# ENGR-2300

# Electronic Instrumentation

Quiz 3

Spring 2017

Name <u>Solution</u>

Section \_\_\_\_

Question 1 (20 Points)

Question 2 (20 Points)

Question 3 (20 Points)

Question 4 (20 Points)

LMS Question is worth an additional 20pts

Total (80 points)

On all questions: **SHOW ALL WORK**. BEGIN WITH FORMULAS, THEN SUBSTITUTE VALUES <u>AND UNITS</u>. No credit will be given for answers that appear without justification. Read the entire quiz before answering any questions. Also it may be easier to answer parts of questions out of order.



## Some Additional Background plus

| Standard Resistor Values (±5%) |    |     |      |     |      |      |  |
|--------------------------------|----|-----|------|-----|------|------|--|
| 1.0                            | 10 | 100 | 1.0K | 10K | 100K | 1.0M |  |
| 1.1                            | 11 | 110 | 1.1K | 11K | 110K | 1.1M |  |
| 1.2                            | 12 | 120 | 1.2K | 12K | 120K | 1.2M |  |
| 1.3                            | 13 | 130 | 1.3K | 13K | 130K | 1.3M |  |
| 1.5                            | 15 | 150 | 1.5K | 15K | 150K | 1.5M |  |
| 1.6                            | 16 | 160 | 1.6K | 16K | 160K | 1.6M |  |
| 1.8                            | 18 | 180 | 1.8K | 18K | 180K | 1.8M |  |
| 2.0                            | 20 | 200 | 2.0K | 20K | 200K | 2.0M |  |
| 2.2                            | 22 | 220 | 2.2K | 22K | 220K | 2.2M |  |
| 2.4                            | 24 | 240 | 2.4K | 24K | 240K | 2.4M |  |
| 2.7                            | 27 | 270 | 2.7K | 27K | 270K | 2.7M |  |
| 3.0                            | 30 | 300 | 3.0K | 30K | 300K | 3.0M |  |
| 3.3                            | 33 | 330 | 3.3K | 33K | 330K | 3.3M |  |
| 3.6                            | 36 | 360 | 3.6K | 36K | 360K | 3.6M |  |
| 3.9                            | 39 | 390 | 3.9K | 39K | 390K | 3.9M |  |
| 4.3                            | 43 | 430 | 4.3K | 43K | 430K | 4.3M |  |
| 4.7                            | 47 | 470 | 4.7K | 47K | 470K | 4.7M |  |
| 5.1                            | 51 | 510 | 5.1K | 51K | 510K | 5.1M |  |
| 5.6                            | 56 | 560 | 5.6K | 56K | 560K | 5.6M |  |
| 6.2                            | 62 | 620 | 6.2K | 62K | 620K | 6.2M |  |
| 6.8                            | 68 | 680 | 6.8K | 68K | 680K | 6.8M |  |
| 7.5                            | 75 | 750 | 7.5K | 75K | 750K | 7.5M |  |
| 8.2                            | 82 | 820 | 8.2K | 82K | 820K | 8.2M |  |
| 91                             | 91 | 910 | 9.1K | 91K | 910K | 9.1M |  |

#### 555 Timer Block Diagram



Zener Diodes: From Wikipedia: A **Zener diode** is a diode which allows current to flow in the forward direction in the same manner as an ideal diode, but also permits it to flow in the reverse direction when the voltage is above a certain value known as the breakdown voltage, "zener knee voltage", "zener voltage", "avalanche point", or "peak inverse voltage".

The device was named after Clarence Zener, who discovered this electrical property. Many diodes described as "zener" diodes rely instead on avalanche breakdown as the mechanism. Both types are used. Common applications include providing a reference voltage for voltage regulators, or to protect other semiconductor devices from momentary voltage pulses.

|                | Nominal                                             | Test                   |                                                            | Maximum                                         | Maximum Reverse Leakage Current                                       |                                    |
|----------------|-----------------------------------------------------|------------------------|------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------|------------------------------------|
| Type<br>Number | Zener Voltage<br>Vz @ Izt <sup>(3)</sup><br>(Volts) | Current<br>Izt<br>(mA) | Maximum Zener Impedance<br>Zzτ @ Izτ <sup>(1)</sup><br>(Ω) | Regulator Current<br>IzM <sup>(2)</sup><br>(mA) | T <sub>A</sub> = 25°C<br>I <sub>R</sub> @ V <sub>R</sub> = 1V<br>(μA) | TA = 150°C<br>IR @ VR = 1V<br>(μΑ) |
| 1N746A         | 3.3                                                 | 20                     | 28                                                         | 110                                             | 10                                                                    | 30                                 |
| 1N747A         | 3.6                                                 | 20                     | 24                                                         | 100                                             | 10                                                                    | 30                                 |
| 1N748A         | 3.9                                                 | 20                     | 23                                                         | 95                                              | 10                                                                    | 30                                 |
| 1N749A         | 4.3                                                 | 20                     | 22                                                         | 85                                              | 2                                                                     | 30                                 |
| 1N750A         | 4.7                                                 | 20                     | 19                                                         | 75                                              | 2                                                                     | 30                                 |
| 1N751A         | 5.1                                                 | 20                     | 17                                                         | 70                                              | 1                                                                     | 20                                 |
| 1N752A         | 5.6                                                 | 20                     | 11                                                         | 65                                              | 1                                                                     | 20                                 |
| 1N753A         | 6.2                                                 | 20                     | 7                                                          | 60                                              | 0.1                                                                   | 20                                 |
| 1N754A         | 6.8                                                 | 20                     | 5                                                          | 55                                              | 0.1                                                                   | 20                                 |
| 1N755A         | 7.5                                                 | 20                     | 6                                                          | 50                                              | 0.1                                                                   | 20                                 |
| 1N756A         | 8.2                                                 | 20                     | 8                                                          | 45                                              | 0.1                                                                   | 20                                 |
| 1N757A         | 9.1                                                 | 20                     | 10                                                         | 40                                              | 0.1                                                                   | 20                                 |
| 1N758A         | 10                                                  | 20                     | 17                                                         | 35                                              | 0.1                                                                   | 20                                 |
| 1N759A         | 12                                                  | 20                     | 30                                                         | 30                                              | 0.1                                                                   | 20                                 |



Question 1 (20 Points) Astable Multivibrator (An Iconic 555 Timer Application)

a. (4pts) A 555 timer, astable multivibrator is built as shown with  $R_A = unknown$ ,  $R_B = unknown$ ,  $R_C = 33k\Omega$ ,  $C1 = 10\mu$ F,  $C2 = 0.01\mu$ F,  $C3 = 330\mu$ F, and V1 = 9V. Determine the ratio of resistors  $R_A/R_B$  that will produce a duty cycle of 60%.

Duty Cycle = T1/T(R<sub>A</sub>+R<sub>B</sub>)/(R<sub>A</sub>+2R<sub>B</sub>) = 0.6 R<sub>A</sub>+R<sub>B</sub> = 0.6R<sub>A</sub> + 1.2R<sub>B</sub> 0.4R<sub>A</sub>=0.2R<sub>B</sub> **R**<sub>A</sub>/**R**<sub>B</sub> = 1/2

b. (4pts) Using this ratio of  $R_A/R_B$ , calculate the values for  $R_A$  and  $R_B$  needed to yield a frequency of 20Hz.

 $R_{B} = 2R_{A}$ f = 1.44/(R<sub>A</sub> + 2R<sub>B</sub>)C1 f = 1.44/(R<sub>A</sub> + 2(2R<sub>B</sub>))C1 20 = 1.44/(5R<sub>A</sub>)(10µ) R<sub>A</sub> = 1.44kΩ R<sub>B</sub> = 2.88kΩ

c. (3pts) Plot the output voltage (I) below, showing at least two full cycles, starting with the output voltage at its maximum (assume = 9V). Label the horizontal and vertical scales.



d. (3pts) Determine the maximum and minimum voltages at pins 6 (C). List the values and add a trace to the plot for part c. above for this voltage. Assume that the circuit is in steady state. You may want to look at the background information at the beginning of this exam.

Trigger at  $1/3^{rd}$  and  $2/3^{rd}$  of V1 (9V) Vmin = 3V and Vmax = 6V

e. (2pts) The capacitors used for this project are inexpensive and have a large tolerance band of +10% and -5%. This means the actual capacitance can be 10% greater than the labeled value or 5% less than that value. Determine the maximum and the minimum period that this circuit might have given this tolerance band.

T = 1/f = 1/20 = 50 msWhen C1 is 10% greater than labeled value, Tmax = 1.1 x 50 ms = 55 msWhen C1 is 5% less than labeled value, Tmin = 0.95 x 50 ms = 47.5 ms

f. (1pt) List the answer you found for R<sub>A</sub> and R<sub>B</sub> in part b. on the previous page. The background information provided list standard 5% resistor values. Now list the values you would use for R<sub>A</sub> and R<sub>B</sub> to build the actual circuit, trying to stay as close to the design timing. Use only one resistor for each of R<sub>A</sub> and R<sub>B</sub>.

 $R_{A} = 1.44 \text{ k}\Omega \rightarrow \text{use } R_{A} = 1.5 \text{ k}\Omega$  $R_{B} = 2.88 \text{ k}\Omega \rightarrow \text{use } R_{B} = 3 \text{ k}\Omega$ 

g. (3pts) What is the on time (T1), off time (T2), and duty cycle of the circuit in part f.?

 $T1 = 0.693(R_A + R_B)C1 = 0.693(4.5k)10\mu = 31.185 ms$   $T2 = 0.693(R_B)C1 = 0.693(3k)10\mu = 20.79 ms$ Period T = T1 + T2 = 51.975 ms Duty cycle = T1/T = 60%

EI

#### Question 2 (20 Points) Combinational & Sequential Logic Circuits

a. (8pts) The circuit below shows how a simple logic gates can be built out of transistors and resistors. The circuit is inside the dashed box and has three inputs and two outputs. Voltages above 2.5V are logic high and voltages below 2.5V are logic low.



i. (6pts) Complete the table below using logic levels of 0 and 1, not the actual voltages.

| Vin1 | Vin2 | Vin3 | А | В |
|------|------|------|---|---|
| 0    | 0    | 0    | 1 | 1 |
| 0    | 0    | 1    | 1 | 0 |
| 0    | 1    | 0    | 0 | 1 |
| 0    | 1    | 1    | 0 | 1 |
| 1    | 0    | 0    | 0 | 1 |
| 1    | 0    | 1    | 0 | 1 |
| 1    | 1    | 0    | 0 | 1 |
| 1    | 1    | 1    | 0 | 1 |

#### A = Vin1 NOR Vin2

B = A NAND Vin3

ii. (2pts) What type of logic gate does output A represent? What logic gate computes B from A and Vin3?

A represents a **NOR** gate **NAND** gate computes B from A and Vin3 b. (2pts) A 4-bit counter had an initial state listed as the start state in the table below, and then receives a string of clock pulses. What are QA, QB, QC and QD after 7 clock pulses? Clearly indicate the state of each signal.

|                      | QD | QC | QB | QA |
|----------------------|----|----|----|----|
| Start state          | 1  | 1  | 0  | 1  |
| State after 7 counts | 0  | 1  | 0  | 0  |

1101 (binary) = 13 (decimal)

Counting sequence starting 13 is 14, 15, 0, 1, 2, 3, 4  $\dots$  4 (decimal) = 0100 (binary)

c. (4pts) Complete the truth table below for the following circuit. You need to complete the last column but you **must also support your answer** by computing the logic levels at the four intermediate points in circuit.



d. (1pt) Given the input values of X and Y, and the corresponding intermediate output D, what logic gate would give the same output (D)?

## XOR

e. (5pts) The following is a diagram of one flip flop. Remember that flip flops trigger on the falling edge of the clock pulse. The timing diagram demonstrates the J, K, and clock pulses given. Determine the output Q and write it on the timing diagram. Q starts out low.



First falling edge of clock pulse: J=1; K=1 $\rightarrow$  JK flip-flop in toggle state $\rightarrow$  Q toggles from 0 to 1 Second falling edge of clock pulse: J=0; K=1 $\rightarrow$  reset state $\rightarrow$  Q becomes 0 Third falling edge of clock pulse: J=1; K=1 $\rightarrow$  toggle state $\rightarrow$  Q toggles from 0 to 1