ENGR-2300

Electronic Instrumentation

Quiz 1
Fall 2013

Question I (25 points) \qquad
Question II (25 points) \qquad
Question III (25 points) \qquad
Question IV (25 points) \qquad

Total (100 points) \qquad
On all questions: SHOW ALL WORK. BEGIN WITH FORMULAS, THEN SUBSTITUTE VALUES AND UNITS. No credit will be given for numbers that appear without justification. Read the entire quiz before answering any questions. Also it may be easier to answer parts of questions out of order.

This Day in History - 1957

1957 is one of my favorite years. I was in $6^{\text {th }}$ grade and had one of my very best elementary school teachers (the only one who is still alive). The highlight in Wisconsin, where I grew up, was the Milwaukee Braves beating the Yankees in the World Series. We also had some major tragedies in our family including a barn on the family farm burning down. The International Geophysical Year put a focus on science that has as much to do with the
 career path I chose as the launching of Sputnik on October $4^{\text {th }}$. During the next few years, top students in Madison (at least top male students) were encouraged to pursue careers in science \& engineering, with many new opportunities for accelerated education. On the $25^{\text {th }}$ of September, a little more than a week before Sputnik, the big news was political, not scientific. (KC)

"On Sept. 24, 1957, President Dwight D. Eisenhower ordered units of U.S. Army’s 101st Airborne Division to escort nine Black students, nicknamed the 'Little Rock Nine,' into the previously all-white Central High School in Little Rock, Arkansas. In the weeks before, the students were refused entry by the Arkansas National Guard and mobs of segregationists gathered to block the doors, abusing the Black teens with obscenities and death threats. The "Little Rock Nine" attended their first full day of class on Sept. 25, 1957, and to ensure their safety, the federal officers were ordered to escort them to classes throughout the school year. Two of the students, Jefferson Thomas and Thelma Mothershed, earned their diploma from Central High School in 1960. A third member, Carlotta Walls, earned hers through correspondence classes. The remaining six students completed their high school educations at other schools."

Additional Reference Info

Standard Resistor Values $\mathbf{(~} \mathbf{5} \% \mathbf{)}$						
1.0	10	100	1.0 K	10 K	100 K	1.0 M
1.1	11	110	1.1 K	11 K	110 K	1.1 M
1.2	12	120	1.2 K	12 K	120 K	1.2 M
1.3	13	130	1.3 K	13 K	130 K	1.3 M
1.5	15	150	1.5 K	15 K	150 K	1.5 M
1.6	16	160	1.6 K	16 K	160 K	1.6 M
1.8	18	180	1.8 K	18 K	180 K	1.8 M
2.0	20	200	2.0 K	20 K	200 K	2.0 M
2.2	22	220	2.2 K	22 K	220 K	2.2 M
2.4	24	240	2.4 K	24 K	240 K	2.4 M
2.7	27	270	2.7 K	27 K	270 K	2.7 M
3.0	30	300	3.0 K	30 K	300 K	3.0 M
3.3	33	330	3.3 K	33 K	330 K	3.3 M
3.6	36	360	3.6 K	36 K	360 K	3.6 M
3.9	39	390	3.9 K	39 K	390 K	3.9 M
4.3	43	430	4.3 K	43 K	430 K	4.3 M
4.7	47	470	4.7 K	47 K	470 K	4.7 M
5.1	51	510	5.1 K	51 K	510 K	5.1 M
5.6	56	560	5.6 K	56 K	560 K	5.6 M
6.2	62	620	6.2 K	62 K	620 K	6.2 M
6.8	68	680	6.8 K	68 K	680 K	6.8 M
7.5	75	750	7.5 K	75 K	750 K	7.5 M
8.2	82	820	8.2 K	82 K	820 K	8.2 M
9.1	91	910	9.1 K	91 K	910 K	9.1 M

Standard Capacitor Values $\mathbf{(} \pm \mathbf{1 0 \%})$						
10 pF	100 pF	1000 pF	$.010 \mu \mathrm{~F}$	$.10 \mu \mathrm{~F}$	$1.0 \mu \mathrm{~F}$	$10 \mu \mathrm{~F}$
12 pF	120 pF	1200 pF	$.012 \mu \mathrm{~F}$	$.12 \mu \mathrm{~F}$	$1.2 \mu \mathrm{~F}$	
15 pF	150 pF	1500 pF	$.015 \mu \mathrm{~F}$	$.15 \mu \mathrm{~F}$	$1.5 \mu \mathrm{~F}$	
18 pF	180 pF	1800 pF	$.018 \mu \mathrm{~F}$	$.18 \mu \mathrm{~F}$	$1.8 \mu \mathrm{~F}$	
22 pF	220 pF	2200 pF	$.022 \mu \mathrm{~F}$	$.22 \mu \mathrm{~F}$	$2.2 \mu \mathrm{~F}$	$22 \mu \mathrm{~F}$
27 pF	270 pF	2700 pF	$.027 \mu \mathrm{~F}$	$.27 \mu \mathrm{~F}$	$2.7 \mu \mathrm{~F}$	
33 pF	330 pF	3300 pF	$.033 \mu \mathrm{~F}$	$.33 \mu \mathrm{~F}$	$3.3 \mu \mathrm{~F}$	$33 \mu \mathrm{~F}$
39 pF	390 pF	3900 pF	$.039 \mu \mathrm{~F}$	$.39 \mu \mathrm{~F}$	$3.9 \mu \mathrm{~F}$	
47 pF	470 pF	4700 pF	$.047 \mu \mathrm{~F}$	$.47 \mu \mathrm{~F}$	$4.7 \mu \mathrm{~F}$	47 uF
56 pF	560 pF	5600 pF	$.056 \mu \mathrm{~F}$	$.56 \mu \mathrm{~F}$	$5.6 \mu \mathrm{~F}$	
68 pF	680 pF	6800 pF	$.068 \mu \mathrm{~F}$	$.68 \mu \mathrm{~F}$	$6.8 \mu \mathrm{~F}$	
82 pF	820 pF	8200 pF	$.082 \mu \mathrm{~F}$	$.82 \mu \mathrm{~F}$	$8.2 \mu \mathrm{~F}$	

Shown above is the pinout diagram for the Mobile Studio including the 10 input/output connections we have used. The insert is a photo of the relevant part of the Mobile Studio.

I. Resistive circuits (25 points)

a) Find the voltage Vout in the circuit above. (5 pts)

For the left circuit, there is no current through any of the resistors because the voltage $=50 \mathrm{~V}$ at the upper left and lower right corners. Thus, $\mathrm{V}_{\mathrm{A}}=50=\mathrm{V}_{\mathrm{B}}$. For the right circuit, the top and bottom are symmetric, so they can be treated separately. Each looks like a simple voltage divider. Thus the voltages at C and D are both 25 V .
b) Find the voltages at the four points in the two circuits above. (4 pts)

c) Find the voltages at the points A, B \& C in the circuit above. (6 pts)

This is just a more elaborate version of the left circuit in part b . $\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{E}}, \mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{F}}, \mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{G}}, \mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{H}}$ so there is no current in any of the resistors and all voltages are 50 V .
d) Find the voltages at the points A, B, C, D, E, F, G \& H above. Also determine the current in resistor R4. (4 pts)

This is just a more elaborate version of part c . The $\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{C}}, \mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{F}}, \mathrm{V}_{\mathrm{G}}=\mathrm{V}_{\mathrm{I}}$. Thus, the circuit can be analyzed by ignoring the six resistors in the middle. Again we have simple voltage dividers and the voltages are $40,30,20$ and 10 along the top or the bottom. For example $V_{A}=V_{C}=V_{B}=40 \mathrm{~V}$ \& $\mathrm{V}_{\mathrm{J}}=\mathrm{V}_{\mathrm{K}}=10 \mathrm{~V}$. The current in R 15 is $50 \mathrm{~V} / 5 \mathrm{k}=10 \mathrm{~mA}$.
e) Find the voltages at the points A, B, C, D, E, F, G, H, I, J \& K above. Also determine the current in resistor R15. (6 pts)

II. Filters \& Transfer Functions (25 points)

a) Find the transfer function Vout/Vin for the RC circuit shown above. Note that output is measured across C4. Simplify the expression for both low frequencies and high frequencies.
Determine the corner frequency. (6 pts)

b) Find the transfer function Vout/Vin for the RL circuit shown above. Note that output is measured across L3. Simplify the expression for both low frequencies and high frequencies. Determine the corner frequency. (6 pts)

c) Find the transfer function Vout/Vin for the RLC circuit shown above. Note that output is measured across L2 \& C2. Simplify the expression for both low frequencies and high frequencies. Determine the resonant frequency and the transfer function at the resonant frequency. (8 pts)

$$
\begin{aligned}
& V_{\text {out }} / V_{\text {in }}=\left(\frac{j \omega L+\frac{1}{j \omega C}}{R+j \omega L+\frac{1}{j \omega C}}\right)=\left(\frac{1-\omega^{2} L C}{1-\omega^{2} L C+j \omega R C}\right) \\
& V_{\text {out }} / V_{\text {in }}=1 \text { at low } \mathrm{f} \text { and at high } \mathrm{f} \\
& f_{\text {res }}=\frac{1}{2 \pi \sqrt{L C}}=503 \mathrm{kHz}
\end{aligned}
$$

Transfer funct at resonance is zero. The impedance of $\mathrm{L} \& \mathrm{C}$ goes to zero at resonance.

Note: The horizontal scale goes from 100 Hz to 1 GHz and the vertical scale from 0 V to 20 V .
d) The plot above shows the input and output voltages as a function of frequency for one of the three circuits. Identify which one it is (RC, RL or RLC) and label the input and output voltages. From your answers to parts a) thru c), carefully sketch the input and output voltages for the other two circuits. (5 pts)

The plot is for the RC because the high freq transfer function goes to zero. For the RL, the low frequency function goes to zero, so it looks like a mirror of the RC. The RLC is the combination of the two. Red is RLC, light blue is RC, dark blue is RL.

The resonant freq is the minimum, the two corner frequencies give the .707 points.

III - Signals, Transformers and Inductors (25 points)

a) Given the circuit above, assume an ideal transformer with full coupling. With $\mathrm{RS}=75 \Omega, \mathrm{RL}=300 \Omega, \mathrm{~L} 1=2.5 \mu \mathrm{H}$, and $\mathrm{L} 2=10 \mu \mathrm{H}$, find Vin, Vout, and the power in RL. (9 pts)
$a=\sqrt{\frac{L 2}{L 1}}=2 \quad R_{\text {in }}=\frac{R L}{a^{2}}=300 / 4=75 \quad V_{\text {in }}=V S / 2=0.5 \quad V_{\text {out }}=a V_{\text {in }}=1$
$P L=1 / 300=\left(.5^{2}\right) / 75=3.33 m W$ (should also have a $1 / 2$ in it for average power, but both answers are OK).
b) For which of the following frequencies will the transformer work for the given component values? Explain your answer. (4 pts)
$10 \mathrm{~Hz} \quad 30 \mathrm{~Hz} \quad 100 \mathrm{~Hz} \quad 300 \mathrm{~Hz} \quad 1 \mathrm{kHz} \quad 3 \mathrm{kHz} \quad 10 \mathrm{kHz} \quad 30 \mathrm{kHz} \quad 100 \mathrm{kHz} \quad 300 \mathrm{kHz}$ $1 \mathrm{MHz} \quad 3 \mathrm{MHz} \quad 10 \mathrm{MHz} \quad 30 \mathrm{MHz} \quad 100 \mathrm{MHz} \quad 300 \mathrm{MHz} \quad 1 \mathrm{GHz}$

The corner frequencies for both the primary and secondary circuits are both about 47 MHz . Thus, the three frequencies chosen are well above the corner. If a more stringent condition is set, then only the last two frequencies are OK. A transformer like this is used for cable TV and works fine for the entire band because attenuation is not great even in the high 70MHz range where VHF begins.
c) Which of the two resistors (RS \& RL) sets the lower limit on the frequency range or, in this case, are the two limits the same? Explain your answer. (4 pts)

Both corner frequencies are the same in this case, so the two limits are indeed the same.
d) You decide to build this transformer by winding 28 gauge wire into two ring-shaped coils similar to the ones used in the Beakman's motor. The two coils are to be wound on a cylinder with a radius of 12.6 cm (this will be the coil radius). Determine the number of turns for the primary and secondary coils (N1 and N 2) to realize the primary and secondary inductances given above. (8 pts)

Using the parameters given the number of turns is 4 and 8 for the primary and secondary. $L=N^{2} \mu_{o} r_{c}\left[\ln \left(\frac{8 r_{c}}{r_{w}}\right)-2\right]$ with $r_{c}=.126 m ; r_{w}=(0.000321) / 2 m$; and $\mu_{o}=4 \pi \times 10^{-7}$

IV - Instrumentation, PSpice, Components, Troubleshooting \& Concepts (25 points)

You are given the following
PSpice generated circuit diagram to address the three ways we do just about everything in this course: paper and pencil analysis using simplified formulas,
 simulation with PSpice and experiment with Mobile Studio.
a) Label the location of $\mathrm{V}_{\text {IN }}$ and $V_{\text {Out }}$ on the plot above. (2 pts)

There are many ways to hand-draw this circuit. One common approach is shown below. This diagram is to be used for all three approaches to characterizing this circuit.
b) Find the transfer function for this circuit, simplify it for both high and low frequencies, and redraw the diagram for high frequencies and low frequencies (2 diagrams). (6 pts)

The parallel combination of R2 and C $Z=\frac{\frac{1}{j \omega C} R 2}{R 2+\frac{1}{j \omega C}}=\frac{R 2}{1+j \omega R C}$
$V_{\text {out }} / V_{\text {in }}=\frac{Z}{R 1+Z} \quad V_{\text {out }} / V_{\text {in }}=1 / 2$ at low f and $V_{\text {out }} / V_{\text {in }}=\frac{Z}{R 1+Z}=\frac{1}{j \omega R 1 C}$ at high f

At high f, drop R2 from the diagram. At low freq drop C from the diagram.

c) On the hand-drawn circuit diagram (repeated here), label where connections are to be made with the Mobile Studio board to experimentally study the circuit. That is, use the labels from the board (e.g. A1+). Hint: You must show at least 4 connections (there is more than one way to do this). The pinout diagram is on page 4. (4 pts)

d) Shown below is the PSpice output for the circuit. Label the input and output voltages. (2 pts)

e) Three measurements are made of the input and output voltages for this circuit at three different frequencies $(10 \mathrm{kHz}, 30 \mathrm{kHz}, 100 \mathrm{kHz})$. The results are shown below. Label the input and output voltages, the peak-to-peak amplitudes of the input and output voltages and the frequency for each case. (6 pts)

Horizontal: $20.0 \mu \mathrm{~s} /$ Div
Trigger: 0.000 V
Channel 1: Vertical: $500 \mathrm{mV} /$ Div Channel 2: Vertical: $500 \mathrm{mV} / \mathrm{Div}$ Coupling: DC

[^0]

Horizontal: $5.00 \mu \mathrm{~s} /$ Div \quad Trigger: 0.000 V
Channel 1: Vertical: $500 \mathrm{mV} /$ Div Channel 2: Vertical: $500 \mathrm{mV} / \mathrm{Div}$
Coupling: $D C$
Input: A2 SE

Green is in (larger wave) and blue is out (smaller wave)
f) Configure the circuit on the protoboard below. For clarity, the capacitor has been drawn showing where it is connected, as has the connection to the Mobile Studio ground. Add the resistors and all other connections to the Mobile Studio board so that, through measurements, it is possible to demonstrate that your circuit is working. Note that your protoboard diagram must be neat and easy to read. Your connections to the Mobile Studio should be drawn like the ground, with a short, straight line terminated in the label of the connection. Also, photos of the top and bottom view of a protoboard are shown at the bottom of this page. (5 pts)

[^0]: Horizontal: $50.0 \mu \mathrm{~s} /$ Div \quad Trigger: 0.000 V
 Channel 1: Vertical: $500 \mathrm{mV} /$ Div Channel 2: Vertical: $500 \mathrm{mV} /$ Div Input: A2 SE

