ENGR-4300
Electronic Instrumentation

## Quiz 1

Spring 2012Name
$\qquad$
Section $\qquad$
Question I (20 points) $\qquad$
Question II (16 points) $\qquad$
Question III (16 points) $\qquad$
Question IV (16 points) $\qquad$
Question V (16 points) $\qquad$
Question VI (16 points) $\qquad$

Total (100 points) $\qquad$

On all questions: SHOW ALL WORK. BEGIN WITH FORMULAS, THEN SUBSTITUTE VALUES AND UNITS. No credit will be given for numbers that appear without justification. Read the entire quiz before answering any questions. Also it may be easier to answer parts of questions out of order.

## Question I. Voltage Dividers (20 points)

This question consists of 10 short problems involving the voltage divider circuit shown below. In each case, V1=42V, but, R1, R2 \& R3 are different for each problem.


1) $R 1=1 \mathrm{k} \Omega, R 2=R 3 \rightarrow \infty$ (open circuit) ( 2 pts )
$\mathrm{V}_{\text {output }}=42$ Volts. Since R2 and R3 are open, there is no current through R1 so no voltage drop across R1.
2) $\mathrm{R} 1=1 \mathrm{k} \Omega, \mathrm{R} 2 \rightarrow \infty$ (open circuit), $\mathrm{R} 3=10 \mathrm{M} \Omega$ (input impedance of smaller Mobile Studio voltage range). ( 2 pts )
$\mathrm{V}_{\text {output }}=42$ Volts. Since $R 2$ is open and $R 3$ is so large, the output is $(R 2 /(R 1+R 3)) V 1=$ $\left(10^{7} /\left(10^{7}+10^{3}\right)\right) 42=42$ Volts
3) $\mathrm{R} 1=1 \mathrm{k} \Omega, \mathrm{R} 2 \rightarrow \infty$ (open circuit), $\mathrm{R} 3=6 \mathrm{k} \Omega$ (input impedance of larger Mobile Studio voltage range). (2 pts)
$\mathrm{V}_{\text {output }}=(6 / 7) 42=36$ Volts because the circuit is just a voltage divider consisting of a $1 k \& a 6 k$ resistor, with the output across the 6 k .
4) $\mathrm{R} 1=1 \mathrm{k} \Omega, \mathrm{R} 2 \rightarrow \infty$ (open circuit), $\mathrm{R} 3=0$ (short circuit). (2 pts)
$\mathrm{V}_{\text {output }}=0$ Volt because the voltage is always zero across a short circuit.
5) $\mathrm{R} 1=\mathrm{R} 2=1 \mathrm{k} \Omega, \mathrm{R} 3 \rightarrow \infty$ (open circuit). ( 2 pts )
$\mathrm{V}_{\text {output }}=(1 /(1+1)) 42=21$ Volts. This is the ideal voltage divider built with two 1 k resistors.
6) $\mathrm{R} 1=\mathrm{R} 2=1 \mathrm{k} \Omega, \mathrm{R} 3=10 \mathrm{M} \Omega$ (input impedance of smaller Mobile Studio voltage range). ( 2 pts ) $\mathrm{V}_{\text {output }}=21$ Volts. This is practically the same as question 5 because $10 M \Omega$ is so much greater than $1 k \Omega$.
7) $\mathrm{R} 1=\mathrm{R} 2=1 \mathrm{k} \Omega, \mathrm{R} 3=6 \mathrm{k} \Omega$ (input impedance of larger Mobile Studio voltage range). ( 2 pts )
$\mathrm{V}_{\text {output }}=19.4$ Volts. This is the only part of question 1 that is a little more complicated. The 6 k in parallel with 1 k is now the net bottom resistor of the voltage divider. That parallel combo is $(6 / 7) k \Omega$. Thus the output is $42((6 / 7) /(1+6 / 7))=42(6 / 13)=19.4$ Volts.
8) $\mathrm{R} 1=\mathrm{R} 2=1 \mathrm{k} \Omega, \mathrm{R} 3=0$ (short circuit). (2 pts)
$\mathrm{V}_{\text {output }}=0$ Volt. Same as part 4.
9) $\mathrm{R} 1=1 \mathrm{k} \Omega, \mathrm{R} 2=13 \mathrm{k} \Omega, \mathrm{R} 3 \rightarrow \infty$ (open circuit). ( 2 pts )
$V_{\text {output }}=(13 / 14) 42=39$ Volts
10) $\mathrm{R} 1=1 \mathrm{k} \Omega, \mathrm{R} 2=167 \Omega, \mathrm{R} 3 \rightarrow \infty$ (open circuit). ( 2 pts )
$\mathrm{V}_{\text {output }}=(167 / 1167) 42=6$ Volts


## Question II. Resistive circuits (16 points)



1) Find the total resistance of the circuit, seen from the voltage source. (i.e. all resistors inside the dashed region) ( 6 pts )
$R 5+R 10=6 k, R 9\|(R 5+R 10)=((6)(3) / 9) k=2 k, R 8\|(R 4+2 k)=((4)(4) / 8) k=2 k, R 7 \|(R 3+2 k)=2 k$, $R 6|\mid R 2+2 k=2 k, R 1+2 k=4 k$ so the total is $4 k \Omega$

This can also be confirmed using PSpice. Since the voltage between R1 and R2 is 80V, the resistance of everything to the right of R1 must be equal to R1 or the total is $4 \mathrm{k} \Omega$

2) Find the voltage across R6. (5 pts)

From PSpice the voltage is 60 Volts. To confirm this result, the resistance of everything to the right of R1 is $2 k$, so the voltage to the left of $R 2$ is 60 V (half of 120 V ).
3) Find the current through R5. (5 pts)

To find the current in R5, we need the rest of the voltages shown in the PSpice result. The resistances to the right of $R 3$ and $R 4$ are also $2 k$, so the voltage drops by half each time. Thus the voltage to the right of $R 4$ is 7.5 V . This voltage drops across two identical 3 k resistors so that the voltage to the right of $R 5$ is 3.75 V . The current through $R 5$ is thus $(7.5-3.75) / 3 \mathrm{k}$ or $3.75 / 3 \mathrm{~mA}$ or 1.25mA. This is also confirmed by PSpice.

## Question III. Filters (16 points)

You are given the following circuit. The input at V1 has the following properties: VAMPL $=$ 1 V , Freq $=1 \mathrm{kHz}$, Voff $=0 \mathrm{~V}$

A. The behavior of this circuit at low frequencies

1) Redraw the circuit at zero (DC) frequency (2 points)

2) What is the amplitude of the voltage at point $A$ at DC? (2 points)

The combination of R4, R3 and R5 is $500 \Omega$ so the voltage is almost $1 V(0.98 \mathrm{~V})$
3) What is the amplitude of the voltage at point B at DC ? (2 points)

Because of the two $500 \Omega$ resistors, the voltage will divide equally, so about 0.5 V
B. The behavior of the circuit at very, very high $(f \rightarrow \infty)$ frequencies

1) Redraw the circuit at infinite frequencies (2 points)

or the voltage at $A$ is shorted to ground and the voltage at $B$ is connected through the infinite but equal inductive impedances. Note that at $\infty$ frequencies, it is still necessary to keep the inductors in the circuit since voltage division can still take place. Otherwise the voltage at $B$ is undetermined rather than zero as it is here. This is a subtle point that is probably beyond the scope of this course, but asking the question allows us to determine if anyone has a more advanced level of understanding.
2) What is the amplitude of the voltage at point $A$ at infinite frequencies? (2 points)

OV
3) What is the amplitude of the voltage at point $B$ at infinite frequencies? (2 points)

Also $0 V$ because it will be half of $A$.
C. Is this a filter?

1) What type of filter could this be at point A (circle one)? (2 points)


High Pass
Neither
2) What type of filter could this be at point $B$ (circle one)? (2 points)


High Pass
Neither
This connection at A makes a better filter.

## Question IV - Transfer Functions (16 points)



Circuit A


Circuit B
A. Transfer Functions

1) What is the transfer function for circuit A? You must simplify. (3 points)

$$
H_{A}(j \omega)=\frac{R}{R+j \omega L}
$$

2) What is the transfer function for circuit B? You must simplify. (3 points)

$$
H_{B}(j \omega)=\frac{R}{R+j \omega L+\frac{1}{j \omega C}}=\frac{j \omega R C}{1+j \omega R C-\omega^{2} L C}
$$

B. We want to determine what type of filter circuit B is

1) What are the simplified transfer function, the magnitude, and the phase of circuit $B$ at low frequencies? (3 points) Hint: Remember that the frequency is not zero, just small.

$$
\begin{aligned}
& H_{B L O}(j \omega)=\frac{j \omega R C}{1+j \omega R C-\omega^{2} L C} \approx \frac{j \omega R C}{1}=j \omega R C \\
& \left|H_{B L O}(j \omega)\right| \approx|j \omega R C|=\omega R C \\
& \angle H_{B L O}(j \omega) \approx \angle j \omega R C=\frac{\pi}{2}
\end{aligned}
$$

2) What are the simplified transfer function, the magnitude, and the phase of circuit $B$ at high frequencies? ( 3 points)

$$
\begin{aligned}
& H_{B H I}(j \omega)=\frac{j \omega R C}{1+j \omega R C-\omega^{2} L C} \approx \frac{j \omega R C}{-\omega^{2} L C}=\frac{R}{j \omega L}=-j \frac{R}{\omega L} \\
& \left|H_{B H I}(j \omega)\right| \approx\left|-j \frac{R}{\omega L}\right|=\frac{R}{\omega L} \\
& \angle H_{B H I}(j \omega) \approx \angle\left(-j \frac{R}{\omega L}\right)=-\frac{\pi}{2}
\end{aligned}
$$

3) What type of filter is circuit B? Explain your answer. (2 point)

Band pass. The output is very small (approaching zero at both high and low frequencies. At the resonant frequency, $H_{B}(j \omega)=\frac{j \omega R C}{1+j \omega R C-\omega^{2} L C}=\frac{j \omega R C}{j \omega R C}=1$ so the input is reproduced at the output.
C. If $\mathrm{L}=1 \mathrm{mH}$ and $\mathrm{R}=100 \Omega$, what are the magnitude and phase of the transfer function of circuit $A$ at its corner frequency? (2 points)

The corner frequency is $\omega=\frac{R}{L}$. The transfer function for $A$ is $H_{A}(j \omega)=\frac{R}{R+j \omega L}=\frac{R}{R+j R}=\frac{1}{1+j}=\frac{1}{1+j} \frac{1-j}{1-j}=\frac{1-j}{2}$ so it does not matter what the values of $R$ or $L$ actually are. The magnitude is $\left|H_{A}(j \omega)\right|=\left|\frac{1-j}{2}\right|=.707$ and the phase angle is $\angle H_{A}(j \omega)=\angle \frac{1-j}{2}=-\frac{\pi}{4}$

## D. Extra Credit (2 points)

Today is the birthday of a famous German scientist. Google has noted his birth date on its search engine page (see image below). Hint: we have named the units of frequency after him.

## Heinrich Rudolf Hertz



## Question V - Signals, Transformers and Inductors (16 points)

Two different configurations are to be compared. Both have the same source with amplitude VS $=600 \mathrm{~V}$, frequency $=1 \mathrm{kHz}, \mathrm{RS}=10 \Omega$. The transformer is ideal with full coupling.


1) With $\mathrm{RL}=90 \Omega$ and $\mathrm{L} 2 / \mathrm{L} 1=9$, find Vin, Vout, and the power in RL. ( 6 pts)

$$
a=\frac{V_{2}}{V_{1}}=\frac{I_{1}}{I_{2}}=\sqrt{\frac{L_{2}}{L_{1}}}=\sqrt{9}=3 \quad Z_{\text {in }}=\frac{Z_{L}}{a^{2}}=\frac{Z_{L}}{9}=\frac{90}{9}=10 \Omega
$$

$V_{S}$ is divided by the combination of $R_{S} \& Z_{\text {in }}$ so that $V_{\text {in }}$ is half $V_{S}$ or $300 V$.
$V_{\text {out }}=a V_{\text {in }}=900 \mathrm{~V}$ The power delivered to the load is $P_{L}=\frac{V_{L}{ }^{2}}{R_{L}}=\frac{900^{2}}{90}=9000 \mathrm{~W}$ Note that since there is no power delivered to the transformer, one can also calculate the power to the load by finding the power delivered to $Z_{i n} . P_{L}=\frac{V_{i n}{ }^{2}}{Z_{i n}}=\frac{300^{2}}{10}=9000 \mathrm{~W}$
2) With $R L=10 \Omega$ and $L 2 / L 1=1$, what are the new values for Vin, Vout, and the power in RL? (6 pts)
$a=\frac{V_{2}}{V_{1}}=\frac{I_{1}}{I_{2}}=\sqrt{\frac{L_{2}}{L_{1}}}=\sqrt{1}=1 \quad Z_{\text {in }}=\frac{Z_{L}}{a^{2}}=\frac{Z_{L}}{1}=\frac{10}{1}=10 \Omega$
$V_{S}$ is divided by the combination of $R_{S} \& Z_{\text {in }}$ so that $V_{\text {in }}$ is half $V_{S}$ or $300 V$.
$V_{\text {out }}=a V_{\text {in }}=300 \mathrm{~V}$ The power delivered to the load is $P_{L}=\frac{V_{L}{ }^{2}}{R_{L}}=\frac{300^{2}}{10}=9000 \mathrm{~W}$ Note that
since there is no power delivered to the transformer, one can also calculate the power to the load by finding the power delivered to $Z_{i n} . P_{L}=\frac{V_{i n}{ }^{2}}{Z_{i n}}=\frac{300^{2}}{10}=9000 \mathrm{~W}$
3) Knowing that a real transformer's behavior deviates from that of an ideal, what would be an appropriate minimum value for the inductance on the primary of the transformer in 1), given the source's frequency of 1 kHz ? ( 4 pts )
a) $1 \mu \mathrm{H}$
b) $10 \mu \mathrm{H}$
c) $100 \mu \mathrm{H}$
b) 1 mH

To function as a transformer, the inductive impedance must be significantly larger than the resistive impedance. Thus, $L \gg \frac{R}{\omega}=\frac{10}{2 \pi 1000}=\frac{10}{2 \pi} \mathrm{mH}$ so 10 mH is a good choice. 100 mH is also
c) 10 mH
d) 100 mH
e) 1 H
f) 10 H
g) 500 H

## Question VI - Instrumentation, PSpice and components (16 points)

1) Identify the two errors in the simulation profile shown below. (4 pts)


One: there is a space between the number and the units.
Two: the start saving time is after the run to time so nothing will be done.
2) Assume that Function Generator 1 is used to generate a 2.5 kHz sine wave with peak-to-peak amplitude of 0.8 V and it is connected to Channel 1 of the Oscilloscope. Which of the following four signals will be observed on Channel 1? Explain your choice. (4pts)



Channel I: Vertical: $500 \mathrm{mV} /$ Div
Coupling: DC
Input: AWG1


Horizontal: $200 \mu \mathrm{~s} /$ Div
Channel I: Vertical: $200 \mathrm{mV} / \mathrm{Di}$ Coupling: DC

The period is $2 \mathrm{~ms} / 5$ so $f=2.5 \mathrm{kHz}$ the $p k$-pk amplitude is 4 times .2 V or . 8 V
3) There is a problem with the circuit you have built and connected to your Mobile Studio IOBoard. Instead of seeing a nice 1 kHz sine wave on channel 1 of the oscilloscope, you see the following signal instead. (4 pts)


The period is $100 \mathrm{~ms} / 6=16.7 \mathrm{~ms}$ so the frequency is 60 Hz for the

Horizontal: $10.0 \mathrm{~ms} /$ Div
Channal 1: Vertical: $500 \mathrm{mV} / \mathrm{Div}$ Coupling: $D C$ main component. This is the power line frequency.

Because there seems to be both a low frequency and a high frequency component to this signal, you display it again with a different time scale.


The period is $100 \mu \mathrm{~s} / 9.25=10.8 \mu \mathrm{~s}$ so the frequency is about

Horizontal: $10.0 \mu \mathrm{~s} /$ Div
Channal 1: Vertical: $500 \mathrm{mV} / \mathrm{Di}$ Coupling: DC

93 kHz for the high frequency component.

What are the values of the two frequencies? Note that both signals are probably distorted somewhat but you should be able to identify the fundamental frequency in each case. Identify the source of the lower frequency.

See above.
4) What are the values of the following resistors? (4 pts)


