ENGR-2300

Electronic Instrumentation

Quiz 3

Fall 2021

Print Name

\qquad RIN

Section

\qquad

I have read, understood, and abided by the Collaboration and Academic Dishonesty statement in the course syllabus. The work presented here was solely performed by me.

Signature:

\qquad
Date: \qquad

On all questions: SHOW ALL WORK. BEGIN WITH FORMULAS, THEN SUBSTITUTE VALUES AND UNITS. No credit will be given for numbers that appear without justification. Unless otherwise stated in a problem, provide 3 significant digits in answers. Read the entire quiz before answering any questions. Also it may be easier to answer parts of questions out of order.

Some Additional Background Information:

Standard Resistor Values ($\pm \mathbf{5 \%}$)						
1.0	10	100	1.0 K	10K	100K	1.0 M
1.1	11	110	1.1 K	11K	110K	1.1 M
1.2	12	120	1.2 K	12K	120K	1.2 M
1.3	13	130	1.3 K	13K	130K	1.3 M
1.5	15	150	1.5 K	15K	150K	1.5 M
1.6	16	160	1.6 K	16K	160K	1.6 M
1.8	18	180	1.8 K	18K	180K	1.8 M
2.0	20	200	2.0 K	20K	200K	2.0 M
2.2	22	220	2.2 K	22K	220K	2.2 M
2.4	24	240	2.4 K	24K	240K	2.4 M
2.7	27	270	2.7 K	27K	270K	2.7 M
3.0	30	300	3.0K	30K	300K	3.0 M
3.3	33	330	3.3 K	33K	330K	3.3 M
3.6	36	360	3.6 K	36K	360K	3.6 M
3.9	39	390	3.9 K	39K	390K	3.9 M
4.3	43	430	4.3 K	43K	430K	4.3 M
4.7	47	470	4.7 K	47K	470K	4.7 M
5.1	51	510	5.1 K	51K	510K	5.1 M
5.6	56	560	5.6 K	56K	560K	5.6 M
6.2	62	620	6.2 K	62K	620K	6.2 M
6.8	68	680	6.8 K	68K	680K	6.8 M
7.5	75	750	7.5K	75K	750K	7.5 M
8.2	82	820	8.2K	82K	820K	8.2 M
9.1	91	910	9.1K	91K	910K	9.1 M

555 Timer Block Diagram

You must include units.

Zener Diodes: From Wikipedia: A Zener diode is a diode which allows current to flow in the forward direction in the same manner as an ideal diode, but also permits it to flow in the reverse direction when the voltage is above a certain value known as the breakdown voltage, "zener knee voltage", "zener voltage", "avalanche point", or "peak inverse voltage".
The device was named after Clarence Zener, who discovered this electrical property. Many diodes described as "zener" diodes rely instead on avalanche breakdown as the mechanism. Both types are used. Common applications include providing a reference voltage for voltage regulators, or to protect other semiconductor devices from momentary voltage pulses.

Type Number	Nominal Zener Voltage VZ © IZT ${ }^{(2)}$ (Volts)	TestCurrentIzt(mA)	Maximum Zener Impedance $Z Z T @ I Z T^{(1)}$ ($\Omega)$	Maximum Regulator Current$\begin{aligned} & \mathrm{IZM}^{[2]} \\ & (\mathrm{mA}) \end{aligned}$	Maximum Reverse Leakage Current	
					$\begin{gathered} \mathrm{T}_{A}=25^{\circ} \mathrm{C} \\ \mathrm{I}_{\mathrm{R}} @ \mathrm{~V}=1 \mathrm{~V} \\ (\mu \mathrm{~A}) \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C} \\ \mathrm{I}_{\mathrm{R}} @ \mathrm{~V}=1 \mathrm{~V} \\ (\mu \mathrm{~A}) \end{gathered}$
1N746A	3.3	20	28	110	10	30
1N747A	3.6	20	24	100	10	30
1N748A	3.9	20	23	95	10	30
1N749A	4.3	20	22	85	2	30
1N750A	4.7	20	19	75	2	30
1N751A	5.1	20	17	70	1	20
1N752A	5.6	20	11	65	1	20
1N753A	6.2	20	7	60	0.1	20
1N754A	6.8	20	5	55	0.1	20
1N755A	7.5	20	6	50	0.1	20
1N756A	8.2	20	8	45	0.1	20
1N757A	9.1	20	10	40	0.1	20
1N758A	10	20	17	35	0.1	20
1N759A	12	20	30	30	0.1	20

Wavelength (nm)	Color Name	Fwd Voltage (Vf @ 20ma)	Intensity 5 mm LEDs	Viewing Angle	LED Dye Material
940	Infrared	1.5	16 mW @ 50 mA	15°	GaAIAs/GaAs -Gallium Aluminum Arsenide/Gallium Arsenide
880	Infrared	1.7	18 mW $@ 50 \mathrm{~mA}$	15°	GaAIAs/GaAs -Gallium Aluminum Arsenide/Gallium Arsenide
850	Infrared	1.7	26 mW @ 50 mA	15°	GaAIAs/GaAs -- Gallium Aluminum Arsenide/Gallium Aluminum Arsenide
660	Ultra Red	1.8	2000 mcd @ 50 mA	15°	GaAIAs/GaAs -- Gallium Aluminum Arsenide/Gallium Aluminum Arsenide
635	High Eff. Red	2.0	200 mcd $@ 20 \mathrm{~mA}$	15°	GaAsP/GaP - Gallium Arsenic Phosphide/ Gallium Phosphide
633	Super Red	2.2	$\begin{aligned} & 3500 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \end{aligned}$	15°	InGaAIP - Indium Gallium Aluminum Phosphide
620	Super Orange	2.2	$\begin{aligned} & 4500 \mathrm{med} \\ & @ 20 \mathrm{~mA} \end{aligned}$	15°	InGaAIP - Indium Gallium Aluminum Phosphide
612	Super Orange	2.2	6500 mcd @ 20 mA	15°	InGaAIP - Indium Gallium Aluminum Phosphide
605	Orange	2.1	160 mcd @20mA	15°	GaAsP/GaP - Gallium Arsenic Phosphide/ Gallium Phosphide
595	Super Yellow	2.2	$\begin{aligned} & 5500 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \end{aligned}$	15°	InGaAIP - Indium Gallium Aluminum Phosphide
592	Super Pure Yellow	2.1	$\begin{aligned} & 7000 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \end{aligned}$	15°	InGaAIP - Indium Gallium Aluminum Phosphide
585	Yellow	2.1	100 mcd @20mA	15°	GaAsP/GaP - Gallium Arsenic Phosphide/ Gallium Phosphide
4500K	"Incandescent" White	3.6	$\begin{aligned} & 2000 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \end{aligned}$	20°	SiC/GaN -- Silicon Carbide/Gallium Nitride

6500K	Pale White	3.6	$\begin{aligned} & 4000 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \end{aligned}$	20°	SiC/GaN -- Silicon Carbide/Gallium Nitride
8000K	Cool White	3.6	6000 mcd @20mA	20°	SiC/GaN - Silicon Carbide / Gallium Nitride
574	Super Lime Yellow	2.4	$\begin{aligned} & 1000 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \end{aligned}$	15°	InGaAIP - Indium Gallium Aluminum Phosphide
570	Super Lime Green	2.0	$\begin{aligned} & 1000 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \end{aligned}$	15°	InGaAIP - Indium Gallium Aluminum Phosphide
565	High Efficiency Green	2.1	200 mcd @20mA	15°	GaP/GaP - Gallium Phosphide/Gallium Phosphide
560	Super Pure Green	2.1	350 mcd @20mA	15°	InGaAIP - Indium Gallium Aluminum Phosphide
555	Pure Green	2.1	80 mcd @ 20 mA	15°	GaP/GaP - Gallium Phosphide/ Gallium Phosphide
525	Aqua Green	3.5	$\begin{gathered} 10,000 \mathrm{mcd} \\ @ 20 \mathrm{~mA} \end{gathered}$	15°	SiC/GaN - Silicon Carbide / Gallium Nitride
505	Blue Green	3.5	$\begin{aligned} & 2000 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \end{aligned}$	45°	SiC/GaN - Silicon Carbide / Gallium Nitride
470	Super Blue	3.6	$\begin{aligned} & 3000 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \end{aligned}$	15°	SiC/GaN - Silicon Carbide / Gallium Nitride
430	Ultra Blue	3.8	100 mcd @20mA	15°	SiC/GaN - Silicon Carbide / Gallium Nitride

I. Astable Multivibrator

a. (4 pts) The 555 astable multivibrator circuit shown above is to have a duty cycle of 75%. What ratio of resistors R1/R2 will produce this duty cycle?
b. (4 pts) Using this ratio of R1/R2 and C1 = 100uF, calculate the values for R1 and R2 required to yield a frequency of 1 kHz .
c. (4 pts) Determine the maximum and minimum voltages at pins 6 and 7. Assume that the circuit is in steady state.
d. (6 pts) On the graph below, plot at least two cycled of the output voltage, starting with the output voltage at its maximum (assume 9V). Also plot the voltages at pins 6 and 7. Label each voltage trace as well as the horizontal and vertical scales.

e. (2 pts) Name two potential applications for an astable multivibrator circuit other than the experiments we have done in class.

II. Combinational and Sequential Logic Circuits (20 points)

a. (4 pts) Fill out the truth table below. Start by writing all possibile combinations of the inputs A, B, and C. Then determine the corresponding outputs D, E, and F.

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}

You must include units.

Circuit A

Q1	Vout
Type of logic gate represented by this circuit:	

You must include units.

Circuit B		
Q1	Q2	Vout
Type of logic gate represented by this circuit:		

Circuit C		
Q1	Q2	Vout
Type of logic gate represented by this circuit:		

You must include units.

c. (3 pts) Above, a circuit is shown consisting of several counters combined. What is the largest number that can be represented using this counter circuit?
d. ($\mathbf{4} \mathbf{p t s}$) On the chart below, draw 8 pulses of a periodic square wave pulse of duty cycle 0.5 and a frequencyof 1 Hz at the clock input of counter U1A. Then draw the outputs at pins 3,4 and 5 of U1A. Let 5 V represent a "high" logic level and 0 V represent a "low" logic level. Label both axes.

You must include units.

III. Comparators and Schmitt Triggers (20 points)

In this problem, we want to detect how often an input signal crosses a threshold using the properties of comparators and Schmitt Triggers. Assume the output of the op-amp is capable of reaching the power supply voltages. For the circuit shown, the intent is to compare Vsignal to Vref, but the signal is corrupted by noise, Vnoise. Va is the combined Vsignal plus Vnoise.

a. (2pts) No noise: The plot below shows Va for the case with no noise. Add a trace for Vout. Be sure to mark important voltages. (2pts)

b. (2pts) With noise: The plot below shows Va for the case with no noise. This is a digital type of noise. Add a trace for Vout. Be sure to mark important voltages.

c. (2pts) We will now look at using a Schmitt Trigger to eliminate the effect of the noise.

First for this circuit shown, assume that Vref, Vout, Ra , and Rb have known values. Write an equation that gives Vc as a function of those values.
$\mathrm{Vc}=$

Vref is a dc voltage so it is shown as a battery. Vout has various values so it is shown as a voltage source.
d. (4pts) Complete the table below:

Vref	Vout	$\mathrm{Ra}(\mathrm{Ohms})$	$\mathrm{Rb}(\mathrm{Ohms})$	Vc
3 V	+6 V	1 k	3 k	
3 V	-6 V	1 k	3 k	
3 V	+6 V	1 k	7 k	
3 V	-6 V	1 k	7 k	

e. (6pts) Results from part d. are useful for this part. For the circuit shown again the input signal has unwanted noise. The sum of the signal plus noise have been plotted. On the plot draw both Vc and Vout. Label voltage levels.

You must include units.

f. Did the circuit in part d. eliminate all false transitions caused by noise? (2pts)
g. If the circuit used $\mathrm{Ra}=1 \mathrm{k}$ and $\mathrm{Rb}=7 \mathrm{k}$ (table in part c) would the comparator be (circle one) (2pts)
More noise immune Less noise immune Not change

IV - Diodes (20 points)

a. (6pts) In the circuit shown:

V1=8V
R1 $=400 \Omega$
Rload - various values

D1 is a Zener. The desired result is to have a Vout that doesn't vary with the load resistance.
Determine Vout and the Iz (the current in the Zener) for each test case. Use the "Some
Additional Background" information at the beginning of this exam.

Zener part number	Rload	Vout	Iz
1N747A	1000Ω		
1N751A	1000Ω		
1N747A	500Ω		
1N751A	500Ω		

b. The circuit shown is a type of Limiter circuit but it uses LEDs rather than diodes for the limiting.
i. (3pts) Given:

LED1 is an High Efficiency Red LED (635nm)
LED2 is a Ultra Vlue LED (633 nm)

Sketch Vout below. V2 is already plotted. Use the background info given in this exam.

ii. (1pt)What is the peak current through LED1?
iii. (1pt)What is the peak current through LED2?
c. (3pts) Rectifier diodes: For the circuit shown, R1 is the load and the voltage across R1 is Vout. Use the Von diode model with $\mathrm{Vd}=0.7 \mathrm{~V}$ Sketch Vout. V1 is already plotted. Label important voltages.

d. The circuit in part C has been modified by adding a filter cap (C1) across the load (R1). Vout is measured to have a $\mathbf{1 V}(\mathbf{p}-\mathbf{p})$ ripple ignoring the initial charging of the capacitor.
i. (3pts) Sketch Vout for at least 1 cycle after the initial charging of the capacitor, this will like be the period of 20 ms to 40 ms . V1 is already plotted.

ii. (2pts)On the plot, during one cycle indicate when D 2 is on. This should be after the initial charging of the capacitor.
e. (1pts) Do you expect to take the optional final, Quiz X?

Your answer here is NON-BINDING. Circle one: Yes or No
The optional final will: 1) cover all topics in the class, 2) generally be more difficult than the quizzes, 3) Not have an LMS portion, and 4) replace your lowest quiz grade. It will not count if it is your lowest quiz grade.

You must include units.

