

Electronic Instrumentation

Experiment 2

- * Part A: Intro to Transfer Functions and AC Sweeps
- * Part B: Phasors, Transfer Functions and Filters
- * Part C: Using Transfer Functions and RLC Circuits
- * Part D: Equivalent Impedance and DC Sweeps

Part A

- Introduction to Transfer Functions and Phasors
- Complex Polar Coordinates
- Complex Impedance (Z)
- AC Sweeps

Transfer Functions

$$H \equiv rac{V_{out}}{V_{in}}$$

 The transfer function describes the behavior of a circuit at V_{out} for all possible V_{in}.

Simple Example

$$V_{out} = V_{in} * \frac{R2 + R3}{R1 + R2 + R3}$$

$$V_{out} = V_{in} * \frac{2k + 3k}{1k + 2k + 3k}$$

$$H = \frac{V_{out}}{V_{in}} = \frac{5}{6}$$

if
$$V_{in}(t) = 6V \sin(2kt + \frac{\pi}{2}) + 12V$$

then $V_{out}(t) = 5V \sin(2kt + \frac{\pi}{2}) + 10V$

More Complicated Example

What is H now?

• H now depends upon the input frequency $(\omega = 2\pi f)$ because the capacitor and inductor make the voltages change with the change in current.

How do we model H?

- We want a way to combine the effect of the components in terms of their influence on the amplitude and the phase.
- We can only do this because the signals are sinusoids
 - cycle in time
 - derivatives and integrals are just phase shifts and amplitude changes

We will define Phasors

$$\vec{V} = f(A, \phi)$$

- A phasor is a function of the amplitude and phase of a sinusoidal signal
- Phasors allow us to manipulate sinusoids in terms of amplitude and phase changes.
- Phasors are based on complex polar coordinates.
- Using phasors and complex numbers we will be able to find transfer functions for circuits.

Review of Polar Coordinates

point P is at $(r_p \cos \theta_p, r_p \sin \theta_p)$

$$\theta_P = \tan^{-1} \left(\frac{y_P}{x_P} \right)$$

$$r_P = \sqrt{x_P^2 + y_P^2}$$

Review of Complex Numbers

$$j \equiv \sqrt{-1}$$

$$j \cdot j = -1$$

$$\frac{1}{j} = -j$$

- z_p is a single number represented by two numbers
- z_p has a "real" part (x_p) and an "imaginary" part (y_p)

Complex Polar Coordinates

- z = x+jy where x is A cos ϕ and y is A sin ϕ
- ω t cycles once around the origin once for each cycle of the sinusoidal wave (ω =2 π f)

Now we can define Phasors

if
$$V(t) = A\cos(\omega t + \phi)$$
, then let

$$\vec{V} = A\cos(\omega t + \phi) + jA\sin(\omega t + \phi)$$

or simply,
$$\vec{V} = A\cos\phi + jA\sin\phi$$

(wt is common to each term, so it is dropped.)

- The real part is our signal.
- The two parts allow us to determine the influence of the phase and amplitude changes mathematically.
- After we manipulate the numbers, we discard the imaginary part.

The "V=IR" of Phasors

$$\vec{V} = \vec{I}Z$$

- The influence of each component is given by Z, its complex impedance
- Once we have Z, we can use phasors to analyze circuits in much the same way that we analyze resistive circuits except we will be using the complex polar representation.

Magnitude and Phase

$$\vec{V} = A\cos\phi + jA\sin\phi = x + jy$$

$$|\vec{V}| = \sqrt{x^2 + y^2} = A \quad magnitude \text{ of } \vec{V}$$

$$\angle \vec{V} = \tan^{-1}\left(\frac{y}{x}\right) = \phi \quad phase \text{ of } \vec{V}$$

 Phasors have a magnitude and a phase derived from polar coordinates rules.

Influence of Resistor on Circuit

$$V_R = I_R R$$

if $I_R(t) = A \sin(\omega t)$

then $V_R(t) = R * A \sin(\omega t)$

- Resistor modifies the amplitude of the signal by R
- Resistor has no effect on the phase

Influence of Inductor on Circuit

$$V_L = L \frac{dI_L}{dt}$$

Note: $\cos\theta = \sin(\theta + \pi/2)$

if
$$I_L(t) = A\sin(\omega t)$$

then
$$V_L(t) = \omega L * A \cos(\omega t)$$

or
$$V_L(t) = \omega L * A \sin(\omega t + \frac{\pi}{2})$$

- Inductor modifies the amplitude of the signal by ωL
- Inductor shifts the phase by $+\pi/2$

Influence of Capacitor on Circuit

$$V_C = \frac{1}{C} \int I_C \, dt$$

if $I_C(t) = A\sin(\omega t)$

then
$$V_C(t) = \frac{-1}{\omega C} *A\cos(\omega t) = \frac{1}{\omega C} *A\cos(\omega t - \pi)$$

$$or V_C(t) = \frac{1}{\omega C} * A \sin(\omega t + \frac{\pi}{2} - \pi) = \frac{1}{\omega C} * A \sin(\omega t - \frac{\pi}{2})$$

- Capacitor modifies the amplitude of the signal by $1/\omega C$
- Capacitor shifts the phase by $-\pi/2$

Understanding the influence of Phase

$$\angle \vec{V} = \tan^{-1} \left(\frac{y}{x} \right)$$

+ real: if
$$y = 0$$
 and $x > 0$
then $\angle \vec{V} = \tan^{-1} \left(\frac{0}{x^+} \right) = 0$
+ real + j: if $x = 0$ and $y > 0$
then $\angle \vec{V} = \tan^{-1} \left(\frac{y^+}{0} \right) = \frac{\pi}{2} = 90^\circ$
- j: if $x = 0$ and $y < 0$
then $\angle \vec{V} = \tan^{-1} \left(\frac{y^-}{0} \right) = -\frac{\pi}{2} = -90^\circ$
- real: if $y = 0$ and $x < 0$
then $\angle \vec{V} = \tan^{-1} \left(\frac{0}{x^-} \right) = \pi \ (or - \pi)$

 $= \pm 180^{\circ}$

Complex Impedance $\vec{V} = \vec{I}Z$

- Z defines the influence of a component on the amplitude and phase of a circuit
 - Resistors: $Z_R = R$
 - change the amplitude by R
 - Capacitors: $Z_C = 1/j\omega C$
 - change the amplitude by $1/\omega C$
 - shift the phase -90 (1/j=-j)
 - Inductors: $Z_L = j\omega L$
 - change the amplitude by ωL
 - shift the phase +90 (j)

Notes on Logarithmic Scales

Frequency = 10 [decade]. [%across decade]

A: Frequency = 10^{15} = 32 Hz

B: Frequency = $10^{3.2}$ = 1600 Hz

C: Frequency = 10^{59} = 790,000 Hz

[decade] [%across decade] = LOG [Frequency]

A: location = LOG (32) = 1.5 decade 1 - 50%

B: location = LOG(1600) = 3.2 decade 3 - 20%

C: location = LOG(790000)=5.9 decade 5 - 90%

Capture/PSpice Notes

- Showing the real and imaginary part of the signal
 - in Capture: PSpice->Markers->Advanced
 - ->Real Part of Voltage
 - ->Imaginary Part of Voltage
 - in PSpice: Add Trace
 - real part: R()
 - imaginary part: IMG()
 - Showing the phase of the signal
 - in Capture:
 - PSpice->Markers->Advanced->Phase of Voltage
 - in PSPice: Add Trace
 - phase: P()

Part B

- Phasors
- Complex Transfer Functions
- Filters

Definition of a Phasor

if
$$V(t) = A\cos(\omega t + \phi)$$
, then let
 $\vec{V} = A\cos\phi + jA\sin\phi$

- The real part is our signal.
- The two parts allow us to determine the influence of the phase and amplitude changes mathematically.
- After we manipulate the numbers, we discard the imaginary part.

Phasor References

- http://ccrmawww.stanford.edu/~jos/filters/Phasor_Notat ion.html
- http://www.ligo.caltech.edu/~vsanni/ph3/Ex pACCircuits/ACCircuits.pdf
- http://ptolemy.eecs.berkeley.edu/eecs20/ber keley/phasors/demo/phasors.html

Phasor Applet

Adding Phasors & Other Applets

Magnitude and Phase

$$\vec{V} = A\cos\phi + jA\sin\phi = x + jy$$

$$|\vec{V}| = \sqrt{x^2 + y^2} = A \quad magnitude \text{ of } \vec{V}$$

$$\angle \vec{V} = \tan^{-1}\left(\frac{y}{x}\right) = \phi \quad phase \text{ of } \vec{V}$$

 Phasors have a magnitude and a phase derived from polar coordinates rules.

Euler's Formula

$e^{j\theta} = \cos\theta + j\sin\theta$

if
$$z = x + jy = r\cos\theta + jr\sin\theta = re^{j\theta}$$

then
$$z_3 = \frac{z_1}{z_2} = \frac{r_1 e^{j\theta_1}}{r_2 e^{j\theta_2}} = \frac{r_1}{r_2} e^{j(\theta_1 - \theta_2)}$$

therefore,
$$r_3 = \frac{r_1}{r_2}$$
 and $\theta_3 = \theta_1 - \theta_2$

and
$$z_4 = z_1 \cdot z_2 = r_1 e^{j\theta_1} \cdot r_2 e^{j\theta_2} = r_1 \cdot r_2 e^{j(\theta_1 + \theta_2)}$$

therefore, $r_4 = r_1 \cdot r_2$ and $\theta_4 = \theta_1 + \theta_2$

Manipulating Phasors (1)

$$\vec{V} = A\cos(\omega t + \phi) + j\sin(\omega t + \phi) = Ae^{j(\omega t + \phi)}$$

$$\vec{X}_{3} = \frac{\vec{V_{1}}}{\vec{V_{2}}} = \frac{A_{1}e^{j(\omega t + \phi_{1})}}{A_{2}e^{j(\omega t + \phi_{2})}} = \frac{A_{1}}{A_{2}} \frac{e^{j\omega t}}{e^{j\omega t}} \frac{e^{j\phi_{1}}}{e^{\phi_{2}}} = \frac{A_{1}}{A_{2}}e^{j(\phi_{1} - \phi_{2})}$$

$$\left| \vec{X}_3 \right| = \frac{A_1}{A_2}$$

therefore,
$$\left| \vec{X}_3 \right| = \frac{A_1}{A_2}$$
 and $\left| \vec{X}_3 \right| = \phi_1 - \phi_2$

- Note ωt is eliminated by the ratio
 - This gives the phase *change* between signal 1 and signal 2

Manipulating Phasors (2)

$$\vec{V}_1 = x_1 + jy_1$$
 $\vec{V}_2 = x_2 + jy_2$ $\vec{V}_3 = x_3 + jy_3$

$$\left|\vec{X}_{3}\right| = \frac{\left|\vec{V}_{1}\right|}{\left|\vec{V}_{2}\right|} = \frac{\sqrt{x_{1}^{2} + y_{1}^{2}}}{\sqrt{x_{2}^{2} + y_{2}^{2}}}$$

$$\angle \vec{X}_3 = \angle \vec{V}_1 - \angle \vec{V}_2 = \tan^{-1} \left(\frac{y_1}{x_1} \right) - \tan^{-1} \left(\frac{y_2}{x_2} \right)$$

Complex Transfer Functions

$$\vec{H}(j\omega) \equiv \frac{\vec{V}_{out}(j\omega)}{\vec{V}_{in}(j\omega)}$$

- If we use phasors, we can define H for all circuits in this way.
- If we use complex impedances, we can combine all components the way we combine resistors.
- H and V are now functions of j and ω

Complex Impedance $\vec{V} = \vec{I}Z$

- Z defines the influence of a component on the amplitude and phase of a circuit
 - Resistors: $Z_R = R$
 - Capacitors: $Z_C = 1/j\omega C$
 - Inductors: $Z_1 = j\omega L$
- We can use the rules for resistors to analyze circuits with capacitors and inductors if we use phasors and complex impedance.

Simple Example

Vout
$$Z_R = R$$

$$Z_C = \frac{1}{j\omega C}$$

$$\vec{H}(j\omega) = \frac{\vec{V}_{out}(j\omega)}{\vec{V}_{in}(j\omega)} = \frac{Z_C \vec{I}}{\left(Z_R + Z_C\right)\vec{I}} = \frac{Z_C}{\left(Z_R + Z_C\right)}$$

$$\vec{H}(j\omega) = \frac{\vec{j\omega}C}{R + \frac{1}{j\omega}C} \cdot \frac{j\omega}{j\omega}C \qquad \vec{H}(j\omega) = \frac{1}{j\omega}C + 1$$

Simple Example (continued)

$$\vec{H}(j\omega) = \frac{1}{j\omega RC + 1}$$

$$|H(j\omega)| = \frac{|1+j0|}{|1+j\omega RC|} = \frac{\sqrt{1^2+0^2}}{\sqrt{1^2+(\omega RC)^2}} = \frac{1}{\sqrt{1+(\omega RC)^2}}$$

$$\angle H(j\omega) = \angle (1+j0) - \angle (1+j\omega RC)$$

$$\angle H(j\omega) = \tan^{-1}\left(\frac{0}{1}\right) - \tan^{-1}\left(\frac{\omega RC}{1}\right) = -\tan^{-1}(\omega RC)$$

$$\left| |H(j\omega)| = \frac{1}{\sqrt{1 + (\omega RC)^2}} \right| \quad \angle H(j\omega) = -\tan^{-1}(\omega RC)$$

$$\angle H(j\omega) = -\tan^{-1}(\omega RC)$$

High and Low Pass Filters

High Pass Filter

$$H = 0$$
 at $\omega \rightarrow 0$

$$H = 1$$
 at $\omega \rightarrow \infty$

$$H = 0.707$$
 at ω_c

Low Pass Filter

$$H = 1$$
 at $\omega \rightarrow 0$

$$H = 0$$
 at $\omega \rightarrow \infty$

$$H = 0.707$$
 at ω_c

Corner Frequency

- The corner frequency of an RC or RL circuit tells us where it transitions from low to high or visa versa.
 - We define it as the place where $|H(j\omega_c)| = \frac{1}{\sqrt{2}}$
- For RC circuits: $\omega_c = \frac{1}{RC}$
- For RL circuits: $\omega_c = \frac{R}{L}$

Corner Frequency of our example

Vout
$$H(j\omega) = \frac{1}{1 + j\omega RC}$$

$$|H(j\omega)| = \frac{1}{\sqrt{2}}$$

$$|H(j\omega)| = \frac{1}{\sqrt{1 + (\omega RC)^2}} = \frac{1}{\sqrt{2}} \frac{1}{1 + (\omega RC)^2} = \frac{1}{2}$$

$$\frac{1}{1+(\omega RC)^2} = \frac{1}{2}$$

$$2 = 1 + (\omega RC)^2 \qquad \frac{1}{(RC)^2} = \omega^2 \qquad \omega_c = \frac{1}{RC}$$

$H(j\omega)$, ω_c , and filters

- We can use the transfer function, $H(j\omega)$, and the corner frequency, ω_c , to easily determine the characteristics of a filter.
 - If we consider the behavior of the transfer function as ω approaches 0 and infinity and look for when H nears 0 and 1, we can identify high and low pass filters.
- The corner frequency gives us the point where the filter changes: ω

 $f_c = \frac{\omega_c}{2\pi}$

Taking limits

$$H(j\omega) = \frac{a_2\omega^2 + a_1\omega + a_0}{b_2\omega^2 + b_1\omega + b_0}$$

• At low frequencies, (ie. $\omega = 10^{-3}$), lowest power of ω dominates

$$H(j\omega) = \frac{a_2 10^{-6} + a_1 10^{-3} + a_0 10^0}{b_2 10^{-6} + b_1 10^{-3} + b_0 10^0} \approx \frac{a_0}{b_0}$$

• At high frequencies (ie. $\omega = 10^{+3}$), highest power of ω dominates

$$H(j\omega) = \frac{a_2 10^{+6} + a_1 10^{+3} + a_0 10^0}{b_2 10^{+6} + b_1 10^{+3} + b_0 10^0} \approx \frac{a_2}{b_2}$$

Taking limits -- Example

$$H(j\omega) = \frac{9\omega^2 + 15\omega}{3\omega^2 + 2\omega + 5}$$

At low frequencies, (lowest power)

$$H_{LO}(j\omega) = \frac{15\omega}{5} = 3\omega$$

At high frequencies, (highest power)

$$H_{HI}(j\omega) = \frac{9\omega^2}{3\omega^2} = 3$$

Our example at low frequencies

Our example is a low pass filter

$$|H_{LOW}| = 1$$
 $|H_{HIGH}| = 0$

$$f_c = \frac{\omega_c}{2\pi} = \frac{1}{2\pi RC}$$

What about the phase?

Part C

- Using Transfer Functions
- Capacitor Impedance Proof
- More Filters
- Transfer Functions of RLC Circuits

Using H to find V_{out}

$$H(j\omega) = \frac{\vec{V}_{out}}{\vec{V}_{in}} = \frac{A_{out}e^{j\phi_{out}}e^{j\omega t}}{A_{in}e^{j\phi_{in}}e^{j\omega t}} = \frac{A_{out}e^{j\phi_{out}}}{A_{in}e^{j\phi_{in}}}$$

$$A_{out}e^{j\phi_{out}} = H(j\omega)A_{in}e^{j\phi_{in}}$$

$$A_{in}e^{j\phi_{out}} = H(j\omega)A_{in}e^{j\phi_{in}}$$

$$A_{out}e^{j\phi_{out}} = |H(j\omega)|e^{j\angle H(j\omega)}A_{in}e^{j\phi_{in}}$$

$$A_{out}e^{j\phi_{out}} = |H(j\omega)|e^{j\angle H(j\omega)}A_{in}e^{j\phi_{in}}$$

$$A_{out} = |H(j\omega)|A_{in}$$

$$A_{out} = |H(j\omega)|A_{in}| |\phi_{out} = \angle H(j\omega) + \phi_{in}|$$

Simple Example (with numbers)

$$V_{out}(t) = 0.157 * 2V \cos(2k\pi t + 0.785 - 1.41)$$

$$V_{out}(t) = 0.314V\cos(2k\pi t - 0.625)$$

Capacitor Impedance Proof

Prove:
$$Z_C = \frac{1}{j\omega C}$$

$$I_C(t) = C \frac{dV_C(t)}{dt}$$
 and $V_C(t) = A\cos(\omega t + \phi)$

$$\vec{V}_C(j\omega) = A\cos(\omega t + \phi) + jA\sin(\omega t + \phi) = Ae^{j(\omega t + \phi)}$$

$$\frac{d\vec{V}_{C}(j\omega)}{dt} = \frac{dAe^{j(\omega t + \phi)}}{dt} = Aj\omega e^{j(\omega t + \phi)} = j\omega \vec{V}_{C}(j\omega)$$

$$\frac{dV_{C}(t)}{dt} = \text{Re}\left\{\frac{d\vec{V}_{C}(j\omega)}{dt}\right\} = j\omega A\cos(\omega t + \phi) = j\omega V_{C}(t)$$

$$I_{C}(t) = C \frac{dV_{C}(t)}{dt} = Cj\omega V_{C}(t) \quad V_{C}(t) = \frac{1}{j\omega C} I_{C}(t)$$

Band Filters

Band Pass Filter

$$H = 0$$
 at $\omega \rightarrow 0$

$$H = 0$$
 at $\omega \rightarrow \infty$

$$H = 1$$
 at $\omega_0 = 2\pi f_0$

Band Reject Filter

$$H = 1$$
 at $\omega \rightarrow 0$

$$H = 1$$
 at $\omega \rightarrow \infty$

$$H = 0$$
 at $\omega_0 = 2\pi f_0$

Resonant Frequency

- The resonant frequency of an RLC circuit tells us where it reaches a maximum or minimum.
- This can define the center of the band (on a band filter) or the location of the transition (on a high or low pass filter).
- The equation for the resonant frequency of an RLC circuit is:

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

Another Example

$$H(j\omega) = \frac{1}{(1 - \omega^2 LC) + j\omega RC}$$

At Very Low Frequencies

$$H_{LOW}(j\omega) = \frac{1}{1} = 1$$

$$\left| H_{LOW}(j\omega) \middle| \omega \to 0 = 1$$

$$\angle H_{LOW}(j\omega) = 0$$

At Very High Frequencies

$$H_{HIGH}(j\omega) = \frac{1}{-\omega^{2}LC}$$

$$\left| H_{HIGH}(j\omega) \right| \omega \to \infty = \left| \frac{1}{\omega} \right| = 0$$

$$\angle H_{HIGH}(j\omega) = \pi \text{ or } -\pi$$

At the Resonant Frequency

$$H(j\omega) = \frac{1}{(1-\omega^2 LC) + j\omega RC} \qquad \omega_0 = \frac{1}{\sqrt{LC}} \qquad f_0 = \frac{1}{2\pi\sqrt{LC}}$$

$$H(j\omega_0) = \frac{1}{(1 - \left(\frac{1}{\sqrt{LC}}\right)^2 LC) + j\left(\frac{1}{\sqrt{LC}}\right)RC} = \frac{1}{(1 - 1) + j\left(\frac{RC}{\sqrt{LC}}\right)}$$

$$H(j\omega_0) = -j\frac{\sqrt{LC}}{RC}$$

$$|H(j\omega_0)| = \frac{\sqrt{LC}}{RC}$$

$$\angle H(j\omega_0) = -\frac{\pi}{2}$$

if L=1mH, C=0.1uF and R=100 Ω ω_0 =100k rad/sec f $_0$ =16k Hz $|H_0|$ =1 $\angle H = -\frac{\pi}{2}$ radians

Our example is a low pass filter

resonant frequency, f_0 , when there is no resistance.

$$\phi = 0$$
 at $\omega \to 0$

$$\phi = -180$$
 at $\omega \rightarrow \infty$

$$H = 1$$
 at $\omega \rightarrow 0$

$$H = 0$$
 at $\omega \rightarrow \infty$

$$f_0 = 16k Hz$$

Part D

- Equivalent Impedance
- Transfer Functions of More Complex Circuits

Equivalent Impedance

- Even though this filter has parallel components, we can still handle it.
- We can combine complex impedances like resistors to find the equivalent impedance of the components combined.

Equivalent Impedance

$$Z_{CL} = \frac{Z_L \cdot Z_C}{Z_L + Z_C} = \frac{j\omega L \cdot \frac{1}{j\omega C}}{j\omega L + \frac{1}{j\omega C}} = \frac{j\omega L}{j^2\omega^2 LC + 1} = \frac{j\omega L}{1 - \omega^2 LC}$$

Determine H

$$Z_{CL} = \frac{j\omega L}{1 - \omega^2 LC}$$

$$Z_{CL} = \frac{j\omega L}{1 - \omega^2 LC} \qquad H(j\omega) = \frac{Z_{CL}}{R + Z_{CL}}$$

$$H(j\omega) = \frac{\frac{j\omega L}{1 - \omega^{2}LC}}{R + \frac{j\omega L}{1 - \omega^{2}LC}} \quad multiply \, by \frac{1 - \omega^{2}LC}{1 - \omega^{2}LC}$$

$$H(j\omega) = \frac{j\omega L}{R(1-\omega^2 LC) + j\omega L}$$

At Very Low Frequencies

$$H_{LOW}(j\omega) = \frac{j\omega L}{R}$$

$$|H_{LOW}(j\omega)|\omega \to 0 = 0$$

$$\angle H_{LOW}(j\omega) = \frac{\pi}{2}$$

At Very High Frequencies

$$H_{HIGH}(j\omega) = \frac{j\omega L}{-\omega^2 LRC} = \frac{-j}{\omega RC}$$

$$|H_{HIGH}(j\omega)|\omega \to \infty = \left|\frac{1}{\infty}\right| = 0$$

$$\angle H_{HIGH}(j\omega) = -\frac{\pi}{2}$$

At the Resonant Frequency

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

$$H(j\omega_0) = \frac{j\left(\frac{1}{\sqrt{LC}}\right)L}{R(1 - \left(\frac{1}{\sqrt{LC}}\right)^2 LC) + j\left(\frac{1}{\sqrt{LC}}\right)L} = 1$$

$$|H(j\omega_0)| = 1$$
 $\angle H(j\omega_0) = 0$

Our example is a band pass filter Magnitude 1.0= H = 0 at $\omega \rightarrow 0$ 0.5-H=1 at ω_0 H = 0 at $\omega \rightarrow \infty$ □ V1(R1) / V(V1:+) $100d_{-}$ Phase $\phi = 90$ at $\omega \rightarrow 0$ 0d= $\phi = 0$ at ω_0 SEL>> -100d-100MHz $\phi = -90$ at $\omega \rightarrow \infty$ 1.0Hz 10KHz ▼ VP(R1:1) Frequency