

Electronic Instrumentation

Experiment 2

* Part A: Intro to Transfer Functions and AC Sweeps
* Part B: Phasors, Transfer Functions and Filters
* Part C: Using Transfer Functions and RLC Circuits
* Part D: Equivalent Impedance and DC Sweeps

Part A

- Introduction to Transfer Functions and Phasors
- Complex Polar Coordinates
- Complex Impedance (Z)
- AC Sweeps

Transfer Functions

$$
H \equiv \frac{V_{\text {out }}}{V_{\text {in }}}
$$

- The transfer function describes the behavior of a circuit at $\mathrm{V}_{\text {out }}$ for all possible V_{in}.

Simple Example

$$
\begin{gathered}
V_{\text {out }}=V_{\text {in }} * \frac{R 2+R 3}{R 1+R 2+R 3} \\
V_{\text {out }}=V_{\text {in }} * \frac{2 k+3 k}{1 k+2 k+3 k} \\
H \equiv \frac{V_{\text {out }}}{V_{\text {in }}}=\frac{5}{6}
\end{gathered}
$$

if $V_{\text {in }}(t)=6 V \sin \left(2 k t+\frac{\pi}{2}\right)+12 V$
then $V_{\text {out }}(t)=5 V \sin \left(2 k t+\frac{\pi}{2}\right)+10 V$

More Complicated Example

- H now depends upon the input frequency ($\omega=2 \pi \mathrm{f}$) because the capacitor and inductor make the voltages change with the change in current.

How do we model H?

- We want a way to combine the effect of the components in terms of their influence on the amplitude and the phase.
- We can only do this because the signals are sinusoids
- cycle in time
- derivatives and integrals are just phase shifts and amplitude changes

We will define Phasors

$$
\vec{V}=f(A, \phi)
$$

- A phasor is a function of the amplitude and phase of a sinusoidal signal
- Phasors allow us to manipulate sinusoids in terms of amplitude and phase changes.
- Phasors are based on complex polar coordinates.
- Using phasors and complex numbers we will be able to find transfer functions for circuits.

Review of Polar Coordinates

point P is at
$\left(r_{p} \cos \theta_{p}, r_{p} \sin \theta_{p}\right)$

$$
\begin{aligned}
& \theta_{P}=\tan ^{-1}\left(\frac{y_{P}}{x_{P}}\right) \\
& r_{P}=\sqrt{x_{P}^{2}+y_{P}^{2}}
\end{aligned}
$$

Review of Complex Numbers

- z_{p} is a single number represented by two numbers
- z_{p} has a "real" part (x_{p}) and an "imaginary" part (y_{p})

Complex Polar Coordinates

- ω cycles once around the origin once for each cycle of the sinusoidal wave ($\omega=2 \pi$ f)

Now we can define Phasors

if $V(t)=A \cos (\omega t+\phi)$, then let
$\vec{V}=A \cos (\omega t+\phi)+j A \sin (\omega t+\phi)$
or simply, $\vec{V}=A \cos \phi+j A \sin \phi$
(ωt is common to each term, so it is dropped.)

- The real part is our signal.
- The two parts allow us to determine the influence of the phase and amplitude changes mathematically.
- After we manipulate the numbers, we discard the imaginary part.

The " $V=I R$ " of Phasors
 $$
\vec{V}=\vec{I} Z
$$

- The influence of each component is given by Z , its complex impedance
- Once we have Z, we can use phasors to analyze circuits in much the same way that we analyze resistive circuits except we will be using the complex polar representation.

Magnitude and Phase

$$
\begin{aligned}
& \vec{V} \equiv A \cos \phi+j A \sin \phi=x+j y \\
& |\vec{V}| \equiv \sqrt{x^{2}+y^{2}}=A \quad \text { magnitude of } \vec{V} \\
& \angle \vec{V}=\tan ^{-1}\left(\frac{y}{x}\right)=\phi \quad \text { phase of } \vec{V}
\end{aligned}
$$

- Phasors have a magnitude and a phase derived from polar coordinates rules.

Influence of Resistor on Circuit

$$
\begin{aligned}
& V_{R}=I_{R} R \\
& \text { if } I_{R}(t)=A \sin (\omega t) \\
& \text { then } V_{R}(t)=R^{*} A \sin (\omega t)
\end{aligned}
$$

- Resistor modifies the amplitude of the signal by R
- Resistor has no effect on the phase

Influence of Inductor on Circuit

$$
V_{L}=L \frac{d I_{L}}{d t}
$$

$$
\begin{aligned}
& \text { if } I_{L}(t)=A \sin (\omega t) \\
& \text { then } V_{L}(t)=\omega L^{*} A \cos (\omega t) \\
& \text { or } V_{L}(t)=\omega L^{*} A \sin \left(\omega t+\frac{\pi}{2}\right)
\end{aligned}
$$

- Inductor modifies the amplitude of the signal by $\omega \mathrm{L}$
- Inductor shifts the phase by $+\pi / 2$

Influence of Capacitor on Circuit
 $$
V_{C}=\frac{1}{C} \int I_{C} d t
$$

$$
\text { if } I_{C}(t)=A \sin (\omega t)
$$

$$
\text { then } V_{C}(t)=\frac{-1}{\omega C} * A \cos (\omega t)=\frac{1}{\omega C} * A \cos (\omega t-\pi)
$$

$$
\text { or } V_{C}(t)=\frac{1}{\omega C} * A \sin \left(\omega t+\frac{\pi}{2}-\pi\right)=\frac{1}{\omega C} * A \sin \left(\omega t-\frac{\pi}{2}\right)
$$

- Capacitor modifies the amplitude of the signal by $1 / \omega \mathrm{C}$
- Capacitor shifts the phase by $-\pi / 2$

Understanding the influence of Phase

+ real: if $y=0$ and $x>0$
then $\angle \vec{V}=\tan ^{-1}\left(\frac{0}{x^{+}}\right)=0$
$+j: \quad$ if $x=0$ and $y>0$ then $\angle \vec{V}=\tan ^{-1}\left(\frac{y^{+}}{0}\right)=\frac{\pi}{2}=90^{\circ}$
$-j: \quad$ if $x=0$ and $y<0$

$$
\text { then } \angle \vec{V}=\tan ^{-1}\left(\frac{y^{-}}{0}\right)=-\frac{\pi}{2}=-90^{\circ}
$$

$$
\angle \vec{V}=\tan ^{-1}\left(\frac{y}{x}\right)
$$

$$
\text { - real: if } y=0 \text { and } x<0
$$

$$
\text { then } \begin{aligned}
\angle \vec{V}=\tan ^{-1}\left(\frac{0}{x^{-}}\right) & =\pi(\text { or }-\pi) \\
& = \pm 180^{\circ}
\end{aligned}
$$

Complex Impedance $\vec{V}=\vec{I} Z$

- Z defines the influence of a component on the amplitude and phase of a circuit
- Resistors: $\mathrm{Z}_{\mathrm{R}}=\mathrm{R}$
- change the amplitude by R
- Capacitors: $Z_{C}=1 / j \omega C$
- change the amplitude by $1 / \omega \mathrm{C}$
- shift the phase $-90(1 / \mathrm{j}=-\mathrm{j})$
- Inductors: $\mathrm{Z}_{\mathrm{L}}=\mathrm{j} \omega \mathrm{L}$
- change the amplitude by $\omega \mathrm{L}$
- shift the phase +90 (j)

AC Sweeps

Notes on Logarithmic Scales

Frequency $=10{ }^{\text {[decade]. [\%across decade] }}$
[decade]. [\%across decade] = LOG [Frequency]
A: Frequency $=10^{15}=32 \mathrm{~Hz}$
B: Frequency $=10^{3.2}=1600 \mathrm{~Hz}$
A: location $=\operatorname{LOG}(32)=15 \quad$ decade $1-50 \%$

C: Frequency $=10^{59}=790,000 \mathrm{~Hz}$
B: location $=\operatorname{LOG}(1600)=3.2 \quad$ decade $3-20 \%$
$\mathrm{C}:$ location $=\operatorname{LOG}(790000)=59 \quad$ decade $5-90 \%$

Capture/PSpice Notes

- Showing the real and imaginary part of the signal
- in Capture: PSpice->Markers->Advanced
- ->Real Part of Voltage
- ->Imaginary Part of Voltage
- in PSpice: Add Trace
- real part: R()
- imaginary part: IMG()
- Showing the phase of the signal
- in Capture:
- PSpice->Markers->Advanced->Phase of Voltage
- in PSPice: Add Trace
- phase: P()

Part B

- Phasors
- Complex Transfer Functions
- Filters

Definition of a Phasor

$$
\begin{aligned}
& \text { if } V(t)=A \cos (\omega t+\phi) \text {, then let } \\
& \vec{V}=A \cos \phi+j A \sin \phi
\end{aligned}
$$

- The real part is our signal.
- The two parts allow us to determine the influence of the phase and amplitude changes mathematically.
- After we manipulate the numbers, we discard the imaginary part.

Phasor References

- http://ccrmawww.stanford.edu/~jos/filters/Phasor_Notat ion.html
- http://www.ligo.caltech.edu/~vsanni/ph3/Ex pACCircuits/ACCircuits.pdf
- http://ptolemy.eecs.berkeley.edu/eecs20/ber keley/phasors/demo/phasors.html

Phasor Applet

Adding Phasors \& Other Applets

Frequency Domain

Magnitude and Phase

$$
\begin{aligned}
& \vec{V} \equiv A \cos \phi+j A \sin \phi=x+j y \\
& |\vec{V}| \equiv \sqrt{x^{2}+y^{2}}=A \quad \text { magnitude of } \vec{V} \\
& \angle \vec{V}=\tan ^{-1}\left(\frac{y}{x}\right)=\phi \quad \text { phase of } \vec{V}
\end{aligned}
$$

- Phasors have a magnitude and a phase derived from polar coordinates rules.

Euler’s Formula

$e^{j \theta}=\cos \theta+j \sin \theta$

if $z=x+j y=r \cos \theta+j r \sin \theta=r e^{j \theta}$
then $z_{3}=\frac{z_{1}}{z_{2}}=\frac{r_{1} e^{j \theta_{1}}}{r_{2} e^{j \theta_{2}}}=\frac{r_{1}}{r_{2}} e^{j\left(\theta_{1}-\theta_{2}\right)}$
therefore, $r_{3}=\frac{r_{1}}{r_{2}}$ and $\theta_{3}=\theta_{1}-\theta_{2}$
and $z_{4}=z_{1} \cdot z_{2}=r_{1} e^{j \theta_{1}} \cdot r_{2} e^{j \theta_{2}}=r_{1} \cdot r_{2} e^{j\left(\theta_{1}+\theta_{2}\right)}$
therefore, $r_{4}=r_{1} \cdot r_{2}$ and $\theta_{4}=\theta_{1}+\theta_{2}$

Manipulating Phasors (1)

$\vec{V}=A \cos (\omega t+\phi)+j \sin (\omega t+\phi)=A e^{j(\omega t+\phi)}$
$\vec{X}_{3}=\frac{\vec{V}_{1}}{\vec{V}_{2}}=\frac{A_{1} e^{j\left(\omega t+\phi_{1}\right)}}{A_{2} e^{j\left(\omega t+\phi_{2}\right)}}=\frac{A_{1}}{A_{2}} \frac{e^{j \omega t}}{e^{j \omega t}} \frac{e^{j \phi_{1}}}{e^{\phi_{2}}}=\frac{A_{1}}{A_{2}} e^{j\left(\phi_{1}-\phi_{2}\right)}$
therefore, $\left|\vec{X}_{3}\right|=\frac{A_{1}}{A_{2}}$ and $\angle \vec{X}_{3}=\phi_{1}-\phi_{2}$

- Note ωt is eliminated by the ratio
- This gives the phase change between signal 1 and signal 2

Manipulating Phasors (2)

$$
\begin{gathered}
\vec{V}_{1}=x_{1}+j y_{1} \quad \vec{V}_{2}=x_{2}+j y_{2} \\
\vec{V}_{3}=x_{3}+j y_{3} \\
\left|\vec{X}_{3}\right|=\frac{\left|\vec{V}_{1}\right|}{\left|\vec{V}_{2}\right|}=\frac{\sqrt{x_{1}^{2}+y_{1}^{2}}}{\sqrt{x_{2}^{2}+y_{2}^{2}}} \\
\angle \vec{X}_{3}=\angle \vec{V}_{1}-\angle \vec{V}_{2}=\tan ^{-1}\left(\frac{y_{1}}{x_{1}}\right)-\tan ^{-1}\left(\frac{y_{2}}{x_{2}}\right)
\end{gathered}
$$

Complex Transfer Functions
 $$
\vec{H}(j \omega) \equiv \frac{\vec{V}_{o u t}(j \omega)}{\vec{V}_{i n}(j \omega)}
$$

- If we use phasors, we can define H for all circuits in this way.
- If we use complex impedances, we can combine all components the way we combine resistors.
- H and V are now functions of j and ω

Complex Impedance $\vec{V}=\vec{I} Z$

- Z defines the influence of a component on the amplitude and phase of a circuit
- Resistors: $\mathrm{Z}_{\mathrm{R}}=\mathrm{R}$
- Capacitors: $\mathrm{Z}_{\mathrm{C}}=1 / \mathrm{j} \omega \mathrm{C}$
- Inductors: $\mathrm{Z}_{\mathrm{L}} \mathrm{j} \mathrm{j} \omega \mathrm{L}$
- We can use the rules for resistors to analyze circuits with capacitors and inductors if we use phasors and complex impedance.

Simple Example

Simple Example (continued)

$$
\begin{gathered}
\vec{H}(j \omega)=\frac{1}{j \omega R C+1} \\
|H(j \omega)|=\frac{|1+j 0|}{|1+j \omega R C|}=\frac{\sqrt{1^{2}+0^{2}}}{\sqrt{1^{2}+(\omega R C)^{2}}}=\frac{1}{\sqrt{1+(\omega R C)^{2}}} \\
\angle H(j \omega)=\angle(1+j 0)-\angle(1+j \omega R C) \\
\angle H(j \omega)=\tan ^{-1}\left(\frac{0}{1}\right)-\tan ^{-1}\left(\frac{\omega R C}{1}\right)=-\tan ^{-1}(\omega R C) \\
|H(j \omega)|=\frac{1}{\sqrt{1+(\omega R C)^{2}}} \quad \angle H(j \omega)=-\tan ^{-1}(\omega R C)
\end{gathered}
$$

High and Low Pass Filters

High Pass Filter

$\mathrm{H}=0$ at $\omega \rightarrow 0$
$\mathrm{H}=1$ at $\omega \rightarrow \infty$
$\mathrm{H}=0.707$ at ω_{c}

Low Pass Filter
$\mathrm{H}=1$ at $\omega \rightarrow 0$
$\mathrm{H}=0$ at $\omega \rightarrow \infty$
$\mathrm{H}=0.707$ at ω_{c}

Corner Frequency

- The corner frequency of an RC or RL circuit tells us where it transitions from low to high or visa versa.
- We define it as the place where $\left|H\left(j \omega_{c}\right)\right|=\frac{1}{\sqrt{2}}$
- For RC circuits: $\omega_{c}=\frac{1}{R C}$
- For RL circuits: $\omega_{c}=\frac{R}{L}$

Corner Frequency of our example

$$
H(j \omega)=\frac{1}{1+j \omega R C}
$$

$$
|H(j \omega)|=\frac{1}{\sqrt{2}}
$$

$$
|H(j \omega)|=\frac{1}{\sqrt{1+(\omega R C)^{2}}}=\frac{1}{\sqrt{2}} \quad \frac{1}{1+(\omega R C)^{2}}=\frac{1}{2}
$$

$2=1+(\omega R C)^{2} \quad \frac{1}{(R C)^{2}}=\omega^{2}$

$$
\omega_{c}=\frac{1}{R C}
$$

$H(j \omega), \omega_{c}$, and filters

- We can use the transfer function, $\mathrm{H}(\mathrm{j} \omega)$, and the corner frequency, ω_{c}, to easily determine the characteristics of a filter.
- If we consider the behavior of the transfer function as ω approaches 0 and infinity and look for when H nears 0 and 1, we can identify high and low pass filters.
- The corner frequency gives us the point where the filter changes:

$$
f_{c}=\frac{\omega_{c}}{2 \pi}
$$

Taking limits

$$
H(j \omega)=\frac{a_{2} \omega^{2}+a_{1} \omega+a_{0}}{b_{2} \omega^{2}+b_{1} \omega+b_{0}}
$$

- At low frequencies, (ie. $\omega=10^{-3}$), lowest power of ω dominates

$$
H(j \omega)=\frac{a_{2} 10^{-6}+a_{1} 10^{-3}+a_{0} 10^{0}}{b_{2} 10^{-6}+b_{1} 10^{-3}+b_{0} 10^{0}} \approx \frac{a_{0}}{b_{0}}
$$

- At high frequencies (ie. $\omega=10^{+3}$), highest power of ω dominates

$$
H(j \omega)=\frac{a_{2} 10^{+6}+a_{1} 10^{+3}+a_{0} 10^{0}}{b_{2} 10^{+6}+b_{1} 10^{+3}+b_{0} 10^{0}} \approx \frac{a_{2}}{b_{2}}
$$

Taking limits -- Example

$$
H(j \omega)=\frac{9 \omega^{2}+15 \omega}{3 \omega^{2}+2 \omega+5}
$$

- At low frequencies, (lowest power)

$$
H_{L O}(j \omega)=\frac{15 \omega}{5}=3 \omega
$$

- At high frequencies, (highest power)

$$
H_{H I}(j \omega)=\frac{9 \omega^{2}}{3 \omega^{2}}=3
$$

Our example at low frequencies

$$
H(j \omega)=\frac{1}{1+j \omega R C}
$$

$$
H_{\text {LOW }}(j \omega)=\frac{1}{1+0}=1
$$

$$
\left|H_{\text {Low }}(j \omega)\right| a s \omega \rightarrow 0=|1|=1
$$

$$
\angle H_{\text {Low }}(j \omega)=\tan ^{-1}\left(\frac{0}{1}\right)=0(o n+x a x i s)
$$

Our example at high frequencies

$$
H(j \omega)=\frac{1}{1+j \omega R C}
$$

$$
H_{H I G H}(j \omega)=\frac{1}{j \omega R C}
$$

$$
\left|H_{\text {HIGH }}(j \omega)\right| a s \omega \rightarrow \infty=\left|\frac{1}{j \omega R C}\right|=\frac{1}{\infty}=0
$$

$$
\angle H_{H C H}(j \omega)=\tan ^{-1}\left(\frac{0}{1}\right)-\tan ^{-1}\left(\frac{\omega R C}{0}\right)=0-\frac{\pi}{2}=-\frac{\pi}{2}
$$

Our example is a low pass filter

$$
\left|H_{\text {LOW }}\right|=1 \quad\left|H_{\text {HIGH }}\right|=0
$$

$$
f_{c}=\frac{\omega_{c}}{2 \pi}=\frac{1}{2 \pi R C}
$$

What about the phase?

Our example has a phase shift

$$
\begin{aligned}
& \left|H_{\text {LOW }}\right|=1 \\
& \left|H_{\text {HIGH }}\right|=0
\end{aligned}
$$

p

$$
\begin{aligned}
& \angle H_{L O W}(j \omega)=0 \\
& \angle H_{H I G H}(j \omega)=-90^{\circ}
\end{aligned}
$$

Part C

- Using Transfer Functions
- Capacitor Impedance Proof
- More Filters
- Transfer Functions of RLC Circuits

Using H to find $\mathrm{V}_{\text {out }}$

$$
H(j \omega)=\frac{\vec{V}_{\text {out }}}{\vec{V}_{\text {in }}}=\frac{A_{\text {out }} e^{j \phi_{\text {out }}} e^{j \omega t}}{A_{\text {in }} e^{j \phi_{\text {in }}} e^{j \omega t}}=\frac{A_{\text {out }} e^{j \phi_{\text {out }}}}{A_{\text {in }} e^{j \phi_{\text {in }}}}
$$

$$
A_{\text {out }} e^{j \phi_{\text {out }}}=H(j \omega) A_{\text {in }} e^{j \phi_{\text {in }}}
$$

$$
A_{o u t} e^{j \phi_{o u t}}=|H(j \omega)| e^{j \angle H(j \omega)} A_{\text {in }} e^{j \phi_{\text {in }}}
$$

$$
A_{\text {out }}=|H(j \omega)| A_{\text {in }}
$$

$$
\phi_{\text {out }}=\angle H(j \omega)+\phi_{\text {in }}
$$

Simple Example (with numbers)

$$
\begin{gathered}
|H(j \omega)|=\frac{1^{2}}{\sqrt{1+(2 \pi)^{2}}}=0.157 \quad \angle H(j \omega)=0-\tan ^{-1}\left(\frac{2 \pi}{1}\right)=-1.41 \\
V_{\text {out }}(t)=0.157 * 2 V \cos (2 k \pi t+0.785-1.41)
\end{gathered}
$$

$$
V_{\text {out }}(t)=0.314 V \cos (2 k \pi t-0.625)
$$

Capacitor Impedance Proof

$$
\begin{gathered}
\text { Prove: } Z_{C}=\frac{1}{j \omega C} \\
I_{C}(t)=C \frac{d V_{C}(t)}{d t} \quad \text { and } \quad V_{C}(t)=A \cos (\omega t+\phi) \\
\vec{V}_{C}(j \omega)=A \cos (\omega t+\phi)+j A \sin (\omega t+\phi)=A e^{j(\omega t+\phi)} \\
\frac{d \vec{V}_{C}(j \omega)}{d t}=\frac{d A e^{j(\omega t+\phi)}}{d t}=A j \omega e^{j(\omega t+\phi)}=j \omega \vec{V}_{C}(j \omega) \\
\frac{d V_{C}(t)}{d t}=\operatorname{Re}\left\{\frac{d \vec{V}_{C}(j \omega)}{d t}\right\}=j \omega A \cos (\omega t+\phi)=j \omega V_{C}(t) \\
I_{C}(t)=C \frac{d V_{C}(t)}{d t}=C j \omega V_{C}(t) \quad V_{C}(t)=\frac{1}{j \omega C} I_{C}(t)
\end{gathered}
$$

Band Filters

Band Pass Filter

$\mathrm{H}=0$ at $\omega \rightarrow 0$
$\mathrm{H}=0$ at $\omega \rightarrow \infty$
$\mathrm{H}=1$ at $\omega_{0}=2 \pi \mathrm{f}_{0}$

Band Reject Filter
$\mathrm{H}=1$ at $\omega \rightarrow 0$
$\mathrm{H}=1$ at $\omega \rightarrow \infty$
$\mathrm{H}=0$ at $\omega_{0}=2 \pi \mathrm{f}_{0}$

Resonant Frequency

- The resonant frequency of an RLC circuit tells us where it reaches a maximum or minimum.
- This can define the center of the band (on a band filter) or the location of the transition (on a high or low pass filter).
- The equation for the resonant frequency of an RLC circuit is:

$$
\omega_{0}=\frac{1}{\sqrt{L C}}
$$

Another Example

$$
H(j \omega)=\frac{1}{\left(1-\omega^{2} L C\right)+j \omega R C}
$$

At Very Low Frequencies

$$
H_{\text {LOW }}(j \omega)=\frac{1}{1}=1
$$

$$
\left|H_{\text {Low }}(j \omega)\right| \omega \rightarrow 0=1
$$

$$
\angle H_{\text {Low }}(j \omega)=0
$$

At Very High Frequencies

$$
\begin{aligned}
& H_{H I G H}(j \omega)=\frac{1}{-\omega^{2} L C} \\
& \left|H_{H I G H}(j \omega)\right| \omega \rightarrow \infty=\left|\frac{1}{\infty}\right|=0
\end{aligned}
$$

$$
\angle H_{H I G H}(j \omega)=\pi \text { or }-\pi
$$

At the Resonant Frequency

$$
\begin{aligned}
& H(j \omega)=\frac{1}{\left(1-\omega^{2} L C\right)+j \omega R C} \quad \omega_{0}=\frac{1}{\sqrt{L C}} \quad f_{0}=\frac{1}{2 \pi \sqrt{L C}} \\
& H\left(j \omega_{0}\right)=\frac{1}{\left(1-\left(\frac{1}{\sqrt{L C}}\right)^{2} L C\right)+j\left(\frac{1}{\sqrt{L C}}\right) R C \quad}=\frac{1}{(1-1)+j\left(\frac{R C}{\sqrt{L C}}\right)} \\
& H\left(j \omega_{0}\right)=-j \frac{\sqrt{L C}}{R C} \quad \begin{array}{l}
\text { if } \mathrm{L}=1 \mathrm{mH}, \mathrm{C}=0.1 \mathrm{uF} \text { and } \mathrm{R}=100 \Omega \\
\left|H\left(j \omega_{0}\right)\right|=\frac{\sqrt{L C}}{R C} \\
\angle H\left(j \omega_{0}\right)=-\frac{\pi}{2}
\end{array} \quad\left|\mathrm{H}_{0}\right|=1 \quad \angle H=-\frac{\pi}{2} \text { radians rad/sec } \mathrm{f}_{0}=16 \mathrm{k} \mathrm{~Hz}
\end{aligned}
$$

Our example is a low pass filter

Part D

- Equivalent Impedance
- Transfer Functions of More Complex Circuits

Equivalent Impedance

- Even though this filter has parallel components, we can still handle it.
- We can combine complex impedances like resistors to find the equivalent impedance of the components combined.

Equivalent Impedance

$$
Z_{C L}=\frac{Z_{L} \cdot Z_{C}}{Z_{L}+Z_{C}}=\frac{j \omega L \cdot \frac{1}{j \omega C}}{j \omega L+\frac{1}{j \omega C}}=\frac{j \omega L}{j^{2} \omega^{2} L C+1}=\frac{j \omega L}{1-\omega^{2} L C}
$$

Determine H

$$
\begin{gathered}
Z_{C L}=\frac{j \omega L}{1-\omega^{2} L C} \quad H(j \omega)=\frac{Z_{C L}}{R+Z_{C L}} \\
H(j \omega)=\frac{\frac{j \omega L}{1-\omega^{2} L C}}{R+\frac{j \omega L}{1-\omega^{2} L C}} \quad \text { multiplyby } \frac{1-\omega^{2} L C}{1-\omega^{2} L C} \\
H(j \omega)=\frac{j \omega L}{R\left(1-\omega^{2} L C\right)+j \omega L}
\end{gathered}
$$

At Very Low Frequencies

$$
\begin{aligned}
& H_{\text {LOW }}(j \omega)=\frac{j \omega L}{R} \\
& \left|H_{\text {LOW }}(j \omega)\right| \omega \rightarrow 0=0 \\
& \angle H_{\text {LOW }}(j \omega)=\frac{\pi}{2}
\end{aligned}
$$

At Very High Frequencies

$$
H_{\text {НІGН }}(j \omega)=\frac{j \omega L}{-\omega^{2} L R C}=\frac{-j}{\omega R C}
$$

$$
\left|H_{\text {HIGH }}(j \omega)\right| \omega \rightarrow \infty=\left|\frac{1}{\infty}\right|=0
$$

$$
\angle H_{\text {HІGH }}(j \omega)=-\frac{\pi}{2}
$$

At the Resonant Frequency

$$
\begin{gathered}
\omega_{0}=\frac{1}{\sqrt{L C}} \\
H\left(j \omega_{0}\right)=\frac{j\left(\frac{1}{\sqrt{L C}}\right) L}{R\left(1-\left(\frac{1}{\sqrt{L C}}\right)^{2} L C\right)+j\left(\frac{1}{\sqrt{L C}}\right) L}=1 \\
\left|H\left(j \omega_{0}\right)\right|=1 \quad \angle H\left(j \omega_{0}\right)=0
\end{gathered}
$$

Our example is a band pass filter

