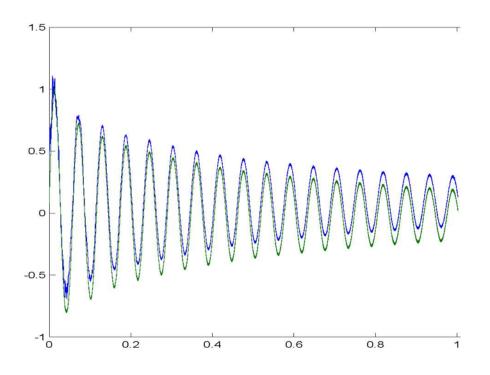


Electronic Instrumentation

Project 2 Velocity Measurement

Cantilever Beam Sensors

- Position Measurement obtained from the strain gauge
- Velocity Measurement previously obtained from the magnetic pickup coil (not available since Fall of 2006)
- Acceleration Measurement obtained from the Analog Devices accelerometer



ENGR-4300 Electronic Instrumentation

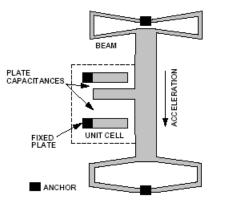
Sensor Signals

- The 2 signals
 - Position

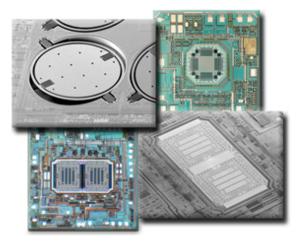
$$x = x_o e^{-t/\tau} \cos \omega t$$

• Acceleration

$$a = \frac{d^2 x}{dt^2}$$

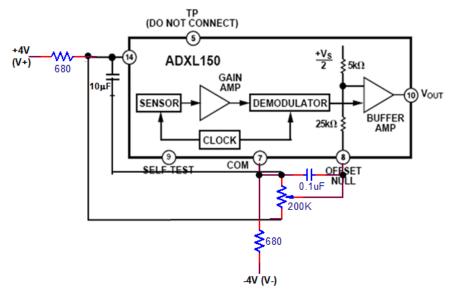

ENGR-4300 Electronic Instrumentation

Basic Steps for Project

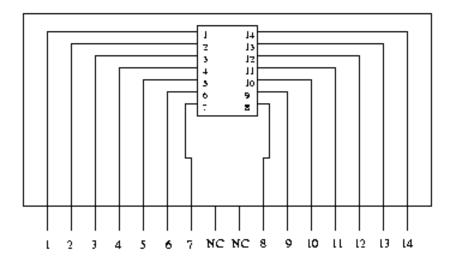

- Mount an accelerometer close to the end of the beam
 - Wire +2.5V, -2.5V, and signal between IOBoard and Circuit (Note that this cannot be done directly. Follow the circuit diagram in the Project write-up and in slide 7 of this presentation.)
 - Record acceleration signal
- Reconnect strain gauge circuit
 - Calibrate the stain gauge
 - Record position signal
- Compare accelerometer and strain gauge signals
- Build an integrator circuit to get velocity from the accelerometer sensor
- Build a differentiator circuit to get velocity from the strain gauge sensor
- Include all calibration and gain constants and compare measurements of velocity

Building the Accelerometer Circuit

The Analog Device Accelerometer



Simplified View of Sensor Under Acceleration


 The AD Accelerometer is an excellent example of a MEMS device in which a large number of very, very small cantilever beams are used to measure acceleration. A simplified view of a beam is shown here.

Accelerometer Circuit

- The Analog Device chip produces a very accurate signal proportional to acceleration
- Voltage between pins 7 and 14 must be about 5V
- Only 3 wires need to be connected, +4V, -4V and the signal v_{out}. Once you have the circuit connected correctly, measure the voltages on pins 7 and 14 to be sure they are -2.5V and +2.5V, respectively

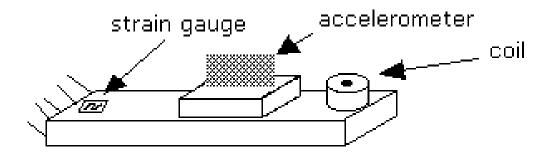
Accelerometer Circuit

NC: Not Connected

 The ADXL150 is surface mounted, so we must use a surfboard to connect it to a protoboard

Caution

- Please be very careful with the accelerometers. While they can stand quite large g forces, they are electrically fragile. If you apply the wrong voltages to them, they will be ruined. AD is generous with these devices (you can obtain samples too), but we receive a limited number each year.
- Note: this model is obsolete, so you can't get this one. Others are available.


Extra Protoboard

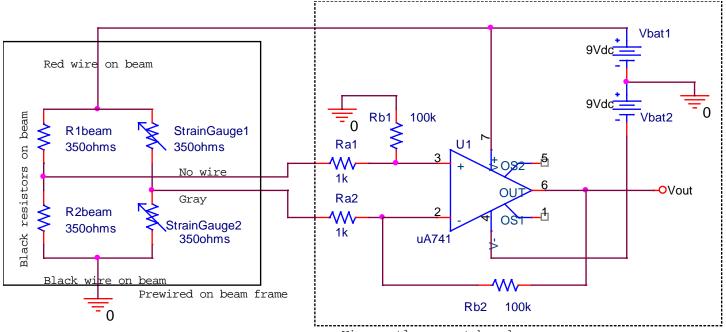
- You will be given a small protoboard on which you will insert your accelerometer circuit.
- Keep your circuit intact until you complete the project.
- We have enough accelerometer surfboards that you can keep it until the end of project 2.

Mounting the Accelerometer

10/1/2014

Mount the Accelerometer Near the End of the Beam

- Place the small protoboard as close to the end as practical
- The axis of the accelerometer needs to be vertical


Accelerometer Signal

- The output from the accelerometer circuit is 38mV per *g*, where *g* is the acceleration of gravity.
- The equation below includes the units in brackets

$$a(t)[m/s^{2}] = \frac{V_{a}(t)[mV]}{\frac{38[mV]}{9.8[m/s^{2}]}} \rightarrow a(t)[m/s^{2}] = -\frac{9.8[m/s^{2}] \cdot V_{a}(t)[V]}{0.038[V]}$$

10/1/2014

Amplified Strain Gauge Circuit

Wire neatly on protoboard

$$V_{out} = \left(\frac{R_b}{R_a}\right) (V_{left} - V_{right})$$

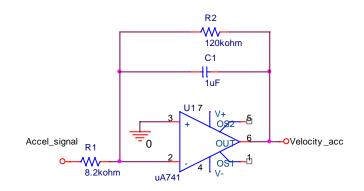
10/1/2014

ENGR-4300 Electronic Instrumentation

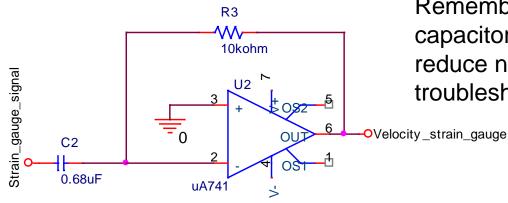
Position Measurement Using the Strain Gauge f_{x_b} $x_b(t) = C_{sg}V_{sg}(t) = \frac{V_{sg}(t)}{k_1}$

- Set up the amplified strain gauge circuit
- Place a ruler near the end of the beam
- Make several measurements of bridge output voltage and beam position
- Find a simple linear relationship between voltage and beam position (k1) in V/m.

Comparing the accelerometer measurements with the strain gauge measurements


 $x(t) = Ce^{-\alpha t} \sin \omega t$

$$v = \frac{\partial x}{\partial t} \cong C\omega e^{-\alpha t} \cos \omega t \quad \text{for } \alpha \text{ small compared to } \omega$$
$$a = \frac{\partial v}{\partial t} \cong -C\omega^2 e^{-\alpha t} \sin \omega t = -\omega^2 x(t)$$


- The position, *x*, is calculated from the strain gauge signal.
- The acceleration is calculated from the accelerometer signal.
- The two signals can be compared, approximately, by measuring ω .

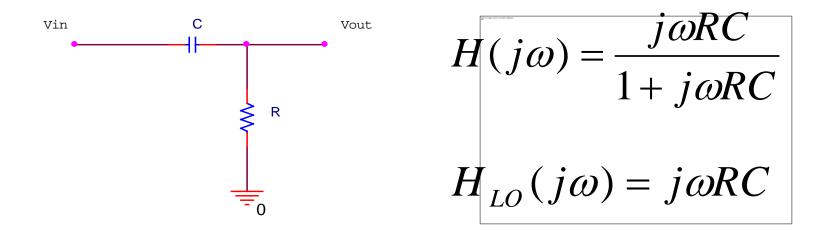
- The velocity is the desired quantity, in this case.
- One option integrate the acceleration signal
 - Build a Miller integrator circuit exp. 4
 - Need a corner frequency below the beam oscillation frequency
 - Avoid saturation of the op-amp gain isn't too big
 - Good strong signal gain isn't too small
- Another option differentiate the strain gauge signal.
 - Build an op-amp differentiator exp. 4
 - Corner frequency higher than the beam oscillation frequency
 - Avoid saturation but keep the signal strong.

- One option integrate the acceleration signal
 - Build a Miller integrator circuit exp. 4
 - Need a corner frequency below the beam oscillation frequency
 - Avoid saturation of the op-amp gain isn't too big
 - Good strong signal gain isn't too small

- Another option differentiate the strain gauge signal.
 - Build an op-amp differentiator exp. 4
 - Corner frequency higher than the beam oscillation frequency
 - Avoid saturation but keep the signal strong.

Remember that a feedback capacitor is probably necessary to reduce noise on the signal. See troubleshooting guide.

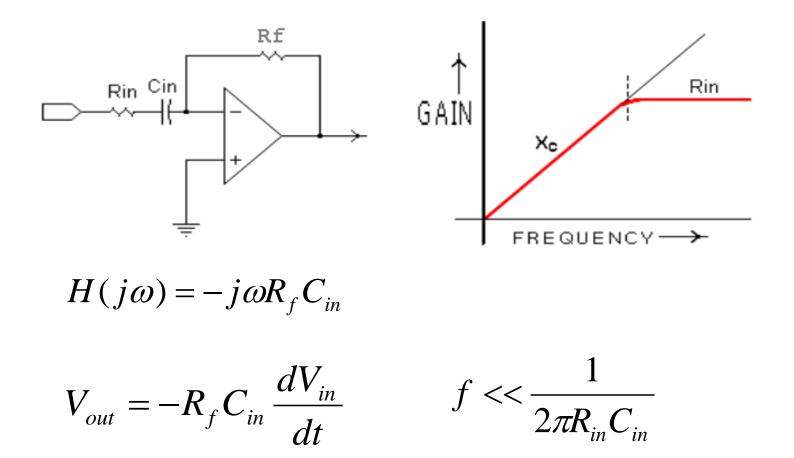
- Be careful to include all gain constants when calculating the velocity.
 - For the accelerometer
 - Constant of sensor (.038V/g) [g = 9.8m/s²]
 - Constant for the op-amp integrator (-1/RC)
 - For the strain gauge
 - The strain gauge sensitivity constant, k1
 - Constant for the op-amp differentiator (-RC)


MATLAB

- Save the data to a file
 - Open the file with MATLAB
 - faster
 - Handles 65,000 points better than Excel
 - Basic instructions are in the project write up

Some Questions

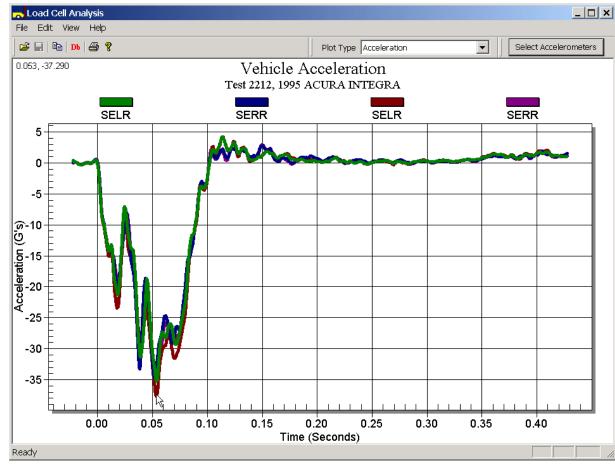
- How would you use some of the accelerometer signals in your car to enhance your driving experience?
- If there are so many accelerometers in present day cars, why is acceleration not displayed for the driver? (If you find a car with one, let us know.)
- If you had a portable accelerometer, what would you do with it?


Passive Differentiator

$$V_{out} = V_R = RC \frac{dV_C}{dt} \approx RC \frac{dV_{in}}{dt}$$
 at low frequencies

ENGR-4300 Electronic Instrumentation

Active Differentiator


ENGR-4300 Electronic Instrumentation

Typical Acceleration

Compare your results with typical acceleration values you can experience.

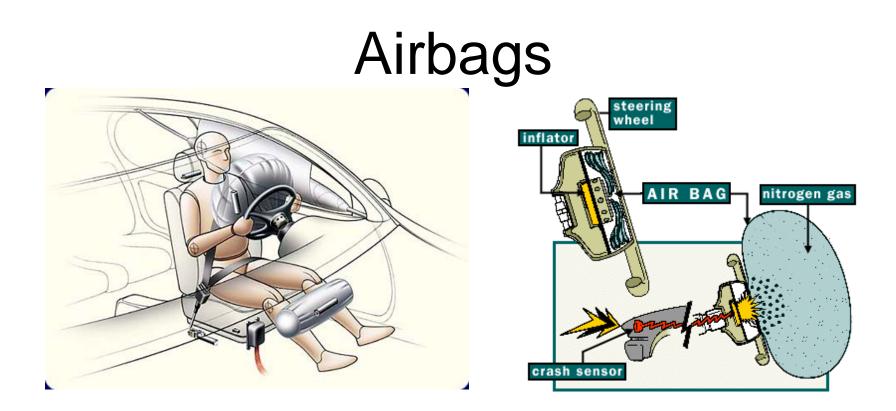
Elevator (fast service)	0.3 g
Automobile (take off)	0.1-0.5g
Automobile (brake or corner)	0.6-1 g
Automobile (racing)	1-2.5 g
aircraft take off	0.5 g
Earth (free-fall)	1 g
Space Shuttle (take off)	3 g
parachute landing	3.5 g
Plop down in chair	10 g
30 mph car crash w airbag	60 g
football tackle	40 g
seat ejection (jet)	100 g
jumping flea	200 g
high speed car crash	700 g


Crash Test Data

Ballpark Calc: 56.6mph = 25.3m/s Stopping in 0.1 s Acceleration is about $-253 \text{ m/s}^2 = -25.8 \text{ g}$

• Head on crash at 56.6 mph

Crash Test Data



Ballpark Calc: 112.1mph = 50.1 m/s Stopping in 0.1 s Acceleration is about $-501 \text{ m/s}^2 = -51.1 \text{ g}$

• Head on crash at 112.1 mph

Crash Test Analysis Software

- Software can be downloaded from NHTSA website
- http://www.nhtsa.gov/

 Several types of accelerometers are used & at least 2 must sense excessive acceleration to trigger the airbag.