ENGR-2300

Electronic Instrumentation

Quiz 3
Spring 2023

Print Name

\qquad RIN

Section

\qquad

I have read, understood, and abided by the Collaboration and Academic Dishonesty statement in the course syllabus. The work presented here was solely performed by me.

Signature: \qquad

Date: \qquad

On all questions: SHOW ALL WORK. BEGIN WITH FORMULAS, THEN SUBSTITUTE VALUES AND UNITS. No credit will be given for numbers that appear without justification. Unless otherwise stated in a problem, provide 3 significant digits in answers. Read the entire quiz before answering any questions. Also it may be easier to answer parts of questions out of order.

I. The 555 Timer [20 points]

A 555-Timer configured as an astable multivibrator is shown below.

1. [4 pts] Calculate the time per period that the output of the 555 timer is high $\left(\mathrm{T}_{\text {high }}\right)$ and low ($\mathrm{T}_{\text {low }}$). Also, calculate the period (T) and the frequency (f) of the output.
$(+1)$ Thigh $=T_{1}=0.693\left(R_{1}+R_{2}\right) C_{1}=20.8 \mu \mathrm{~S}$
$(+1)$ Tow $\left.=T_{2}=0.693 R_{2} C_{1}=13.7 \mu \mathrm{~S}\right)$
$\left.(+1) T=T_{1}+T_{2}=34.5 \mu \mathrm{~s}\right)$
$(+1) f=1 / T=29 \mathrm{kHz}$
2. [6 pts] Sketch at least 3 cycles of the output voltage from the 555-Timer vs. time. Label all relevant voltages, the total period (T), the time per cycle that the output voltage is high $\left(T_{\text {high }}\right)$ and the time per cycle that the output voltage is low $\left(T_{\text {low }}\right)$.

3. [2 pts] Calculate the duty cycle of the output of the 555 timer.

4. [4 pts$]$ What is the average voltage delivered by the output of the 555 timer?

$$
V_{\text {avg }}=\frac{V_{\text {high }} \cdot T_{1}+V_{\text {low }} \cdot T_{2}}{T}=\frac{5 v \cdot 20.8 \mu s+O v \cdot 13,7 \mu s}{34.5 \mu s}
$$

(+1) correct approach
$(+1)$ consistent values for $V_{\text {high, }}$ New

$$
=3.01 \mathrm{~V}
$$

(+1) consistent values for T_{1}, T_{2}
$(t 1)$ correct calculation
5. [2 pts] Name one other type of output signal a 555 timer can be used to generate.

The 555 timer can also output a single pulse with a specified length luseful for switch debooncing). (12) valid answer

1. [2 pts] If the value of C 1 were to be increased, would that increase the duty cycle, decrease the duty cycle, or leave it unchanged? Justify your answer.

- Duty cycle $=100 \times \frac{T_{1}}{(+1) \text { clear justification } T}=\frac{100 T_{1}}{T_{1}+T_{2}}=\frac{100}{1+\frac{T_{2}}{T_{1}}}$.

$$
=\frac{100}{1+\frac{0.643 R_{2} C_{1}}{0.643\left(R_{1}+R_{2}\right) G_{1}}}=\frac{100}{1+\frac{R_{2}}{R_{1}+R_{2}}}
$$

- Since duty cycle only depends on $\frac{R_{2}}{R_{+1}+R_{2}}$, changing C_{1} leaves it unchanged. (+1) correct answer
II. Combinational and Sequential Digital Logic [20 points]

1. [6 pts] Generate the truth table for the logic circuit below, including entries for Q_{A}, Q_{B} and Q.
 (+1) correct inputs: A

A	B	$\frac{Q_{A}}{1}$	$\frac{Q_{B}}{1}$
0	0	1	1
0	1	1	0
1	0	0	1
1	1	0	0

Q
0
I

1
(I1) Correct Q
2. [2 pts] To which fundamental 2-input logic gate is the circuit in part 1 equivalent? Explain your reasoning in one sentence.

Since the output (G) is 1 any time that one of the inputs is 1 (and 0 otherwises), this is an OR gate. (+1) answer consistent with 1 (+1) proper justification
3. [6 pts] D-Flip-Flop: the timing diagram for a \mathbf{D} flip-flop with the inputs CLK and \mathbf{D} already given is shown below. Sketch \boldsymbol{Q} and $\overline{\boldsymbol{Q}}$ vs. time and fill out the table for \boldsymbol{Q} and $\overline{\boldsymbol{Q}}$ at the given times. The D-flip-flip is a rising-edge triggered device with the following truth table:

\mathbf{D}	CLK	\boldsymbol{Q}	$\overline{\boldsymbol{Q}}$
0	Rising edge	0	1
1	Rising edge	1	0

Time	D	\boldsymbol{Q}	\bar{Q}
t_{1}	0	0	1
t_{2}	1	0	1
t_{3}	1	0	1
t_{4}	1	1	0

(+1) Q \mid Ea only change on rising clock edge
$(+1)$ Correct $\frac{Q}{Q}$
$(+1)$ correct
Q
(+1) Table: Dconsistontw/
timing diagram
(ti) Table: Q consistent w/
timing diagram
(+1) Table: \widetilde{G}_{0} consistent $w /$ tming-diagram

You must include units.
4. [4 pts] The two-bit counter below consists of two D flip-flops (Fa and $\mathbf{F b}$), with a clock signal input CLK_A and two outputs $\mathbf{Q a}$ and $\mathbf{Q b}$.

Complete the timing diagram below by sketching the outputs $\boldsymbol{Q}_{\boldsymbol{a}}, \overline{\boldsymbol{Q}_{\boldsymbol{a}}}$ (Qa_bar), $\boldsymbol{Q}_{\boldsymbol{b}}$ and $\overline{\boldsymbol{Q}_{\boldsymbol{b}}}$ (Qb_bar). Hint: begin with $\boldsymbol{Q}_{\boldsymbol{a}}$ and $\overline{\boldsymbol{Q}_{\boldsymbol{a}}}$ (Qa_bar).

(11) Correct Q_{a}
$(+1) \overline{Q_{a}}$ complement of Q_{a}
$(+1)$ correct Q_{b}
$(+1) \overline{Q_{b}}$ complement of θ_{b}

You must include units.
5. [2 pts] Why is it necessary to set the CLR input of a counter circuit to "high" before using it to count?

The CLR in pert allows you to set θ_{a} and Q_{b} to some known value (usually $(0,0)$, otherwise it is unknown what values are stored in Qa_{2} and Q_{b}. They may not be 0 or 1 . $(+2)$ valid answer/justification

III. Comparators and Schmitt Triggers [20 points]

1. In the following question, consider the OP27 as a generic/ideal op-amp, meaning that the saturation voltage is $+/-\mathrm{Vcc}$ (in this case: $+/-6 \mathrm{~V}$).

a. [2 pts] What is the functional name of this circuit, which utilizes the basic comparator operation of an op-amp?
schonitt
b. [5 pts] Assuming a full voltage swing between +Vcc and -Vcc at Vout, what are the two threshold voltages at node A? Take notice of the relative position of R1 and R2.

$$
\begin{aligned}
& \text { 1) }(6 v-1 v)+\frac{2 k}{2 k+4 k}+1 v=21 \\
& \text { 2) }(-6 v-1 v) \cdot \frac{2 k}{2 k+4 k}+1.33 \mathrm{~V}=1.3
\end{aligned}
$$

c. [2 pts] What is the hysteresis of the triggering voltage of this circuit? Hysteresis is the bandwidth (or voltage difference) formed by the two triggering voltages, by which the noise band can be avoided.

$$
2,67 v=(4, v)
$$

d. [2 pts] What should we do if we want to increase the hysteresis of this circuit? If we have a fixed value of R2, the only option we have is to control R1. Choose one of the following two options: increase R1 or decrease R1. And show your reasoning!

[DECREASE]
reference voltages ane set by the voltage divides $:\left(\frac{R_{1}}{R_{1}+R_{2}}\right)$
in order to
increase
hysterisis, $\dot{K} R_{2}$ fixed

$$
\uparrow R_{1}
$$

e. [8 pts] The input sinusoidal voltage is plotted in the following graph. Sketch and label Vout relative to Vin. Use the calculated results from question 1.b and clearly label the crossing points of the two curves (Vin and Vout) with numerical values.

IV. Diodes [20 points]

1. The following circuit is a full wave rectifier for testing. We are using color LED s instead of normal diodes to have visible indicators for the circuit operation. Here we are specifically using 4 Yellow LEDs. Therefore, when the rectifier circuit is operating, the responsive LED are expected to be flashing.

And the following table shows the approximate threshold voltages of different colors of LED:

Diode	$\mathbf{V}_{\text {LED }}$	Diode	$\mathbf{V}_{\text {LED }}$
infra-red	1.2	blue	3.6
red	2.2	purple	3.6
yellow	2.2	ultra-violet	3.7
green	3.5	white	3.6

a. [2 pts] Assuming the responsivity of human eye is very fast enough ($<\mathrm{msec}$) to detect the LED's blinking speed: whenever the diode D1 is blinking, which of the following statements is correct?

1) The LED D2 is blinking together with D1 at the same time
2) The LED D3 is blinking together with D1 at the same time
3) The LED D4 is blinking together with D1 at the same time
4) All other REDs (D2, D3 , and D4) are blinking together with D1 at the same time

$$
D_{1} d D_{3} \text { are both "ON" when comment flows }
$$

You must include units.

IV. Diodes [20 points]

1. The following circuit is a full wave rectifier for testing. We are using color LED s instead of normal diodes to have visible indicators for the circuit operation. Here we are specifically using 4 Yellow LEDs. Therefore, when the rectifier circuit is operating, the responsive LED are expected to be flashing.

And the following table shows the approximate threshold voltages of different colors of EDs:

Diode	$\mathbf{V}_{\text {LED }}$	Diode	$\mathbf{V}_{\text {LED }}$
infra-red	1.2	blue	3.6
red	2.2	purple	3.6
yellow	2.2	ultra-violet	3.7
green	3.5	white	3.6

a. [2 pts] Assuming the responsivity of human eye is very fast enough ($<\mathrm{msec}$) to detect the LED's blinking speed: whenever the diode D1 is blinking, which of the following statements is correct?

1) The LED D2 is blinking together with D1 at the same time
2) The LED D3 is blinking together with D1 at the same time
3) The LED D4 is blinking together with D1 at the same time
4) All other REDs (D2, D3, and D4) are blinking together with D1 at the same time

$$
D_{1} d D_{3} \text { are both }
$$

current flows
b. [2 pts] The input sinusoidal wave has a frequency of $1 \mathrm{kHz}(1000 / \mathrm{sec})$, what will be the frequency of the flashing rate of diode D1?
Sine as input ofveguency :

c. [5 pts] As seen in the circuit diagram, when a sinusoidal voltage wave ($15 \mathrm{~V} \mathrm{P}-\mathrm{P}$) is applied to this circuit, calculate the current through R1 at the peak voltages (for both at +15 and -15 V). Show your work! Hint: Start with drawing the circuit diagram for each case and doing the analysis for each!

1) $15 \sqrt{\frac{1}{4}} V_{D_{1}}$

$$
I_{R_{1}}=\frac{15 V-V_{D_{1}}-V_{D 3}}{R_{1}+R_{2}}=\frac{15 v-2 \cdot(2,2 v)}{10 k 2+0.6 k \Omega}
$$

$$
=\frac{10.6 \mathrm{~V}}{10.6 k \Omega}=1 \mathrm{~mA}
$$

2) stun -15 V

d. [5 pts] The plot below shows the input sinusoidal wave form (15 V P-P, 1 kHz). Sketch and label the output voltage waveform measured between A and B. Clearly show the peak voltages labeled with numerical values in the plot. Show the calculation of the peak voltages.
HINT: Start from the circuit diagram obtained in question IV.c above and calculate the voltage

e. [4 pts] As shown in the circuit diagram below, we have added two Green LEDs between Vout nodes A and B to limit the voltage output. Sketch and label the voltage output between A and B in the plot below. Clearly label the peak voltages with numerical values and show your reasoning.

Calculation \& Reasoning:

$$
\begin{aligned}
& V_{A B} \text { is toto limited by } 2 \text { Green LEDS } \\
& \begin{aligned}
\text { Tola limit voltages } & =\frac{V p 5+V D G}{17 V} \\
& =1 . V_{D}
\end{aligned} \\
& \text { So. teat }\left(V_{A B}\right) \text { is limited te TV }
\end{aligned}
$$

Drawing Hint: Start with drawing the result of Vout in question IV.d as a dotted line and draw the final Vout in a dark line resulting from the addition of Green EDs.

f. [2 pts] Now what is the blinking rate (times/sec) of the Green LED D5 and D6 between nodes A and B?

$$
\begin{aligned}
& \text { IOU } \\
& \text { (0) ìin innici } \\
& \Delta
\end{aligned}
$$

