Class 3: Voltage Dividers

Activity 3 - Voltage Dividers
January 20 ${ }^{\text {th }}, 2022$

Santiago Paternain
ECSE Department
Rensselaer Polytechnic Institute

Intro to ECSE

Derivation of Voltage Divider Equation

$$
I=\frac{V}{R}=\frac{V}{\sum_{k=1}^{N} R_{k}}
$$

$$
V_{k}=R_{k} \times I=V_{\times} \frac{R_{k}}{\sum_{k=1}^{\nu} R_{k}}
$$

Example: Find Vout

$$
V_{R_{Z}}=V_{L}-0=V_{L} \vdots
$$

$$
\begin{aligned}
& V_{\text {OUT }}=V_{L}-V_{R} \\
& V_{L}=V_{\text {in }} \frac{R_{2}}{R_{1}+R_{2}}=12 \mathrm{v} \frac{\mathrm{~s}}{16+8} \\
& V_{R}=V_{R_{4}}=V_{\text {in }} \frac{R_{4}}{R_{3}+R_{4}}=12 \mathrm{~V} \\
&=8 \mathrm{v} \\
& V_{\text {OUT }}=V L-V_{R}-4 V-8 V=-4 \mathrm{~V}
\end{aligned}
$$

$$
V_{L}=V_{\text {in }}-V_{R_{1}}=V_{\text {in }}-V_{\text {in }} R_{1} / R_{1+R_{2}}=12 \bar{V}-\bar{\rho}=4 V
$$

A bit more complicated example

$$
V_{A B}=V_{R_{m}}=R_{m} I_{m}
$$

Case 1: Given that when $R x=0 \Omega$, the current through resistor $R m$ is 2 mA , i.e. $\mathrm{i}_{\mathrm{m}}=2 \mathrm{~mA}$.
Case 2: Given that when $R x=2000 \Omega$, the current through resistor $R m$ is 1 mA , i.e. $\mathrm{i}_{\mathrm{m}}=1 \mathrm{~mA}$.

Find voltage between points A and B for each of the cases described above

$$
\begin{aligned}
& \text { case 1: } V_{A B}=R_{m} \text { im }=20 \mathrm{mV} \\
& \text { case } 2: V_{A B}=R_{m} \text { im }=10 \mathrm{mV}
\end{aligned}
$$

What is the equivalent resistance between points A and $B, R_{A B}$?
(Express in terms of R2)

$$
V_{A B}=V_{R_{2}}=R_{2} I_{2}
$$

$$
R_{A B}=R_{m} \| R_{2}=\frac{R_{m} R_{L}}{R_{m}+R_{L}}
$$

R_{m} and R_{L} are

$$
R_{\triangle B}=\frac{10 R_{2}}{10+R_{2}}
$$

in parallel

A bit more complicated example (contd.)

$$
R_{A B}=\frac{10 R_{2}}{10+R_{2}}
$$

Using voltage divider and your previous findings, develop a relationship between R1 and R2 for case 1

$$
V_{A B}=10 \mathrm{~V} \cdot R_{A B} \frac{R_{1}+R_{A B}}{}
$$

$$
\begin{aligned}
& 20 \mathrm{mV}=10 \mathrm{~V} \cdot \frac{\frac{10 R_{2}}{10+R_{2}}}{\frac{R_{1}+\frac{10 R_{2}}{10+R_{2}}}{\Rightarrow 10 R_{1}-4990 R_{2}+R_{1} R_{L}=0}}
\end{aligned}
$$

A bit more complicated example (contd.)

Using voltage divider and your answer to parts a and b, develop a relationship between R1 and R2 for case 2

$$
\begin{aligned}
& V_{A B}=10 \mathrm{~V} \cdot \frac{R_{A B}}{R_{1}+R_{A B}+R_{x}} \\
& \Rightarrow 10 R_{1}-7990 R_{2}+R_{1} R_{2}=-20000
\end{aligned}
$$

$$
R_{A B}=\frac{R_{2} 10}{R_{1}+10}
$$

A bit more complicated example (contd.)

- Solve the linear relationships derived previously, to determine the values of resistors R1 and R2 such that both case 1 and 2 are satisfied

Case 1: 10 $R_{1}-4990 R_{2}+R_{1} R_{2}=0$
case $10 R_{1}-7990 R_{L}+R_{1} R_{L}=-20000$

$$
\begin{aligned}
10 R_{1}-4990 R_{2}+R_{g} R_{2} & -\left(10 R_{1}-7990 R_{2}+R_{2} / R_{2}\right)=0-(-20000) \\
3000 R_{2} & =20000 \Rightarrow R_{2}=6.667 \Omega \\
& \Rightarrow R_{1}=1996 \Omega
\end{aligned}
$$

What about Current Division?

$$
\begin{aligned}
& I=I_{1}+I_{2} \\
& I_{1}=\frac{V_{A B}}{R_{1}}, I_{2}=\frac{V_{A B}}{R_{2}} \\
& R_{A B}=R_{2} \| R_{1}=\frac{R_{2} R_{1}}{R_{1}+R_{2}} \\
& V A B=R_{A B I}
\end{aligned}
$$

$R_{A B}\left\{_{B}^{\Delta} \downarrow I\right.$

$$
\begin{aligned}
& V A B=R_{A B I} \\
& I_{1}=\frac{R A B}{R_{1}} I=\frac{R_{2} R_{1}}{R_{1}+R_{2}} \frac{1}{R_{1}} I=\frac{R_{2}}{R_{1}+R_{2}} I \\
& I_{2}=R_{1}\left(\left(R_{1}+R_{2}\right) I\right.
\end{aligned}
$$

Input Impedance of Voltmeter

Activity 3: Voltage Divider

- Go to the class website
- Look under class 3
- Find activity 3
- Do the activity
> Individual submission for activity 3
>Encouraged to discuss with others in the class on WebEx Teams
- Answer the activity using template (attached class 3)
- When complete - upload to Gradescope
$>$ Due Thursday, January 27th at 11:59 pm
> Use guides to learn how to upload documents

