

Electronic Instrumentation

Experiment 3

•Part A: Making an Inductor

•Part B: Measurement of Inductance

•Part C: Simulation of a Transformer

•Part D: Making a Transformer

Inductors & Transformers

- How do transformers work?
- How to make an inductor?
- How to measure inductance?
- How to make a transformer?

Part A

- Inductors Review
- Calculating Inductance
- Calculating Resistance

Inductor Inductor

General form of I-V relationship

$$V = L \frac{dI}{dt}$$

For steady-state sine wave excitation

$$Z_L = j\omega L$$
 $V = j\omega LI$

Determining Inductance

- Calculate it from dimensions and material properties
- Measure using commercial bridge (expensive device)
- Infer inductance from response of a circuit. This latter approach is the cheapest and usually the simplest to apply. Most of the time, we can determine circuit parameters from circuit performance.

 For a simple cylindrical inductor (called a solenoid), we wind N turns of wire around a cylindrical form. The inductance is ideally given by

$$L = \frac{(\mu_0 N^2 \pi r_c^2)}{d} Henries$$

where this expression only holds when the length d is very much greater than the diameter $2r_c$

- Note that the constant $\mu_o = 4\pi \ge 10^{-7}$ H/m is required to have inductance in Henries (named after Joseph Henry of Albany)
- For magnetic materials, we use μ instead, which can typically be 10⁵ times larger for materials like iron
- μ is called the permeability

Some Typical Permeabilities

- Air 1.257x10⁻⁶ H/m
- Ferrite U M33 9.42x10⁻⁴ H/m
- Nickel 7.54x10⁻⁴ H/m
- Iron 6.28x10⁻³ H/m
- Ferrite T38 1.26x10⁻² H/m
- Silicon GO steel 5.03x10⁻² H/m
- supermalloy 1.26 H/m

• If the coil length is much smaller than the diameter (r_w is the wire radius) $L \cong \mu N^2 r_c \{ \ln(\frac{8r_c}{r_w}) - 2 \}$

Such a coil is used in the metal detector at the right

Making an Inductor

Calculating Resistance

- All wires have some finite resistance. Much of the time, this resistance is negligible when compared with other circuit components.
- Resistance of a wire is given by
 l is the wire length

$$R = \frac{l}{\sigma A}$$

A is the wire cross sectional area (πr_w^2)

 $\boldsymbol{\sigma}$ is the wire conductivity

Some Typical Conductivities

- Silver 6.17x10⁷ Siemens/m
- Copper 5.8x10⁷ S/m
- Aluminum 3.72x10⁷ S/m
- Iron 1x10⁷ S/m
- Sea Water 5 S/m
- Fresh Water 25x10⁻⁶ S/m
- Teflon 1x10⁻²⁰ S/m

Siemen = 1/ohm

Wire Resistance

Using the Megaconverter at
 <u>http://www.megaconverter.com/Mega2/</u>

(see course website)

Part B: Measuring Inductance with a Circuit R^{1}

 For this circuit, a resonance should occur for the parallel combination of the unknown inductor and the known capacitor. If we find this frequency, we can find the inductance.

Determining Inductance

$$\omega_0 = \frac{1}{\sqrt{LC}} \quad f_0 = \frac{1}{2\pi\sqrt{LC}}$$

• Reminder—The parallel combination of *L* and *C* goes to infinity at resonance. (Assuming R2 is small.)

$$Z_{\parallel} = \frac{j\omega L\left(\frac{1}{j\omega C}\right)}{j\omega L + \left(\frac{1}{j\omega C}\right)} = \frac{j\omega L}{1 - \omega^2 LC}$$

10/1/2014

Determining Inductance

10/1/2014

10/1/2014

• Even 1 ohm of resistance in the coil can spoil this response somewhat

10/1/2014

Part C

- Examples of Transformers
- Transformer Equations

Transformer Equations

Deriving Transformer Equations

- Note that a transformer has two inductors. One is the primary (source end) and one is the secondary (load end): L_S & L_L
- The inductors work as expected, but they also couple to one another through their mutual inductance: $M^2 = k^2 L_S L_L$

$$\frac{L_L}{L_S} = \frac{\frac{(\mu_0 N_L^2 \pi r_c^2)}{d}}{\frac{(\mu_0 N_S^2 \pi r_c^2)}{d}} = \frac{N_L^2}{N_S^2} \qquad let \ a = \frac{N_L}{N_S} \qquad \therefore \ a = \sqrt{\frac{L_L}{L_S}}$$

Transformers

- Let the current through the primary be I_s
- Let the current through the secondary be I_L
- The voltage across the primary inductor is

$$j\omega LI_{S} - j\omega MI_{L}$$

• The voltage across the secondary inductor is $j\omega LI_L - j\omega MI_S$

- Sum of primary voltages must equal the source $V_{S} = R_{S}I_{S} + j\omega L_{S}I_{S} - j\omega MI_{L}$
- Sum of secondary voltages must equal zero $0 = R_I I_I + j\omega L_I I_I - j\omega M I_S$

• Assumption 2: The transformer is designed such that the impedances $Z = j\omega L$ are much larger than any resistance in the circuit. Then, from the second loop equation $0 = R I_L + j\omega L_L I_L - j\omega M I_S$

$$j\omega L_L I_L \approx j\omega M I_S \implies L_L^2 I_L^2 \approx M^2 I_S^2$$
$$\therefore \quad \frac{I_L}{I_S} \approx \frac{M}{L_L}$$

10/1/2014

Transformers

- k is the coupling coefficient
 - If k=1, there is perfect coupling.
 - k is usually a little less than 1 in a good transformer.
- Assumption 3: Assume perfect coupling (k=1)

We know M²=k² L_S L_L= L_S L_L and
$$a = \sqrt{\frac{L_L}{L_S}}$$

Therefore,

$$\frac{I_L}{I_S} \approx \frac{M}{L_L} = \frac{\sqrt{L_S L_L}}{L_L} = \sqrt{\frac{LS}{L_L}} = \frac{1}{a}$$

- The input impedance of the primary winding reflects the load impedance. $Z_{L_s} = Z_{in} = Z_{total} - R_s$
- It can be determined from the loop equations

• 1]
$$V_s = R_s I_s + j\omega L_s I_s - j\omega M I_L$$

• 2]
$$0 = R_L I_L + j \omega L_L I_L - j \omega M I_S$$

• Divide by 1] I_S. Substitute 2] and M into 1]

$$Z_{IN} = \frac{V_S}{I_S} - R_S = j\omega L_S + \frac{\omega^2 L_S L_L}{R_L} + j\omega L_L$$

Transformers

• Find a common denominator and simplify

$$Z_{IN} = \frac{j\omega L_S R_L}{j\omega L_L + R_L}$$

• By Assumption 2, R_L is small compared to the impedance of the transformer, so

$$Z_{IN} = \frac{L_S R_L}{L_L} = \frac{R_L}{a^2}$$

10/1/2014

• It can also be shown that the voltages across the primary and secondary terminals of the transformer are related by $N_{s}V_{I} = N_{I}V_{s}$

Note that the coil with more turns has the larger voltage.

Detailed derivation of transformer equations
 http://hibp.ecse.rpi.edu/~connor/education/transformer_notes.pdf

Transformer Equations

Part D

- Step-up and Step-down transformers
- Build a transformer

Step-up and Step-down Transformers

Step-up TransformerStep-down Transformer $N_2 > N_1$ $N_2 < N_1$ $V_2 > V_1$ $V_2 < V_1$ $I_2 < I_1$ $I_2 > I_1$ $\sqrt{L_2} > \sqrt{L_1}$ $\sqrt{L_2} < \sqrt{L_1}$

Note that power (P=VI) is conserved in both cases.

Build a Transformer

- Wind secondary coil directly over primary coil
- "Try" for half the number of turns
- At what frequencies does it work as expected with respect to voltage? When is $\omega L >> R$?

$$a = \frac{N_L}{N_S} = \frac{V_L}{V_S}$$

Induction Heating

• Induction Heating in Aerospace

Induction Forming

Primary

Coil

Secondary

Coil

10/1/2014

• GE Genura Light

Figure 1. Schematic of the Genura induction lamp. The power supply converts ordinary 60 or 50 hertz current into high-efficiency power that is fed into an electrical coil. The coil excites a gas plasma inside the bulb, releasing UV radiation that strikes the bulb's phosphor coating and is converted into visible light.

Some Interesting Transformers

• A huge range in sizes

10/1/2014

Some Interesting Transformers

High Temperature Superconducting Transformer

10/1/2014

7200V transformed to 240V for household use

Wall Warts

