
| **Documents/Assessment Required** | Proof of Concepts | 1. Proof of Concepts
2. 5-minute or less Demonstration Video (Presentation)
3. Exploration Map |
| **Planning Need** | Just keep up with class schedule | Be sure to look ahead and plan for the work over the semester |
| **Benefits** | Learn how to design after step-by-step experiments, some iteration required | • Learn to design with high risk, failure, more iteration
• Get out of final IF all requirements met. |
| **Portfolio Content?** | Yes! Your design belongs in your portfolio. Don’t forget to add it! | Yes! Your design belongs in your portfolio. Don’t forget to add it! |

- Omega labs consist of 26 points each. The grade breakdown is as follows:
 1. Proof of Concepts: 10 points (each lab’s Proof of Concepts component is scaled to be out of 10 points)
 2. Presentation: 10 points
 3. Exploration Map: 6 points
- Experiment Proof of Concepts are due electronically on Gradescope.
- Please be sure to look at the Standards Based Assessments at the end of each lab. This is the Rubric you will be graded against.
- You are encouraged to work in groups of 2 or 3 students to complete these Labs. You may choose to work by yourself.
- Proof of Concepts, one per group, need to be submitted on Gradescope. Be sure to add your group members to your submissions on Gradescope.
- Discussion is encouraged; however, each student team should submit their own experimental findings and analysis.
- Help sessions will be arranged on most weekdays for you to get help on experiments. These help sessions will primarily be during evening times, i.e. after 6pm eastern.
Problem Sets (PS):
Problem sets are meant to give you additional practice with the course material outside the examples in lecture and lab assignments.

- Problem sets are assigned and due on Gradescope.
- Problem sets provided throughout the course are to be done before a particular class day (see course calendar).
- Problem sets are individual assessments; however, you are welcome to discuss ways to answer with other students in class. Exchanging the answers will be considered as academic misconduct.

Attendance and Participation:

- It is important to stay on schedule in this class. You and your partner work together on your lab. You can use your shared WebEx Teams Space under Intro to ECSE Fall 2023 to work outside of class asynchronously. Please write it as
 Last Name 1 | Last Name 2 | Last Name 3 | Alpha or Omega
 Corgan | Chamberlin | Iha | Omega
- The instructor may choose to take formal attendance. We will be monitoring if you are coming to class or not and are working with your partner to complete experiments.

Participation grade will depend on your attendance, interactions with the instructors and teaching staff, and completion of in-class activities, metacognition journal entries, project plans, and surveys.

It is based on the following criteria:

- Your instructor will assess your general performance in terms of how much you contributed to the work your group was doing during class time.
- Your TAs will assess your general performance in terms of how much you contributed to the work your group was doing during class time.
- Examples of contributions to the work your group and class do include: (1) Preparation for class; (2) Adding helpful content to the Skills Development document; (3) Well documented good failures and success highlighted in your portfolio; (4) Effectively getting help when needed; (5) Consistent and insightful writing in your metacognition journal; (6) Feedback on course materials that were particularly helpful; (7) Providing answers to questions on Discord; (8) Identifying errors or points of confusion in course materials, including homework; etc. From this list, you can see that participation is just being engaged in the course, helping your partner and other students learn and the TAs and instructor do their job better.

Extra-Time Accommodations:

If you require extra time on exams or another form of accommodation, please contact the Dean of Students Office and email me a copy of the DSS note. Please do this early in the term so that we have plenty of time to plan. Arrangements for quizzes are generally to be made a week ahead of the quiz.
General Course Policy

Collaboration and Academic Dishonesty: Intellectual integrity and credibility are the foundation of all academic work. A violation of Academic Integrity policy is, by definition, considered a flagrant offense to the educational process. It is taken seriously by students, faculty, and Rensselaer and will be addressed in an effective manner. If found responsible for committing academic dishonesty, a student may be subject to one or both types of penalties: an academic (grade) penalty administered by the professor and/or disciplinary action through the Rensselaer judicial process described in this handbook. Three relevant academic integrity violations to emphasize include:

Collaboration: Collaboration is defined as deliberately facilitating an act of academic dishonesty in any way or form; for example, allowing another student to observe an exam paper or allowing another student to "recycle" one's old term paper or using one another's work in a paper or lab report without citing it as another's work.

Copying: Copying is defined as obtaining information pertaining to a graded exercise by deliberately observing the paper of another student; for example, noting which alternative a neighboring student has circled on a multiple-choice exam.

Fabrication: Fabrication is defined as the unauthorized falsification or invention of any information in an academic exercise. Examples include the use of "bought" or "ready-made" term papers, or falsifying lab records or reports.

Plagiarism: Plagiarism is defined as representing the work or words of another as one's own through the omission of acknowledgment or reference. Examples include using sentences verbatim from a published source in a term paper without appropriate referencing, or presenting as one's own the detailed argument of a published source, or presenting as one's own electronically or digitally enhanced graphic representations from any form of media.

The Rensselaer Handbook of Student Rights and Responsibilities defines the full list of forms of Academic Dishonesty and you should make yourself familiar with these. In this class, all assignments that are turned in for a grade must represent the student's own work. In cases where help was received, or teamwork was allowed, a notation on the assignment should indicate your collaboration. If you have any questions concerning this policy before submitting an assignment, please ask for clarification.

Students in this course should be aware that the items emphasized above also apply to the experimental/simulation data, Matlab code generated by each student or student team towards the completion of the experiment report. Tools exist to detect similarities between files and the staff reserves the right to employ such tools to deter code based academic dishonesty.
Center for Global Communication + Design (Comm+D)

Center for Global Communication+Design (Comm+D). If you would like help with writing assignments, visual design projects, or oral presentations, please visit the Center online at https://info.rpi.edu/comm-d to find helpful resources or to schedule an appointment. Comm+D is a FREE resource for all members of the Rensselaer community.

Covid-19 Related Information

We are committed to the health and safety of students as well as a high-quality educational experience. Rensselaer continues to monitor new developments regarding covid-19 and determine a best course of action to support student well-being and outstanding education. Please follow the latest RPI guidelines for COVID protocols.