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Experiment 3 
•Part A: Making an Inductor 
•Part B: Measurement of Inductance 
•Part C: Simulation of a Transformer 
•Part D: Making a Transformer 
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Inductors & Transformers 

 How do transformers work? 
 How to make an inductor? 
 How to measure inductance? 
 How to make a transformer? 

 

? 
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Part A 

 Inductors Review 
 Calculating Inductance 
 Calculating Resistance 
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Inductors-Review 

 General form of I-V relationship 
 
 

 For steady-state sine wave excitation 

V L dI
dt

=

V j LI= ωZ j LL = ω
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Determining Inductance 
 Calculate it from dimensions and material 

properties 
 Measure using commercial bridge (expensive 

device) 
 Infer inductance from response of a circuit. 

This latter approach is the cheapest and usually 
the simplest to apply. Most of the time, we can 
determine circuit parameters from circuit 
performance. 
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Making an Inductor 

 For a simple cylindrical inductor (called a solenoid), 
we wind N turns of wire around a cylindrical form. 
The inductance is ideally given by 
 

    
   where this expression only holds when the length d is 

very much greater than the diameter 2rc 

Henries
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Making an Inductor 

 Note that the constant µo = 4π x 10-7 H/m is 
required to have inductance in Henries (named 
after Joseph Henry of Albany) 

 For magnetic materials, we use µ instead, 
which can typically be 105 times larger for 
materials like iron 

 µ is called the permeability 
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Some Typical Permeabilities 

 Air   1.257x10-6 H/m 
 Ferrite U M33   9.42x10-4 H/m 
 Nickel   7.54x10-4 H/m 
 Iron   6.28x10-3 H/m 
 Ferrite T38    1.26x10-2 H/m 
 Silicon GO steel   5.03x10-2 H/m 
 supermalloy 1.26 H/m 
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Making an Inductor 

 If the coil length is much smaller than the 
diameter (rw is the wire radius) 
 
 

   Such a coil is used in the 
   metal detector at the right 
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Calculating Resistance 
 All wires have some finite resistance. Much of the 

time, this resistance is negligible when compared with 
other circuit components.  

 Resistance of a wire is given by 
   l is the wire length 
   A is the wire cross sectional area (πrw

2) 
  σ is the wire conductivity  

A
lR

σ
=
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Some Typical Conductivities 
 Silver 6.17x107 Siemens/m 
 Copper 5.8x107 S/m 
 Aluminum 3.72x107 S/m 
 Iron 1x107 S/m 
 Sea Water 5 S/m 
 Fresh Water 25x10-6 S/m 
 Teflon 1x10-20 S/m 
Siemen = 1/ohm 
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Wire Resistance 

 Using the Megaconverter at 
http://www.megaconverter.com/Mega2/  

   (see course website) 

http://www.megaconverter.com/Mega2/
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Part B: Measuring Inductance with a 
Circuit 

 For this circuit, a resonance should occur for 
the parallel combination of the unknown 
inductor and the known capacitor. If we find 
this frequency, we can find the inductance. 
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Determining Inductance 

 Reminder—The parallel combination of L and 
C goes to infinity at resonance. (Assuming R2 is small.) 
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Determining Inductance 
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 Even 1 ohm of resistance in the coil can spoil 
this response somewhat 

Coil resistance of a few Ohms 

Coil resistance small 
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Part C 

 Examples of Transformers 
 Transformer Equations 
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Transformers 

 Cylinders (solenoids) 
 

 Toroids 
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Transformer Equations 
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Deriving Transformer Equations 

 Note that a transformer has 
two inductors. One is the 
primary (source end) and 
one is the secondary (load 
end): LS & LL 

 The inductors work as 
expected, but they also 
couple to one another 
through their mutual 
inductance: M2=k2 LS LL 
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Transformers 

 Assumption 1: Both Inductor Coils must have 
similar properties:  same coil radius, same core 
material, and same length.      
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Transformers 

 Let the current through the primary be  
 Let the current through the secondary be  
 The voltage across the primary inductor is 

 
 The voltage across the secondary inductor is 

 

IS

IL

j LI j MIS Lω ω−

j LI j MIL Sω ω−

IS IL 
Note Current 
Direction 
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Transformers 

 Sum of primary voltages must equal the source 
 

 Sum of secondary voltages must equal zero 
 

V R I j L I j MIS S S S S L= + −ω ω

0 = + −R I j L I j MIL L L L Sω ω
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Transformers 

 Assumption 2: The transformer is designed such that 
the impedances                    are much larger than any 
resistance in the circuit. Then, from the second loop 
equation 

LjZ ω=

0 = + −R I j L I j MIL L L L Sω ω
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Transformers 
 k is the coupling coefficient 

• If k=1, there is perfect coupling. 
• k is usually a little less than 1 in a good transformer. 

 Assumption 3:  Assume perfect coupling (k=1) 
 

We know M2=k2 LS LL= LS LL and 
 

Therefore,  
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Transformers 

 The input impedance of the primary winding     
reflects the load impedance. 

  It can be determined from the loop equations 
• 1] 
• 2] 

 Divide by 1] IS. Substitute 2] and M into 1] 
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Transformers 

 Find a common denominator and simplify 
 
 
 

 By Assumption 2, RL is small compared to the 
impedance of the transformer, so 
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Transformers 

 It can also be shown that the voltages across the 
primary and secondary terminals of the transformer 
are related by 
 

   Note that the coil with more turns has the larger 
voltage. 

 Detailed derivation of transformer equations 
http://hibp.ecse.rpi.edu/~connor/education/transformer_notes.pdf 

 

N V N VS L L S=

http://hibp.ecse.rpi.edu/~connor/education/transformer_notes.pdf
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Transformer Equations 
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Part D 

 Step-up and Step-down transformers 
 Build a transformer 
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Step-up and Step-down Transformers 
 Step-up Transformer 
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 Note that power (P=VI) is conserved in both cases. 
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Build a Transformer 
  
 Wind secondary coil directly over primary coil 
 “Try” for half the number of turns 
 At what frequencies does it work as expected with 

respect to voltage?  When is ωL >> R? 
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Some Interesting Inductors 

 Induction Heating 
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Some Interesting Inductors 

 Induction Heating in Aerospace 

http://www.ameritherm.com/videoindex.html
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Some Interesting Inductors 

 Induction Forming 
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Some Interesting Inductors 

 Coin Flipper 

Primary 

   Coil 

Secondary 

      Coil 
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Some Interesting Inductors 

 GE Genura Light 
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Some Interesting Transformers 

 A huge range in sizes 
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Some Interesting Transformers 

 High Temperature Superconducting Transformer 
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Household Power 

 7200V transformed to 240V for household use 
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Wall Warts 

Transformer 
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