ENGR-2300
Electronic Instrumentation
Quiz 2
Fall 2018
\qquad

Section

\qquad

Question I (20 points) \qquad
Question II (20 points) \qquad
Question III (20 points) \qquad
Question IV (20 points) \qquad
LMS Question is worth an additional 20pts

Total (80 points) \qquad

On all questions: SHOW ALL WORK. BEGIN WITH FORMULAS, THEN SUBSTITUTE VALUES AND UNITS. No credit will be given for numbers that appear without justification. Read the entire quiz before answering any questions. Also it may be easier to answer parts of questions out of order.

1. Thevenin Equivalent And Circuit Concepts

The Thevenin Equivalent Circuit consists of a voltage source in series with a resistor, which provides a very simple replacement for much more complex circuits. If we have this simple source, analyzing changing loads becomes quite easy.
a) Two measurements are performed in order to determine the unknowns, Vth and Rth. In the first measurement load resistor RL is $1 \mathrm{k} \Omega$ and is later changed to $5 \mathrm{k} \Omega$. For these two cases, the voltage across the load resistor, VL , is experimentally found to be 1.0 V and 2.5 V respectively, as shown in table below. Using these two measurements, find the two unknowns, Vth and Rth. $\{5 \mathrm{pts}\}$

Using Voltage division
$v_{1}=v_{T h}\left(\frac{1 K}{1 K+R_{T h}}\right)$
$\Rightarrow \quad V_{T h}=\frac{R_{T h}}{1 K}+1$ eq ${ }^{n} 1$

$$
\Rightarrow v_{\text {Th }} \times 1 k=R_{\text {Th }}+1 k
$$

$$
\square^{ـ}
$$

RL (in ohms)	VL (in volts)
1 k	1.0
5 k	2.5

$$
\text { Solving } e q^{n} \text { and } e q^{n} 2 \text {; }
$$

$$
e q^{n} 1-e q^{n} 2 \Rightarrow
$$

$$
\begin{aligned}
& \text { Using Voltage division } \\
& V_{z}=V_{T h}\left(\frac{5 k}{5 K+R_{T h}}\right) \\
& V_{T h} \times 5 k=12.5 k+2.5 R_{T h}
\end{aligned}
$$

$$
\frac{R_{\text {Th }}}{2 k}-1.5=0
$$

$$
R_{\text {Th }}=3 k \Omega
$$

$$
V_{T h}=\frac{R_{\text {Th }}}{1 k}+1=4.0 \mathrm{~V}
$$

$$
\Rightarrow \quad V_{T h}=\frac{R_{T h}}{2 k}+2.5 \mathrm{eq}^{n} 2
$$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{Th}}=4.0 \mathrm{~V} \\
& \mathrm{R}_{\mathrm{Th}}=3 \mathrm{~K} \Omega
\end{aligned}
$$

b) For a completely different circuit shown below, find and sketch the Thevenin Equivalent Voltage source for the part of the circuit inside the dashed line (i.e. resistors R1 and R2 and the voltage source V1). $\{4 \mathrm{pts}\}$

c) Find and sketch the Thevenin Voltage source for the entire circuit (i.e. resistors R1, R2,

13.33 V

$$
\begin{aligned}
& V_{T h}=13.33\left(\frac{1 k}{1 k+2 k+1 k}\right)=3.33 \mathrm{~V} \\
& R_{T h}=1 K \| 3 \mathrm{~K}=0.75 \mathrm{~K}=750 \Omega
\end{aligned}
$$

$\mathrm{V}_{\mathrm{Th}}=3.33 \mathrm{~V}$
$\mathrm{R}_{\mathrm{Th}}=750 \Omega$
\qquad
d) Using the Thevenin equivalent circuit obtained in part c , find the current through load resistor when Road $=4 \mathrm{k} \Omega$. \{3pts $\}$

$$
\begin{aligned}
I_{\text {RLoad }}=\frac{3.33 \mathrm{~V}}{4750 \Omega} & =0.702 \mathrm{~mA} \\
& =702 \mu \mathrm{~A}
\end{aligned}
$$

$$
\left(\mathrm{I}_{\text {Reload }}\right)_{4 \mathrm{k}}=0.702 \mathrm{~mA}
$$

e) Circuit concepts: Strain Gauge. The circuit shown the strain gauge used in Exp. 5.

Assume that if the beam is unstressed, R3 and R4 are both 300Ω. Determine Vout if the beam is moved so that $\mathrm{R} 3=340 \Omega$ and $\mathrm{R} 4=260 \Omega$. Be sure to note the polarity. $\{4 \mathrm{pts}\}$

$$
\begin{aligned}
& V_{\text {left }}=[5-(-5)]\left(\frac{300}{300+300}\right)-5 \mathrm{~V} \\
&=5 \mathrm{~V}-5 \mathrm{~V}=0 \mathrm{~V} \\
& V_{\text {right }}=[5-(-5)]\left(\frac{260}{260+340}\right)-5 \mathrm{~V} \\
&=-0.667 \mathrm{~V} \\
& \begin{aligned}
V_{\text {out }} & =V_{\text {left }}-V_{\text {right }}
\end{aligned}=0-(-0.667) \\
&=0.667 \mathrm{~V}
\end{aligned}
$$

$$
\text { Vout }=0.667 \mathrm{~V}
$$

2. Harmonic Oscillators and Math

The velocity measured for an oscillating cantilever beam is shown in graphical form as:

The horizontal scale is time (0.05 sec per division) and the vertical scale is velocity $(0.25 \mathrm{~m} / \mathrm{s}$ per division).
a. Find the decay constant α and the angular frequency ω for this function. Mark the points used on the plot. $\{5 \mathrm{pts}\}$

$$
\begin{aligned}
N_{1} & =v_{0} e^{-\alpha\left(t_{1}-t_{0}\right)} \\
1 & =1.5 e^{-\alpha(0.5)} \\
\alpha & =-\frac{1}{0.5} \ln \left(\frac{1}{1.5}\right) \\
& =0.811 \mathrm{sec}^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& 6 \text { cycles in } 0.5 \mathrm{sec} \\
\Rightarrow & 12 \text { cycles in } 1 \mathrm{sec} \\
\Rightarrow & f=12 \mathrm{~Hz} \\
& \omega=2 \pi f=24 \pi \mathrm{rad} / \mathrm{sec} \\
& \omega=75.4 \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

b. Write the mathematical expression for the velocity in the form $v(t)=A e^{-\alpha t} \cos \omega t$ in m / s. Use real values for the constants and provide units where appropriate. $\{4 \mathrm{pts}\}$

$$
V(t)=1.5 e^{-0.811 t} \cos [75.4 t] \mathrm{m} / \mathrm{s}
$$

c. Find the approximate acceleration $a(t)$ of the beam from your answer to part b. Again, use real values for the constants and provide units where appropriate. Hint: Keep only the largest term in your expressions. $(f g)^{\prime}=f g^{\prime}+f^{\prime} g\{4 \mathrm{pts}\}$

$$
\begin{aligned}
& a(t)=\frac{d v(t)}{d t}=\frac{d}{d t}\left(1.5 e^{-0.811 t} \cos [75.4 t]\right) \\
& =1.5 e^{-0.811 t}[-\sin (75.4 t)] \times 75.4+(-0.811) 1.5 e^{-0.811 t} \cos (75.4 t) \\
& =-113.1 e^{-0.811 t} \sin (75.4 t)-1.22 e^{-0.811 t} \cos (75.4 t) \quad a(t) \approx-113.1 e^{-0.811 t} \sin (75.4 t) \\
& \mathrm{can} \text { be ignored as } 113>1.22
\end{aligned}
$$

d. A guess is made for the amplitude of the beam position $x(t)$. The consensus of the team partners is that the displacement is about 2 cm or 0.02 m . Write the mathematical expression for the position in the form $x(t)=B e^{-\alpha t} \sin \omega t$ in meters, find the approximate velocity $v(t)$ and compare the result with your answer to part b . Was the guess high, low or about right? $\{4 \mathrm{pts}\}$

$$
\begin{aligned}
\text { If } B=0.02 & \Rightarrow x(t)=0.02 e^{-0.811 t} \sin (75.4 t) \mathrm{m} \\
v(t)=\frac{d}{d t} x(t) & \approx 0.02 e^{-0.811 t} \times 75.4 \cos (75.4 t) \rightarrow \text { only the } \\
& \approx 1.51 e^{-0.811 t} \cos (75.4 t) \mathrm{m} / \mathrm{s}
\end{aligned}
$$

About right
e. Assume that you would like to build an LC oscillator circuit that operates at the same frequency as the beam above. You have an $4700 \mu \mathrm{~F}$ capacitor and need to make an inductor. What value of inductance is necessary to achieve this frequency? \{3pts\}

$$
\begin{aligned}
\omega=\frac{1}{\sqrt{L C}} & \Rightarrow 75.4=\frac{1}{\sqrt{L \times 4700 \times 10^{-6}}} \\
& \Rightarrow L=37.4 \mathrm{mH}
\end{aligned}
$$

3. Operational Amplifier Applications
a. (2pts)For diagram shown determine Vout (t) if: $\operatorname{Vin}(\mathrm{t})=0.5 \cos 8000 t$ Volts $\mathrm{R}_{\mathrm{in}}=1 \mathrm{k} \Omega$ $\mathrm{R}_{\mathrm{f}}=7 \mathrm{k} \Omega$

$$
\begin{aligned}
& \operatorname{Gan}_{\text {an }}=-7 \\
& V_{\text {out }}(t)=-3.50,8000 t
\end{aligned}
$$

b. For the circuit in part a. above, what is $\mathrm{I}_{\mathrm{in}}(\mathrm{t})$ and what is the effective input impedance, $z_{\text {in }}$? (pts) $\quad I_{\text {M }}=V_{1} / \mathrm{ctan}_{1-}=0.5 \cos 8000 t \mathrm{~mA}$
c. For the circuit shown: $\operatorname{Rin}=5 \mathrm{k} \Omega$
$\mathrm{Rf}=80 \mathrm{k} \Omega$

$$
32 \times 10^{-3}
$$

$\mathrm{Cf}=0.4 \mathrm{uF}$

$$
032
$$

1032
i. AC Steady State: if Yin is a sinusoidal waveform, for what range of frequency will this circuit behave as an integrator?

$$
\left(8 \times 10^{-1}\right)(4 \times, 5)
$$

Give the answer in Hz not radian $/ \mathrm{sec}$.

ii. Give the transfer function, $\mathrm{H}(\mathrm{j} \omega)$ if the input has a frequency of 10 kHz , determine ω and plug in the component values. You are allowed to give the approximate but only if it is appropriate.(4pts)

$$
\begin{equation*}
f \gg 5 k_{*} \tag{-1}
\end{equation*}
$$

$$
=\left(\frac{-1}{5}\right)(0,0.08)=+0.08 j
$$

iii. What is the transfer function if Yin is a dc value? ' 2 pts)
d. Now build the circuit. Draw lines to represent wires to show how this circuit would be built and tested using the Analog Discovery as the signal source and the oscilloscope display. You must power the op-amp, either using batteries or the power supplies of the Analog Discovery. The figure shown is for the Analog Discovery 2, but the connections are the same for the original
 board. Again - draw lines to build and test this circuit. (4pts) $\mathrm{Rin}=5 \mathrm{k} \Omega, \mathrm{Rf}=80 \mathrm{k} \Omega, \mathrm{Cf}=0.4 \mathrm{uF}$

e. Real signal sources have effective source impedance, the internal resistance of a battery is one example, but waveform generators also have a source impedance, Rsig in this problem. Determine Yout as a function of Vsig, Rsig, R1 and R2 for both of these circuis: (4pts) (Note: Rsig is part of the signal source and typically not under your control. R1 and R2 and the circuit configuration are what you

I
4) Concepts, Troubleshooting and Data Analysis
a. Real components compared to ideal: In Experiment 5 you built this circuit:
i. But you didn't to add the 40Ω resistor. Why not? (pt)

OR $\Rightarrow 40 \mathrm{n}$ is recritame

ii. From the experiment and simulation you know that the voltage on the capacitor and the current in the inductor are both signals that have a decaying oscillation. Continuing with the energy loss question, will the energy loss smoothly decay or will vary with the current in the inductor? Circle one the statement below that best describes the rate of energy loss during the decaying oscillation. (2pts)

energy loss:

$$
\text { Peaks when } I_{L} \text { is at a peak }
$$

$$
\text { Peaks when } \mathrm{I}_{\mathrm{L}}=0
$$

iii. The capacitor used in for this circuit is a $0.1 u F$ capacitor. If by mistake your partner used a 0.05 uF capacitor, would the resonant frequency go up or down, and by what percentage would the frequency change, to the nearest 1% ? (3pts)
smoothly decays
b. Explain in 25 words or less: Why does the Miller Integrator (practical integrator) have a resistor across the capacitor while the ideal integrator doesn't have one? \{2pts $\}$ w: th out any de ingriferious
so the of and
Adding R_{P} line the de gain.

$$
\begin{aligned}
& w_{1}=\frac{1}{\sqrt{L C}} \\
& u_{z}=\frac{}{\sqrt{0, L L C}} \\
& \frac{w_{2}}{w_{1}}=\frac{1}{\sqrt{\sigma \pi}}=1.41 \quad m_{c}=1.41 \times w_{1} \\
& w_{0} 41 \% \text { h.ishethe } w_{1}
\end{aligned}
$$

c. Classroom Knowledge and Tasks (4pts) True or False
i. The resistor used for the experiments in this course weren't provided in the bag of parts, rather they are in the bins on the center table.
True
ii. When measuring the transfer function for a circuit under test, it is only necessary to measure the output signal.
Fa| se
iii. During experiment in this course using the 741 op -amp as an inverting amplifier with a gain of -5 and an input of 4 V dc , the output will be -20 V .

$$
\begin{aligned}
& \text { False } \\
& \Rightarrow \text { will } \\
& \text { loner viltere }
\end{aligned}
$$

iv. When starting a new experiment and asking for first time to have a signature you must have hand-drawn circuit diagram for only the circuit that is being tested or simulated. The other hand-drawn diagrams can be completed later.

$$
\text { False } \quad \text { all diagram ns Mol }
$$

bern
$\operatorname{lom} \rho$ tot
d. Which of the following op-amp configurations is used to convert the accelerometer output to get a velocity measurement. Circle one. (2 pts)
Voltage Follower Inverting Non-Inverting Differential

Adder

Differentiator
e. Your experiment report has a plot of a sinewave voltage trace from the Analog Discovery oscilloscope instrument. List three things that must appear on the plot either by hand or by computer. (3pts)
timon scale, voltage scale, bison amplitude, frequency, period
f. List each of the following as true or false. Assume the op-amp is ideal, a voltage source, is connected to Vine, and that there is a resistive load connected between Vout and ground.
i. The input impedance of the voltage follower if very large.
True
ii. The output current of the voltage follower is equal to the input voltage divided by

$$
\begin{aligned}
& \text { the load resistance. } \\
& \text { True } V_{\text {ont }}=U_{\text {in }}, \quad I_{a_{\text {ut }} t}=\frac{V_{a_{u} t}}{U_{\text {Load }}}=\frac{U_{\text {in }}}{R_{\text {Load }}}
\end{aligned}
$$

g. Name the professor and a TA who is typically in your section of EI. First names count. (pts)

