ENGR-2300

Electronic Instrumentation

Quiz 1

Spring 2022

Print Name

\qquad RIN

Section

\qquad

I have read, understood, and abided by the Collaboration and Academic Dishonesty statement in the course syllabus. The work presented here was solely performed by me.

Signature:

\qquad

Date:

\qquad

On all questions: SHOW ALL WORK. BEGIN WITH FORMULAS, THEN SUBSTITUTE VALUES AND UNITS. No credit will be given for numbers that appear without justification. Unless otherwise stated in a problem, provide 3 significant digits in answers. Read the entire quiz before answering any questions. Also it may be easier to answer parts of questions out of order.

Standard Resistor Values $\mathbf{(\pm 5 \%)}$						
1.0	10	100	1.0 K	10 K	100 K	1.0 M
1.1	11	110	1.1 K	11 K	110 K	1.1 M
1.2	12	120	1.2 K	12 K	120 K	1.2 M
1.3	13	130	1.3 K	13 K	130 K	1.3 M
1.5	15	150	1.5 K	15 K	150 K	1.5 M
1.6	16	160	1.6 K	16 K	160 K	1.6 M
1.8	18	180	1.8 K	18 K	180 K	1.8 M
2.0	20	200	2.0 K	20 K	200 K	2.0 M
2.2	22	220	2.2 K	22 K	220 K	2.2 M
2.4	24	240	2.4 K	24 K	240 K	2.4 M
2.7	27	270	2.7 K	27 K	270 K	2.7 M
3.0	30	300	3.0 K	30 K	300 K	3.0 M
3.3	33	330	3.3 K	33 K	330 K	3.3 M
3.6	36	360	3.6 K	36 K	360 K	3.6 M
3.9	39	390	3.9 K	39 K	390 K	3.9 M
4.3	43	430	4.3 K	43 K	430 K	4.3 M
4.7	47	470	4.7 K	47 K	470 K	4.7 M
5.1	51	510	5.1 K	51 K	510 K	5.1 M
5.6	56	560	5.6 K	56 K	560 K	5.6 M
6.2	62	620	6.2 K	62 K	620 K	6.2 M
6.8	68	680	6.8 K	68 K	680 K	6.8 M
7.5	75	750	7.5 K	75 K	750 K	7.5 M
8.2	82	820	8.2 K	82 K	820 K	8.2 M
9.1	91	910	9.1 K	91 K	910 K	9.1 M

Table 1: Standard resistor values for 5\% tolerance resistors.

Figure 1: Resistor color and Tolerance bands
I. Voltage Dividers ($\mathbf{2 0}$ points) As stated on the cover page: Round answers to 3 significant digits. Show formulas first and show your work. No credit will be given for numbers that appear without justification.

a. (6 pts) What is the voltage at point A in the circuit above?
b. (4 pts) What is the current through R4?

You must include units.

c. (2 pts) In the circuit above, the voltage source represents some 9-volt battery with battery resistance $\mathrm{R}_{\text {batt, }}$ which is not shown. Draw $\mathrm{R}_{\text {batt }}$ in the correct location in the circuit above. (This may require you to draw a resistor overtop of a wire.)
d. (4 pts) You use a voltage probe with a very high input resistance to measure $V_{\text {out }}$ and you find it to be 6.4 V . What is the value of $\mathrm{R}_{\text {batt }}$?
e. (2 pts) Suppose that you instead measured $V_{\text {out }} u s i n g$ a voltage probe with much lower input resistance. How would this affect the voltage measured at $\mathrm{V}_{\text {out }}$?
f. (2 pts) Name one reason that two 9-volt batteries might have different resistances.
II. Resistor Combinations, concepts and miscellaneous (20 points) Note: Page 2 of this quiz has background information. The crib sheet may also be useful.

The following circuit consists of 8 resistors and there are 4 voltage markers at points $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and $\mathrm{D} . \mathrm{V} 1$ is a DC voltage source which can be created using W 1 of the instrumentation board. Note: several of the following questions are independent of each other, but not all.

a. (4 pt) It is desired to have the effective resistance of $\mathbf{R} 3$ combined with $\mathbf{R 4}$ to be $4.8 \mathrm{k} \Omega$. Using the table on page 2 of this quiz, standard 5\% resistor values, pick resistors for R3 and R4. State the resistance of each. If these resistors have 5% tolerance, what is the 4 -band color code for each resistor? You should note that 4.8k isn't a standard value.

R3 value: \qquad Color bands: \qquad

R4 value: \qquad Color bands: \qquad
b. (3 pts) If the voltage is measured to be 2.5 V at point B , what is the current through R7, R8, and R5? Be sure to include units on all answers.
\qquad
I(R8) \qquad
I(R5) \qquad
c. (2 pts) What is the equivalent resistance between points A and B ? Call this R_{AB}. Use part a. for the values of R3 and R4,
R_{AB} \qquad
d. (2 pts) What is the equivalent resistance between points C and D , Call this R_{CD}.

$$
\mathrm{R}_{\mathrm{CD}}
$$

\qquad
e. (2 pts) Redraw the circuit with 3 resistors, $\mathrm{R}_{\mathrm{AB}}, \mathrm{R} 5, \mathrm{R}_{\mathrm{CD}}$. Label the resistor values and mark points A, B, C, and D.
f. (2 pts) Using the figure you drew for part e., if V1=4V what is the voltage at point B?

$$
V_{B}=
$$

\qquad
g. (5 pts) Wire this circuit shown for part a. by drawing lines on the figure below. Use the wave gen/signal gen to provide a signal for V1, which is point A. Use channel 1 to measure the signal at point B and use channel 2 to measure the signal at point C .

Draw lines between the 2 figures to indicate wires. Both the M2K and the AD2 have the same wiring and colors. W1 is called Signal Generator on the M2K and Waveform
Generator on the AD2.

III. Filters \& Transfer Functions (20 points) For this problem, assume AC steady state.

1) Filters: Use figures A and B above to answer the following questions:
a) (2pts) Shown above are basic, two-element, passive filter configurations made with CR and RL combinations. Determine the general complex transfer function for each circuit in terms of $\mathrm{R}, \mathrm{L}, \mathrm{C}$ and frequency ω, by modeling each as a voltage divider. This is an AC steady state problem.
A) CR: $\frac{V_{\text {OUT }}}{V_{I N}}=\frac{V_{34}}{V_{12}}=$
B) RL: $\frac{V_{\text {OUT }}}{V_{I N}}=\frac{V_{34}}{V_{12}}=$
b) (2pts) For both circuits, what are the magnitude and phase for low but not zero phase?
Circuit A
Circuit B
c) (2pts) What type of filter is each? Choices are as shown on the Crib Sheet: low pass, high pass, band pass or band reject.

Circuit A
Circuit B
d) (4pts) Given: $\mathrm{L}=40 \mathrm{mH}, \mathrm{R}=2 \mathrm{k} \Omega$, and $\mathrm{C}=0.20 \mathrm{nF}$ Find the corner frequency or this question for each circuit. Give the value of both ω_{C} and f_{C}.
Circuit A
Circuit B
2) Transfer functions: Use the figure shown to answer the following questions
a. (5 pts) Find the transfer function of the circuit shown. Simplify such that there are no fractions in the numerator or denominator of the transfer function. $\mathrm{H}(\mathrm{j} \omega)=\operatorname{Vout}(\mathrm{j} \omega) / \operatorname{Vin}(\mathrm{j} \omega)$

b. (4 pts) What is the magnitude and phase of the transfer function when the frequency is very small (approaches zero)? And what is the magnitude and phase of the transfer function when the frequency is very large (approaches infinity)?
c. (1 pts) Is it possible for the magnitude of the transfer function to be greater than unity?

Circle one: Yes or No

You must include units.

IV - Phasors and Transformers (20 points)

1) Assume L1 and L2 form an ideal transformer with full coupling. The transformer has these specifications: $\mathbf{L} 1=\mathbf{1 8 0} \mathbf{m H}, \mathbf{L} \mathbf{2}=\mathbf{2 0} \mathbf{m H}$, Rsource $=\mathbf{9 0} \Omega$, Rload $=\mathbf{2 0 \Omega}$
a. (8pts) For the given information, determine the turns ratio, a. And determine the ratios Vout/Vin, Iout/Iin and the transformer input resistance, Rin. (Rin is Vin/Iin) This isn't the resistance seen by Vsource.
b. (2pts) If Vsource is a sinewave with a 10 V amplitude at 5 kHz , what is the amplitude of current $\mathrm{I}_{\text {in }}$? As with all problems, include units and show your work for partial credit. $\mathrm{I}_{\mathrm{in}}($ amplitude $)=$ \qquad
c. (3pts) The ideal transformer model assumes that self-inductance L1 and L2 are infinite, $|\mathrm{j} \omega \mathrm{L} 1|$ and $|\mathrm{j} \omega \mathrm{L} 2|$ approach infinity. On the practical side the transformer is close to ideal if $|j \omega \mathrm{~L} 1|>10 *$ Rsource and $|\mathrm{j} \omega \mathrm{L} 2|>10 *$ Rload. Just looking at L 2 , for what range of frequencies will this transformer be close to the ideal?

Conditions on f : \qquad
2. Phasors: This circuit shown has 2 complex impedances, Z 1 and Z2, connected as shown.
Given the polar form of the phasor of Vin: $\operatorname{Vin}=10 \mathrm{~V} \angle 0^{\circ}$ where 10 is the amplitude and 0° is the phase angle. And that phasor for Vz1 is $V z 1=4 V \angle 30^{\circ}$ (Again this format is a magnitude and a phase angle.)

a. (1pts) Give Vz1 in Cartesian form, $\mathrm{Vz} 1=\mathrm{a}+\mathrm{jb}$, find a and b .
b. (2pts) If Z 1 is made of just two components, one of which is a resistor, is the other a capacitor or an inductor?
c. (3pts) Determine Vz2, the voltage across Z 2 in Cartesian and polar form.
3. (1pt) Give the names of 2 of the people teaching this course. This can be first names or last names and can be the professors, teaching assistants, or undergraduate student assistants.
Spelling doesn't count. Using their Discord name is also valid.

