ENGR-2300

Electronic Instrumentation

Quiz 2
Spring 2022

Print Name

\qquad RIN \qquad

Section

\qquad

I have read, understood, and abided by the Collaboration and Academic Dishonesty statement in the course syllabus. The work presented here was solely performed by me.

Signature:

\qquad

Date:

\qquad

On all questions: SHOW ALL WORK. BEGIN WITH FORMULAS, THEN SUBSTITUTE VALUES AND UNITS. No credit will be given for numbers that appear without justification. Unless otherwise stated in a problem, provide 3 significant digits in answers. Read the entire quiz before answering any questions. Also it may be easier to answer parts of questions out of order.
I. Thèvenin Equivalent And Voltage Follower (20 points) As stated on the cover page: Round answers to 3 significant digits. Show formulas first and show your work. No credit will be given for numbers that appear without justification.

The Thevenin Equivalent Circuit consists of a voltage source in series with a resistor, which provides a very simple replacement for much more complex circuits. If we have this simple source, analyzing complex loads becomes quite easy.
a) (7 pts) Find the Thèvenin equivalent voltage and resistance for the circuit below. The load is to the right of the dashed line.

b) (7 pts) Now find the Thèvenin equivalent voltage and resistance for the circuit below. The load is to the right of the dashed line. (Hint. It may be useful to do this in stages. Calculate the Thèvenin voltage and resistance of the voltage source and first two resistors, then add in R4 and R2.)

$$
\begin{aligned}
& \text { For stage 1: } V+h=30 \cdot \frac{2 k}{1 k+2 k}=20 \mathrm{~V} \\
& R+h=1 k \| 2 k=667 \Omega \\
& \text { Now redraw circuit: }
\end{aligned}
$$

c) (4 pts) An ideal voltage follower is now placed between R1 and R4 as shown below. If we do not connect an RLoad resistor to the circuit, what is the voltage at the load resistor?

II. Strain Gauges and Bridges (20 points)

$$
\begin{aligned}
& \leftarrow \text { note that the left and } \\
& \text { right branches are each } \\
& \text { voltage dividers that } \\
& \text { divide a voltage starting } \\
& \text { at }-5 \mathrm{~V} \text { and increasing } \\
& \text { love to }+5 \mathrm{~V}
\end{aligned}
$$

a. (3 pts) In the strain gauge above, suppose that R 3 has a value of 370Ω. What is the differential voltage output (V1 - V2)?

$$
\begin{aligned}
& V_{1}=(-5)+(10) \frac{350}{350+350}=O V \\
& V_{2}=(-5)+(10) \frac{350}{350+370}=-0.139 \mathrm{~V} \\
& V_{1}-V_{2}=0.139 \mathrm{~V}
\end{aligned}
$$

b. (6 pts) Now we look at a new strain gauge connected to a differential amplifier as shown above. If the voltage Vout is 1.2 V , find the value of R3. (Assume that the op amp is a rail-to-rail chip, meaning that the output can reach the voltage of the power supplies; otherwise assume it is ideal.)

$$
\begin{aligned}
& V_{0 u}=\frac{R_{5}}{R_{6}}\left(V_{2}-V_{1}\right)=\frac{R_{7}}{R_{5}}\left(v_{2}-V_{1}\right) \\
& \left.1,2 V=\frac{10 k}{1 k}\left(V_{2}-V_{1}\right)=0 . V_{2}-v_{1}\right)=0.12 v \\
& V_{1}=0 V_{1}=0.12 V \\
& (-5)+10 \frac{500}{R_{3}+500}=0.12 v \\
& R 3
\end{aligned}
$$

c. (6 pts) Suppose that the value of R3 in part b varies during normal operation. Assuming that you keep the values of R7 and R8 equal, what is the maximum resistance that R3 can have without saturating the op-amp? What is the minimum resistance it can have without saturating the op-amp?

$$
\begin{aligned}
& M_{a x} V_{04} t=5 V, V_{2}-V_{1}=\frac{5 V}{10}=0.9 V \\
& V_{2}=0.5 V \\
& \left.M_{\text {in }} V_{\text {out }}=-5 V, V_{2}-V\right)+10 \frac{500}{R_{3}+500}=0.5 V, R_{3}=409 \Omega \\
& (-5)+10 \frac{500}{R_{3}+500}=-0.5 V, V_{2}=-0.5 V
\end{aligned}
$$

d. (3 pts) Name one change you could make to the differential amplifier circuit to increase its sensitivity (in other words, the amount of change in the output voltage for every ohm of change in R3. You answer should not be dependent on the current value of R3.)

$$
\begin{aligned}
& \text { Changing } R_{8} \text { and } R_{7} \text { to larger } \\
& \text { resistances will increase the diff amp } \\
& \text { gain and therefore the sensitivity. }
\end{aligned}
$$

e. (2 pts) In Experiment 5 and Project 2, you were asked to consistently use the same cantilever beam and strain gauge each time you came to class or open shop. Why was this the case?

$$
\begin{aligned}
& \text { changing beams would introduce measurement error } \\
& \text { and/or requive you to recalibrate. strain gauge } \\
& \text { and beam deflection (and other factors) will cause } \\
& \text { each beam to respond difterenty at zero deflection. } \\
& \text { You must include units. } 9 \begin{array}{l}
\text { Schoch and J. D. Reed }
\end{array}
\end{aligned}
$$

III. Operational Amplifier Applications (20 points)

Spring 2022
a. For the circuits below, assume the op amps are ideal:

i. (2 pts) For the circuit on the left, given $R_{f}=4 \mathrm{k} \Omega$ and $R_{\text {in }}=1 \mathrm{k} \Omega$

b. Answer the following questions based on the differentiator circuit show. For parts i. and ii. assume the op amp is ideal.
i. (2pts) For what range of frequencies will this circuit behave as a differed tor?
Give your answer in Hz .

$$
f \ll 19.9 \mathrm{kHz} \text { on } 20 \mathrm{hHt}
$$

$$
\begin{gathered}
2 \pi R_{i n} A_{10}-9 \\
\pi 000_{10}
\end{gathered}
$$

ii. (2pts) For AC steady state, if Vi is a 5 kHz sinewave with an amplitude of 2 V and a phase angle of 0°, what is the amplitude and phase of Vo?

$$
\begin{aligned}
& \text { Consider } 5 \mathrm{KHz} \text { as } \ll 20 \mathrm{kHt} V_{0}(j \omega)=H(j w) V_{i}(j \omega) \quad H(j w)=-j w R_{t} C_{i n} \\
& \mid H j \omega) \mid=(2 \pi)\left(5 \times 10^{3}\right)\left(3,2 \times 10^{3}\right)\left(10^{-y}\right)=10.01 \\
& \triangle H(j \omega)=-90^{\circ} \\
& A_{\text {mpg }}\left(V_{0}\right)=\operatorname{Arg}\left(V_{0}\right) \cdot\left|H_{t}(w)\right|=2 V \\
& \Varangle V_{0}=4 H(p \omega)+4 U_{i}=-90+0 \\
& \psi=-90^{\circ}
\end{aligned}
$$

iii. (3pts) Now assume the op amp is ideal except that Vo is limited to be $-4<\mathrm{Vo}<4 \mathrm{~V}$, this limit is due to saturation of the op amp.
If Vi is a 4 kHz sinewave, what is the maximum amplitude for Vi that won't result in saturation of the output stage of the op amp?
at yt ht $|1+(j w)|=0.00420 .9$

$$
\left|r_{\text {ox }} A_{\text {mog }} V_{\text {out }}\right|=4 \quad|H(j n)|=0.3
$$

$$
\max A_{\text {mp }} V_{\text {in }}=\frac{\operatorname{nax} A_{n}, V_{\text {out }}}{0 . V}=5 V
$$

IV - Concepts, Troubleshooting and Data Analysis (20 points)
a. (4 pts) Real components compared to ideal: In Experiment 5 you built and modeled the circuit on the right.
i. For the LTspice model you included R1. But you
 didn't put a resistor there when you built the circuit. Why not? \{1pt \}
Real Inductues have resistion... RI is the intromal resostas of $L 1$.
ii. Your partner wired the circuit with a 0.01 uF capacitor rather than the 0.1 uF capacitor called for in the experiment. Would the oscillation frequency go up or down and by what percentage (to the nearest 1%)? \{3pt\}

$$
w_{1}=\frac{1}{\sqrt{L C}} \quad \omega_{2}=\frac{\sqrt{0.1 l a t a i o n ~ f r e q u e n c y ~ g o ~ u p ~ o r ~ d o y n ~ a n d ~ o y ~}}{\sqrt{0.1 L \cdot C}}
$$

b. (4 pts) The plot above shows a damped oscillation. The horizontal scale is time $(5 \mathrm{~ms}$ per $f=157 \mathrm{~A} 2$ small division) and the vertical scale is voltage (0.5 V per small division). The horizontal scale is from 0 s to 100 ms . The vertical scale is from -5 V to 5 V .
Find the decay constant α and the angular frequency ω for
data points on the plot that you use for your answer.
Any

$$
\begin{aligned}
& c t_{1}=22 \mathrm{~ms}, v=4 v \\
& \partial t_{2}=92 \mathrm{~ms} ; v=2
\end{aligned}
$$

$+1$

EI You must include units.

$$
\ln (2)^{2}=-\alpha(-0,00)
$$

$$
e^{-\alpha(22-92) \cos s}
$$

6
P. Schoch and J. D. Rees

c. (6 pts) The OP37 is included in the ADALP2000 kit of parts and a page of the data sheet is shown above. Use this to answer the following questions.
i. (2pt) If the OP 37 is powered by $\pm 15 \mathrm{~V}$ supplies and has a $10 \mathrm{k} \Omega$ load, what are the expected max and min output voltages that the OP37 can achieve?
Max t min $\theta_{\text {output } 2+146,-140}$
ii. (2pt) If the load is changed to 600Ω, what is the expected \max and min output voltages?

$$
\text { max } \sim 13 u \text { mim }-1 / \mathrm{will} \text { amt } \pm 12 \pm 13 \pm 11 \text { as valid }
$$

iii. (2pt) Staying with the OP 37 and $\pm 15 \mathrm{~V}$ supplies, and using a high resistance load (greater than the $10 \mathrm{k} \Omega$): if a 1 MHz signal is applied, what is the maximum output voltage 4 that the OP37 is expect to be able to provide?

You must include units.
d. (2pts) Which of the following op-amp configurations works best to amplify the signal from a stain gauge bridge circuit? Circle one.

Voltage Follower

Adder

Inverting

Integrator

Non-Inverting
Differential

Differentiator
e. (2pts) Explain in 25 words or less: Why does the Miller Integrator (practical integrator) have a resistor across the capacitor while the ideal integrator doesn't have one? All op amps han de errors. Given enough tine The chile. Integrator the gain of the eirenit for de 4 low trequeeis
Any parts of this count
f. (2 pts) What is the likely capacitance of a capacitor with a label of 104 on the side?

$$
\begin{aligned}
& 10 \times 10^{4}=10^{5} \\
& 10^{5} \mathrm{FF}-\text { not liter } \\
& 10^{5} \mathrm{nF} \Rightarrow 100 \mathrm{FF} \text { not liter but } \\
& 10^{5} \mathrm{FF} \Rightarrow \mathrm{Fes} \text { will allow } 10 \mathrm{FF}
\end{aligned}
$$

