ENGR-2300
Electronic Instrumentation
Quiz 1
Fall 2019

Section

Question I (20 points) \qquad
Question II (20 points) \qquad
Question III (20 points) \qquad
Question IV (20 points) \qquad
LMS Question (20 points) (graded on LMS)
Total (80 points) \qquad

On all questions: SHOW ALL WORK. BEGIN WITH FORMULAS, THEN SUBSTITUTE VALUES AND UNITS. No credit will be given for numbers that appear without justification. Unless otherwise stated in a problem, provide 3 significant digits in answers. Read the entire quiz before answering any questions. Also it may be easier to answer parts of questions out of order.

Analog Discovery 2 partial set of Specifications -
 Analog Inputs

Channels: 2
Channel type: differential
Resolution: 14-bit
Input impedance: $1 \mathrm{M} \Omega|\mid 24 \mathrm{pF}$
Scope scales: 500 uV to $5 \mathrm{~V} / \mathrm{div}$
Analog bandwidth with included flywires: $9 \mathrm{MHz} @ 3 \mathrm{~dB}, 2.9 \mathrm{MHz} @ 0.5 \mathrm{~dB}, 0.8 \mathrm{MHz}$ @ 0.1 dB
Input range: $\pm 25 \mathrm{~V}(\pm 50 \mathrm{~V}$ diff $)$
Input protected to: $\pm 50 \mathrm{~V}$
Cursors with advanced data measurements
Captured data files can be exported in standard formats
Scope configurations can be saved, exported, and imported
Arbitrary Waveform Generator
Channels: 2
Channel type: single ended
Resolution: 14-bit
AC amplitude (max): $\pm 5 \mathrm{~V}$
DC Offset (max): $\pm 5 \mathrm{~V}$
Analog bandwidth with included flywires: 9 MHz @ $3 \mathrm{~dB}, 2.9 \mathrm{MHz} @ 0.5 \mathrm{~dB}, 0.8 \mathrm{MHz}$ @ 0.1 dB
Slew rate (10 V step): $400 \mathrm{~V} / \mu \mathrm{s}$
Standard waveforms: sine, triangle, sawtooth, etc.
Advanced waveforms: Sweeps, AM, FM.
User-defined arbitrary waveforms: defined within WaveForms software user interface or using standard tools (e.g. Excel)

Power Supplies

Voltage range: $0.5 \mathrm{~V} \ldots .5 \mathrm{~V}$ and $-0.5 \mathrm{~V} \ldots-5 \mathrm{~V}$
Pmax (USB powered): 500 mW total
Imax (USB powered): 700mA for each supply
Pmax (AUX powered): 2.1 W for each supply
Imax (AUX powered): 700 mA for each supply
Accuracy (no load): $\pm 10 \mathrm{mV}$
Output impedance: $50 \mathrm{~m} \Omega$ (typical)

Voltmeters

Channels (shared with scope): 2
Channel type: differential
Measurements: DC, AC, True RMS
Resolution: 14-bit
Accuracy (scale $\leq 0.5 \mathrm{~V} /$ div): $\pm 5 \mathrm{mV}$
Accuracy (scale $\geq 1 \mathrm{~V} /$ div) : $\pm 50 \mathrm{mV}$
Input impedance: $1 \mathrm{M} \Omega \| 24 \mathrm{pF}$
Input range: $\pm 25 \mathrm{~V}$ ($\pm 50 \mathrm{~V}$ div)
Input protected to: $\pm 50 \mathrm{~V}$
I. Voltage Dividers (20 points) As stated on the cover page: Round answers to 3 significant digits. Show formulas first and show your work. No credit will be given for numbers that appear without justification.

Consider the circuit diagram shown below. Rm represents the resistance of an ammeter (a current measuring device). The circuit with the dashed line is the model of an ohmmeter, which can be used to measure the value of an unknown resistance Rx .

Case 1: Given that when $\mathrm{Rx}=0 \Omega$, the current through resistor Rm is 2 mA , i.e. $\mathrm{i}_{\mathrm{m}}=2 \mathrm{~mA}$.
Case 2: Given that when $R x=2000 \Omega$, the current through resistor $R m$ is 1 mA , i.e. $\mathrm{i}_{\mathrm{m}}=1 \mathrm{~mA}$.
a. (2 pts) Find voltage between points A and B for each of the cases described above.

$$
\begin{array}{lll}
\text { Case 1: } & V_{A B}=i_{m} R_{m}=20 \mathrm{mV} \\
\text { Case } 2: & V_{A B}=i_{m} R_{m}=10 \mathrm{mV}
\end{array}
$$

b. (1 pt) What is the equivalent resistance between points A and $B, R_{A B}$? (Express in terms of R2)

$$
R_{A B}=R_{2} \| R_{m}=\frac{10 R_{2}}{10+R_{2}}
$$

You must include units.

10 V
c. (5 pts) Using voltage divider and your answer to parts a and b, develop a relationship between R1 and R2 for case 1.

$$
\begin{aligned}
& V_{A B}=20 m V=V_{1}^{\prime}\left(\frac{R_{A B}}{R_{1}+R_{A B}+R_{X}}\right) \\
& \Rightarrow\left(R_{1}+R_{A B}\right) 2 m V=R_{A B}
\end{aligned}
$$

$$
\Rightarrow R_{1}+\frac{10 R_{2}}{10+R_{2}}=\frac{5000 R_{2}}{10+R_{2}} \Rightarrow 10 R_{1}-4990 R_{2}+R_{1} R_{2}=0
$$

d. (8 pts) Using voltage divider and your answer to parts a and b, develop a relationship between R1 and R2 for case 2.

$$
\begin{aligned}
& V_{A B}=10 \mathrm{mV}= \\
\Rightarrow & V_{10 \mathrm{~V}}^{V_{1}}\left(\frac{R_{A B}}{R_{1}+R_{A B}+R_{x}}\right) \\
\Rightarrow & \left(R_{1}+\frac{10 R_{2}}{10+R_{2}}+2000\right) 1 \mathrm{mV}=\frac{10 R_{2}}{10+R_{2}} \\
\Rightarrow & 10 R_{1}-7990 R_{2}+R_{1} R_{2}=-20000 \text { equation 2 }
\end{aligned}
$$

e. (4 pts) Solve the linear relationships derived in the previous parts, to determine the values of resistors R1 and R2 such that both case 1 and 2 are satisfied.
equation 1 - equation 2

$$
\Rightarrow 3000 R_{2}=20000 \Rightarrow R_{2}=6.667 \Omega
$$

Substitute in equation 1.

$$
10 R_{1}-33268.33+6.667 R_{1}=0
$$

$$
\Rightarrow \quad R_{1}=1996 \Omega
$$

II. Resistor Combinations, concepts and miscellaneous (20 points) Note: Page 2 of this quiz has background information.

The following circuit consists of 7 resistors, 1 DC voltage source and has 4 voltage markers placed at points A, B, C, and D. Note that the following questions are generally independent of each other.

a. (1 pt) Given that resistors have 5% tolerance, what is the 4-band color code for resistor R6?

Brown-Green-Red Gold
b. (6 pts) Given that voltage at point $\mathrm{A}, \mathrm{VA}=9 \mathrm{~V}$, find the voltages at point B and the source voltage V1.

$$
\begin{aligned}
V_{A}=V_{1}\left(\frac{R_{A}}{R_{A}+R_{1}}\right) & \Rightarrow 9=V_{1}\left(\frac{4 k}{4 k+8 k}\right) \\
& \Rightarrow V_{1}=27 \mathrm{~V}
\end{aligned}
$$

$$
\text { Voltage @ point } \begin{aligned}
B=V_{B} & =V_{A}\left(\frac{4 k}{8 k+4 k}\right) \\
& =9\left(\frac{4 k}{12 k}\right)=3 \mathrm{~V}
\end{aligned}
$$

$$
V_{B}=3 \mathrm{~V}
$$

EI You must include units.
c. $(2 \mathrm{pts})$ Given that voltage at point $\mathrm{B}, \mathrm{VB}=4 \mathrm{~V}$, find the current through resistor R6?

$$
I_{R 6}=\frac{V_{B}}{R_{5}+R_{6}+R_{7}}=\frac{4}{12 \mathrm{~K}}=0.333 \mathrm{~mA}
$$

d. (2 pts) Given that the current through R6 is 0.25 mA , find the power dissipated through resistor R7?

$$
\begin{aligned}
& I_{R 6}=I_{R 7} \quad \text { Resistors in series } \\
& P_{R 7}=I_{R 7}^{2} \cdot R 7=(0.25 \mathrm{~mA})^{2} \times 2.5 \mathrm{~K}=0.15625 \mathrm{~mW}
\end{aligned}
$$

e. (1 pts) A ceramic capacitor has a code "1 03 " written on it. What is its capacitance?

$$
\begin{aligned}
& 10 \times 10^{3} \mathrm{pF} \\
& =10^{4} \mathrm{pF}
\end{aligned}
$$

Now consider that the same resistive circuit is built on a protoboard, V1 is set to 5 V DC supplied by Analog discovery 2 board, and voltage at point A is being measured using scope channel 2.
f. (2 pts) What voltage would the analog discovery scope channel 2 measure at point A? Hint: Add the input resistance of Analog Discovery channel.

g. (4 pts) You are now asked to change R1 from $8 \mathrm{k} \Omega$ to a new value such that the current through resistor R1 is close to $30 \nsim \mathrm{~A}$. Voltage source V1 is set to 5 V . What is your new choice of R1?

$$
\begin{aligned}
& S V=i(R 1+R A) \\
\Rightarrow & R 1+4 k=\frac{5}{30 \mu} \\
\Rightarrow & R 1=162.67 \mathrm{k} \Omega
\end{aligned}
$$

h. (2pts) When defining the VSIN component (sinusoidal voltage source), indicate any two (of the four) parameters that are available when you place the part.
 off set

$A C$

III. Filters \& Transfer Functions (20 points) For this problem assume AC Steady State.

a) Use the circuit shown for this part.

1. Find the transfer function of the circuit shown. Simplify such that there are no fractions in the numerator or denominator of the transfer
 function. $H(\mathrm{j} \omega)=\operatorname{Vout}(\mathrm{j} \omega) / \operatorname{Vin}(\mathrm{j} \omega)(6 \mathrm{pts})$

$\overline{\pi+j \omega l+j^{2} u^{2} L R C}$

$$
H(j \omega)=\frac{R^{\prime}+j \omega L}{R+i \omega L-\omega^{2} L n C}
$$

2. Determine the amplitude and phase of the transfer function for the circuit for very small frequency and for very high frequency. Do not take this to 0 or infinite Hz .

$$
\begin{aligned}
& W \text { small } \\
& H(j w) \simeq \frac{R p t s)}{a}=\frac{1 \angle 0^{\circ}}{} \\
& a_{\text {mp }}=1 \quad \text { angle }=0^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
w \text { large } H(j u) & =\frac{j u L}{-u^{2} L R C} \\
& =\frac{-j}{w R c} \\
m a_{g}=\frac{1}{w R c}, \text { Phase } & =-90^{\circ}
\end{aligned}
$$

3. Redraw the circuit and simplify the circuit for operation at low and high frequency. For this part you take it to extremes, low frequency is dc operation. High is approaching infinity. (2pts)

Low Frequency
$L=$ shout C =op

High Frequency $L=$ open $C=$ short

Note: mas $=1$, phase $=0$
El
You must include units.

$$
\begin{aligned}
& \text { Can It get magnatud. Note } \\
& \text { O- Chase } \\
& \text { P. Schoch and M. Hameed }
\end{aligned}
$$

b) In the circuit shown, Z 1 and Z 2 represent a single component, either a resistor, capacitor or inductor. Complete the table below by entering a Y for yes is that configuration of Z 1 and Z 2 would be a low pass or a high pass filter. (5pts)

c) Draw a low pass filter using just a $1 \mathrm{k} \Omega$ resistor and a 0.2 uF capacitor. Label the input and output.
And calculate the corner frequency for this circuit. (3pts)

IV - Phasors and Transformers (20 points)

1) Assume an ideal transformer with full coupling.
a. For the given information, determine the turns ratio, a. And determine the ratios

Vout/Vin, Iout/Iin and the transformer input impedance Rin. (Tin is Vin/Iin) (6 pts)

$$
\begin{aligned}
& a=\sqrt{\frac{L_{2}}{L_{1}}}=\sqrt{\frac{160}{10}}=4 \quad z_{i n}=\frac{z}{a^{2}} \\
& V_{2}=a V_{1} \quad \frac{V_{\text {Out }}}{V_{\text {in }}}=4 \quad R_{\text {in }}=\frac{8000}{16}= \\
& I_{\text {ont }}=\frac{1}{a} I_{\text {in }}, \frac{I_{\text {ont }}}{I_{n}}=\frac{1}{7}=0.25
\end{aligned}
$$

Ruin $=500(2 \mathrm{pt})$
b. Solve for Yin (voltage across the input terminals of the ideal transformer) and Volt, the voltage across the output terminals and the of the ideal transformer. Assume the phase

c. Above you were told to assume that the transformer is ideal. For that to be valid, the impedance of the primary inductor should be much larger than the source resistance. Is that valid in this case? Explain or justify. Would it be valid at if the signal source was at 60 Hz? (3pts) $A+10 \mathrm{hH}+\quad j \omega L)=(2 \pi)\left(10^{4}\right)\left(10^{-2}\right)=629 \Omega$
$62 v \Omega>100 \Omega$ - reasonably true

2) Phasors: This circuit shown has 2 complex impedances, $\mathrm{Z1}$ and $Z 2$, connected as shown.
Given: $\operatorname{Vin}=10 \mathrm{~V} \angle 0^{\circ}$ and the voltage across Z 2 is measured to be $V z 2=6 V \angle 30^{\circ}$
a. Write Yin and Vz2 in Cartesian form. (2pts)

b. Determine Vz1, the voltage across Z1 in Cartesian and polar form (3pts)

we Carterion

$$
=10-(5.2+j 3)=(4.8-j 3) \mathrm{V}
$$

$$
4.9-j 3 \Rightarrow\left(4.8^{2}+3^{2}\right)^{1 / 2}<\tan ^{-1} \frac{-3}{4.8}=5.66<-32^{\circ}
$$

c. If Z 2 is a $1 \mathrm{k} \Omega$ resistor, and only a resistor, what is the current through Z 2 in both

$$
\vec{I}=\frac{\vec{V}}{R}=\frac{6 \angle 30^{\circ}}{1 H}=6 \angle 30^{\circ}(\mathrm{mA}) \quad \vec{I}=\frac{5.2+j 3}{1002}=(5.2+j 3)(\mathrm{mA})
$$

3) Give the names of 2 of the people teaching this course. This can be first names or last names and can be the professors and/or the teaching assistants. (1 pt)

