ENGR-2300
Electronic Instrumentation
Quiz 1
Spring 2020

Section

Question I (20 points) \qquad
Question II (20 points) \qquad
Question III (20 points) \qquad
Question IV (20 points) \qquad
LMS Question (20 points) (graded on LMS)
Total (80 points) \qquad

On all questions: SHOW ALL WORK. BEGIN WITH FORMULAS, THEN SUBSTITUTE VALUES AND UNITS. No credit will be given for numbers that appear without justification. Unless otherwise stated in a problem, provide 3 significant digits in answers. Read the entire quiz before answering any questions. Also it may be easier to answer parts of questions out of order.

Standard Resistor Values $\mathbf{(\pm 5 \%)}$						
1.0	10	100	1.0 K	10 K	100 K	1.0 M
1.1	11	110	1.1 K	11 K	110 K	1.1 M
1.2	12	120	1.2 K	12 K	120 K	1.2 M
1.3	13	130	1.3 K	13 K	130 K	1.3 M
1.5	15	150	1.5 K	15 K	150 K	1.5 M
1.6	16	160	1.6 K	16 K	160 K	1.6 M
1.8	18	180	1.8 K	18 K	180 K	1.8 M
2.0	20	200	2.0 K	20 K	200 K	2.0 M
2.2	22	220	2.2 K	22 K	220 K	2.2 M
2.4	24	240	2.4 K	24 K	240 K	2.4 M
2.7	27	270	2.7 K	27 K	270 K	2.7 M
3.0	30	300	3.0 K	30 K	300 K	3.0 M
3.3	33	330	3.3 K	33 K	330 K	3.3 M
3.6	36	360	3.6 K	36 K	360 K	3.6 M
3.9	39	390	3.9 K	39 K	390 K	3.9 M
4.3	43	430	4.3 K	43 K	430 K	4.3 M
4.7	47	470	4.7 K	47 K	470 K	4.7 M
5.1	51	510	5.1 K	51 K	510 K	5.1 M
5.6	56	560	5.6 K	56 K	560 K	5.6 M
6.2	62	620	6.2 K	62 K	620 K	6.2 M
6.8	68	680	6.8 K	68 K	680 K	6.8 M
7.5	75	750	7.5 K	75 K	750 K	7.5 M
8.2	82	820	8.2 K	82 K	820 K	8.2 M
9.1	91	910	9.1 K	91 K	910 K	9.1 M

Type	$\begin{aligned} & \mathbf{R}_{\text {int }} \\ & (\Omega) \end{aligned}$	$\begin{aligned} & \mathbf{V}_{\mathrm{oc}} \\ & (\mathrm{~V}) \end{aligned}$	Capacity ${ }^{\text {a }}$continuous, to $1 \mathrm{~V} / \mathrm{cell}$				Size (in)	Weight (gm)	$\begin{aligned} & \text { Q } \\ & \text { U } \\ & \text { U } \end{aligned}$	Comments
			(mAh)	@ (mA)	(mAh)	(mA)				
9 V "1604"										
Le Clanche	35	9	300	1	160	10	$0.65 \times 1 \times 1.9$	35	S	
Heavy Duty	35	9	400	1	180	10	"	40	S	
Alkaline	2	9	500	1	470	10	"	55	S	280mAh@100mA
Lithium	18	9	1000	25	950	80	"	38	S	Kodak Li-MnO ${ }_{2}$

You must include units.

I. Voltage Dividers and Battery Characteristics (20 points)

As stated on the cover page: Round answers to 3 significant digits. Show formulas first and show your work. No credit will be given for numbers that appear without justification.
a. The voltage-time curves for two types of batteries, flashlight and Mercury, are shown below.
i. Interpret the behavior in terms of the respective internal resistances. For this, you need to specifically comment about how their internal resistances change over time. (2pts)

Initially, the internal resistance of flashlight battery increases rapidly at a much faster rate compared to that of the Mercury battery.

As time increases, just before the batteries are completely dead, the internal resistance of Mercury
 battery increases sharply.
ii. A voltmeter whose resistance is 1000Ω measures the voltage of a worn-out 1.5 V flashlight battery (same one used in the previous part) as 0.9 V . What is the internal resistance of the battery? (3pts)

$$
\begin{aligned}
& V_{\text {out }}=V_{\text {in }}\left(\frac{1000}{1000+R_{\text {bat }}}\right) \\
& \Rightarrow 900+0.9 R_{\text {bat }}=1500 \\
& \Rightarrow R_{\text {bat }}=666.67 \Omega
\end{aligned}
$$

iii. If the flashlight battery from the previous part had been measured using a vacuum tube voltmeter with a resistance of $10 \mathrm{Meg} \Omega$, what voltage would have been read?

You must include units.
b. Consider the circuit shown below. The DC voltage of the source, Vsource, is unknown. We do know a few details about the resistors that are used in the circuit and the voltages Vout1 and Vout2 measured at points shown in the circuit to be 10.7635 V and 5.6526 V respectively.

i. The power absorbed by resistor R 1 is 4.3 mW when 1.693 mA flows through it. What is the value of R 1 ? ($1 \mathrm{pt)} \mathrm{Use} \mathrm{the} \mathrm{closest} \mathrm{standard} \mathrm{resistor} \mathrm{value;} \mathrm{refer} \mathrm{to} \mathrm{information}$ on "Standard Resistor Values" at the beginning of the quiz.
$R_{1}=\frac{P_{1}}{I_{1}{ }^{2}}=1.5 \mathrm{k} \Omega$
ii. The voltage-current characteristics of resistor R2 is provided to the right. Determine the value of R2. (2pts) Use the closest standard resistor value; refer to information on "Standard Resistor Values" at the beginning of the quiz.

$$
R_{2}=\frac{d v}{d i}=\frac{10}{1.6 \mathrm{~m}}=6.25 \mathrm{k} \Omega
$$

$$
\text { USE } 6.2 \mathrm{k} \Omega \text { as standard resistor }
$$

iii. The color code of resistor R3 is Brown-Blue-Orange-Gold. What is the value of resistor R3? (1pt)

$$
R 3=16 \mathrm{k} \Omega \pm 5 \%
$$

iv. Given Vout $1=10.7635 \mathrm{~V}$ and Vout $2=5.6526 \mathrm{~V}$ and the answers from the previous questions, determine the value of Vsource? (4 pts) Hint: First find current through R2.

Voltage across $R_{2}=V_{\text {out } 1}-V_{\text {out } 2}=5.111 \mathrm{~V}$
Current through $R_{2}=\frac{5.111}{R_{2}}=0.824 \mathrm{~mA}$ or $824.4 \mu \mathrm{~A}$
This is the same current through RI
\Rightarrow Voltage across $R I=(1.5 \mathrm{~K} \Omega)(0.824 \mathrm{~mA})=1.237 \mathrm{~V}$

$$
\begin{aligned}
& V_{\text {Source }}=V_{R 1}+V_{\text {out } 1}=12 \mathrm{~V} \quad \text { Vsource }=12 \mathrm{~V} \\
& \text { or }=V_{R 1}+V_{R 2}+V_{\text {out 2 }}=12 \mathrm{~V} \quad
\end{aligned}
$$

v. Using all the information you have so far, determine how much current flows through resistor R4? (5pts)

Current through $R_{3}=\frac{V_{\text {out } 2}}{R_{3}}=0.3533 \mathrm{~mA}$ or

$$
353.3 \mu \mathrm{~A}
$$

Current through R4 = Current through R2

- Current through R3

$$
\begin{aligned}
& =824.4 \mu \mathrm{~A}-353.3 \mu \mathrm{~A} \\
& =471.1 \mu \mathrm{~A}
\end{aligned}
$$

Optional: $R_{4}=\frac{V_{\text {out 2 }}}{I_{R 4}}=12 \mathrm{k} \Omega$

$$
\text { Current through R4 }=\begin{array}{|c|}
\hline 0.471 \mathrm{~mA} \\
471.1 \mu \mathrm{~A}
\end{array} \text { or }
$$

II. Design Problem on Minimizing Measurement Error (20 points)

A voltage divider is connected to a source and a voltmeter as shown below. Ideally, $\mathrm{Rs}=0$ and $\mathrm{Rm}=\infty$. However, for one practical circuit, $\mathrm{Rs} \leq 125 \Omega$ and $\mathrm{Rm} \geq 10 \mathrm{k} \Omega$. The overall goal of this problem is to select R1 and R2 to minimize the error introduced by Rs and Rm when it is desired that $\frac{V_{\text {out }}}{V_{\text {in }}}=0.75$. For simplicity use $\quad a=\frac{R 2}{R 1+R 2}$
i. Determine an
expression for Vout in terms of Yin, R1, and

$$
\begin{aligned}
& V_{\text {ideal }}=V_{\text {in }}\left(\frac{R_{2}}{R_{1}+R_{2}}\right) \\
& \text { or }=a V_{\text {in }}, \text { where } a=\frac{R_{2}}{R_{1}+R_{2}}
\end{aligned}
$$

ii. Determine an expression for Vout in terms of Yin, R1, R2, Rs, and Rm under practical conditions. Denote this output voltage as Vpract. (4pts)

$$
V_{\text {out }}=V_{\text {pract }}=V_{\text {in }}\left(\frac{R_{p}}{R_{p}+R_{1}+R_{s}}\right)=V_{\text {in }}\left[\frac{R_{2} R_{m}}{R_{2} R_{m}+\left(R_{2}+R_{m}\right)\left(R_{1}+R_{s}\right)}\right]
$$

Or in terms of $a \rightarrow$

$$
V_{\text {pract }}=V_{\text {in }}\left[\frac{a R_{2} R_{m}}{\left(a R_{s}+R_{2}\right)\left(R_{m}+R_{2}\right)-a R_{2}^{2}}\right]
$$

$$
\text { Let } R_{p}=R_{2} \| R_{m}=\frac{R_{2} R_{m}}{R_{2}+R_{m}}
$$

iii. Find and expression for measurement error ' e '. Define $e=\frac{\text { Videal-Vpract }}{\text { Videal }}$. Simplify such that there are no fractions in the numerator or denominator. (5pts)

$$
e=\frac{V_{\text {ideal }}-V_{\text {pract }}}{V_{\text {ideal }}}=\frac{a V_{\text {in }}-V_{\text {pract }}}{a V_{\text {in }}}=1-\frac{V_{\text {pract }}}{a V_{\text {in }}}
$$

$$
=1-\frac{R_{2} R_{m}}{\left(a R_{s}+R_{2}\right)\left(R_{m}+R_{2}\right)-a R_{2}^{2}}
$$

$$
e=1-\frac{V_{\text {pact }}}{V_{\text {ideal }}}=1-\frac{R_{m}\left(R_{1}+R_{2}\right)}{R_{2} R_{m}+\left(R_{2}+R_{m}\right)\left(R_{1}+R_{s}\right)}
$$

iv. Describe how you would analytically minimize this error. You just need to describe your steps; not actually go through them. (4pts)

We can use calculus and We can use spreadsheet
Set $\frac{d e}{d R_{2}}=0$ to find the OR computer progam to find the best value of R_{2} best value of R_{2}. that minimizes e.
v. It turns out that the error is minimized when $\mathrm{R} 2=\sqrt{3 \times R m \times R s}$. To obtain the desired $\frac{V_{\text {out }}}{V_{\text {in }}}=0.75$ and using the worst case values of Rm and Rs provided in the problem statement, find the values of R1 and R2 that will satisfy this design problem. (4pts)

Worst case: $R_{m}=10 \mathrm{~K} \Omega$ and $R_{s}=125 \Omega$

$$
\Rightarrow R_{2}=\sqrt{3 \times 10 \mathrm{~K} \times 125}=1936.5 \Omega
$$

$$
V_{\text {out }}=a V_{\text {in }} \Rightarrow a=\frac{V_{\text {out }}}{V_{\text {in }}}=0.75
$$

$$
a=\frac{R_{2}}{R_{1}+R_{2}} \Rightarrow R_{1}=\frac{R_{2}(1-a)}{a}=645.5 \Omega
$$

III. Filters \& Transfer Functions (20 points) For this problem assume AC Steady State.
a. Find the transfer function of the circuit shown. Simplify such that there are no fractions in the numerator or denominator of the transfer function. $H(\mathrm{j} \omega)=\operatorname{Vout}(\mathrm{j} \omega) / \operatorname{Vin}(\mathrm{j} \omega)$ (4pts)

$$
H(j \omega)=\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{Z_{e q}}{Z_{e q}+R}
$$

b. Determine the magnitude and phase of the transfer function for the circuit for very small frequency and for very high frequency. Do not take this to 0 or infinite Hz. (4pts)

c. Redraw the circuit and simplify the circuit for operation at low and high frequency. For this part you take it to extremes, low frequency is dc operation. High is approaching infinity. (2pts)

High Frequency

d. Corner frequency of a filter, f_{c}, is defined as the frequency at which the magnitude of the transfer function, $|\mathrm{H}(\mathrm{j} \omega)|$, is 0.707 , or $\frac{1}{\sqrt{2}}$. Alternatively, this can be expressed as the frequency at which the power at the output is half of the power at the input.
Derive the corner frequency or frequencies for this circuit when $R=10 \Omega, L=2 H$, and $\mathrm{C}=0.5 \mathrm{~F}$? (5 pts)

$$
H(j \omega)=\frac{j \omega L}{R\left(1-\omega^{2} L C\right)+j \omega L} \Rightarrow|H(j \omega)|=\frac{|j \omega L|}{\left|R\left(1-\omega^{2} L C\right)+j \omega L\right|}
$$

$$
=\frac{\omega L}{\sqrt{R^{2}\left(1-\omega^{2} L \zeta\right)^{2}+\omega^{2} L^{2}}} \quad \begin{gathered}
\text { set } \\
=
\end{gathered} \frac{1}{\sqrt{2}}
$$

e. Resonant frequency of a filter, f_{r}, is defined as the frequency at which the magnitude of the transfer function, $|\mathrm{H}(\mathrm{j} \omega)|$, is at a maximum or minimum, depending on the type of filter. Determine the resonant frequency of the circuit, f_{r} using the same R, L, and C values as the previous part and the equation from the crib sheet. (2 pts)

$$
f_{\gamma}=\frac{1}{2 \pi \sqrt{L C}}=0.159 \mathrm{~Hz}
$$

f. Provide a rough sketch for the AC sweep analysis $(|\mathrm{H}(\mathrm{j} \omega)|$ vs. frequency) for this filter.

Clearly mark the corner frequency and resonant frequency. Label the x-axis. What type of filter have we been working with for this problem? (3pts)

IV - Phasors and Transformers (20 points)

a. Assume an ideal transformer with full coupling.
i. For the given information, determine the turns ratio, a. And determine the ratios Vout/Vin, Iout/Iin and the transformer input impedance Ring. (Sin is Vin/Iin) (6 pts)
$a=\sqrt{\frac{L_{2}}{L_{1}}}=\sqrt{\frac{80}{5}}=4$
$\frac{V_{\text {out }}}{V_{\text {in }}}=a=4$
$\frac{I_{\text {out }}}{I_{\text {in }}}=\frac{1}{a}=\frac{1}{4}$
$R_{\text {in }}=\frac{R_{\text {Load }}}{a^{2}}=50 \Omega$
$a=4$
(2pts)
Vout/Vin= \qquad (1 pt) $\begin{aligned} \text { Lout } / \text { lin } & =0.25 \quad(1 \mathrm{pt}) \\ \text { Lin } & =50 \Omega \quad(2 \mathrm{pts})\end{aligned}$
ii. Solve for Ven (voltage across the input terminals of the ideal transformer) and Vout, the voltage across the output terminals and the of the ideal transformer. Assume the phase of $V 1$ is zero degrees and give the answer in the form of $v(t)=V_{1} \operatorname{Cos}\left(\omega t+\theta_{1}\right)$

$$
\begin{aligned}
& \left|V_{\text {in }}\right|=\frac{50}{50+10} \times 12=10 \mathrm{~V} \\
& \angle V_{\text {in }}=\angle V_{1}=0^{\circ} \\
& \omega=2 \pi \times 4 \times 10^{3}=8000 \pi \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

$$
V_{\text {out }}=4 \times V_{\text {in }}
$$

$$
\begin{aligned}
\operatorname{Vin}(t) & =10 \cos \left(8000 \pi t+0^{\circ}\right) V \\
\operatorname{Vout}(\mathrm{t}) & =40 \cos \left(8000 \pi t+0^{\circ}\right) V
\end{aligned}
$$

iii. Above you were told to assume that the transformer is ideal. For that to be valid, the impedance of the primary inductor should be much larger than the source resistance. Is that valid in this case? Explain or justify. Would it be valid at if the signal source was at 60 Hz ? (3pts)
(@) 4 KHz

$$
\left|j \omega L_{1}\right|=8000 \pi \times 5 \times 10^{-3}=125.66 \Omega
$$

$125.66 \Omega>10 \Omega \Rightarrow$ Reasonably true,
2pts
@ 60 Hz

$$
\left|j \omega L_{1}\right|=2 \pi \times 60 \times 5 \times 10^{-3}=1.885 \Omega
$$

1.885Ω is much less than 10Ω
let

b. Phasors: This circuit shown has 2 complex impedances, Z 1 and Z2, connected as shown.
Given: $\operatorname{Vin}=5 \mathrm{~V} \angle 45^{\circ}$ and the voltage across Z 2 is measured to be $V z 2=3 V \angle 30^{\circ}$
i. Write Yin and Vz2 in Cartesian form. (2pts)

$$
\begin{aligned}
V_{\text {in }} & =5 \cos \left(45^{\circ}\right)+j 5 \sin \left(45^{\circ}\right) \\
& =3.54+j 3.54 \\
V_{z 2} & =3 \cos \left(30^{\circ}\right)+j 3 \sin \left(30^{\circ}\right) \\
& =2.6+j 1.5
\end{aligned}
$$

ii. Determine Vz1, the voltage across Z 1 in Cartesian and polar form (3pts)

$$
\begin{aligned}
V_{z 1}=V_{\text {in }}-V_{z 2} & =0.9374+j 2.04 \text { cartesian } \\
& =2.241 \angle 65.32^{\circ} \text { polar }
\end{aligned}
$$

iii. If Z 2 is a $1 \mathrm{k} \Omega$ resistor, and only a resistor, what is the current through Z 2 in both polar and Cartesian form? (3pts)

$$
\begin{aligned}
I_{z 2} & =\frac{V_{z_{2}}}{z_{2}}=\frac{3 \angle 30^{\circ}}{1 k}=3 \angle 30^{\circ} \mathrm{mA} \\
& =\frac{2.6+j 1.5}{1 \mathrm{k}}=(2.6+j 1.5) \mathrm{mA} \quad 2 \mathrm{pt}
\end{aligned}
$$

