Electronic Instrumentation ENGR-4300
AC Steady State Analysis

What if we are given a circuit and we wish to find the output of that circuit for a range of
inputs? We could wire the circuit, attach the function generator to the input, and hook up
the scope to the output. Then, we could alter the input systematically and observe how
the output responds to these changes. If we could use this information to find a
mathematical function that relates the input to the output, then we could use the function
to predict how the circuit will behave for any given input, as shown in figure 1 below.
What if we could use the components in the circuit to derive this function? Then we
could predict the output of any circuit for any given input.
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=0
Figure 1

A. What is a Transfer Function?

A transfer function relates the output and the input of a circuit. In order for a transfer
function to be useful, it must be simple to use and easy to find using the circuit diagram.
Therefore, let us define a transfer function, H, as the ratio of the output to the input of a
circuit.

V. [equation 1]

In a circuit containing only resistors, transfer functions can be easily found using voltage
dividers. In figure 2, a voltage divider is used to find the transfer function at Vout.
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Since H is 5/6 for this circuit, we can find the output at Vout by multiplying any input,
Vin, by 5/6. What if the circuit contains components other than resistors?
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The equations that govern the behavior of capacitors and inductors are not linear, like
those for resistors. Voltage dividers are based on these simple linear relationships. How
can we find a simple transfer function for a circuit with voltage relationships that have
derivatives and integrals? We could use differential equations, but that would not be the
simple solution we are looking for. We need to find a way to get rid of these integrals
and derivatives so that we can get back to a simple linear relationship. This is the
fundamental motivation for steady state analysis.

B. A Model for Steady State Analysis

Steady state analysis is a way to analyze AC circuits mathematically. We can do this
using linear transfer functions (and without the use of differential equations) if we do two
important things. The first is to take advantage of the fact that AC signals are sinusoids
that do not change in frequency. The second is to map the input from the time domain
into a domain based on the amplitude and frequency of the signals involved.

B.1 Steady State Sinusoids

The term steady state refers to the concept that a circuit, when attached to an AC input
signal, will, after a finite period of time, reach a state in which the signal across each
device in the circuit behaves like a sinusoid of the same frequency as the input. The
signal across each device will have a constant amplitude and phase relative to the input
that does not change once steady state has been reached. Once a circuit has reached
steady state, the output at any point in the circuit will look like a sinusoid with the same
frequency as the input, a constant amplitude, and a phase that does not change relative to
the input phase. It is this feature that we will exploit to find transfer functions.

Sinusoids have a special mathematical property in that the derivative of a sinusoid is just
another sinusoid with the same frequency, but shifted in phase. The same is true for the
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integral os a sinusoid. So when we need to take the derivative (or integral) of a
sinusoidal signal, we can think of it simply as the application of some change in
amplitude and some shift in phase.

Mathematically, the derivative of a sine wave of frequency ® and amplitude A,
Vin = Asin(wt + ¢) , is given by a cosine wave of frequency ® and amplitude Ao,

dVin o . . .
—— = Awcos(at + ¢). The output of the derivative operation is a new sine wave with a

dt
different amplitude and a phase shifted by and additional 90 degrees,
avin = Awsin(ot + ¢ + 77 ) . Mathematically, this means that
dt 2
dVin . o .
T = A'sin(wt + ¢') where A'= Aw and ¢'=¢ + % . The derivative of a cosine (or any

other sinusoid) results in the same changes. For example, if Vin = Acos(at + ¢) , then

dVin : .

T =—-Awsin(ot + @) = Aosin(wt + ¢ + ) = Awcos(at + ¢+ 7 — %) = Awcos(awt + ¢ + %)
and, therefore, dvin

= A'cos(at + ¢') where A'= A and ¢'= ¢ + 7/ . Similarly, the

integral of a sinusoid has a new amplitude of A/® and an additional phase shift of -90
degrees. So, if Vin= Asin(at + ¢) , then

[vindt = A'sin(at + ¢') where p=Pand g=g- %
w

If we can somehow model our input and output waves so that we are concerning
ourselves just with the changes in amplitude and phase brought about by the integrals and
derivatives involved, then we can eliminate the need to use differential equations. Since
the phase is an angle, it seems logical to begin with polar coordinates.

B.2 Polar Coordinates

Polar coordinates are a simple re-mapping of the traditional rectangular (x-y) coordinates
on a plane into another set of variables, r and 0, where r is the distance from the origin
and 0O is the angle measured from the positive x axis in counter-clockwise direction. This
is shown in figure 4.

To convert a point between the polar and x-y coordinate systems, trigonometric identities
must be used. The distance to the origin can be found using the Pythagorean theorem:

r=+/x>+y’ and the angle from the x axis is simply found by tan @ = i or
X

0 =tan™ [l} . To go the other way, we can use X =r c0S & andy =r sin 6.
X
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If we think of our signal as having a phase offset of ¢ and an amplitude of A, we can
model a sinusoid (of angular frequency, ®) as pictured in figure 5. Note that the sinusoid
begins at ¢ and cycles around the origin one time for each cycle (ot). The ray has a
length of A, the amplitude of the sinusoid. If we want to get back the original sinusoid,
we have only look at either the x coordinate, X = A coS(wt+¢), or the y coordinate, y =
Asin(wt+¢). Note that ot represents a complete cycle around the circle (27) at a rate of ®
radians per second. This corresponds to the constant cycling of the sinusoid in time. We
could just as easily drop the t, since it is a simple multiple of 27, and we would have an
x coordinate, X = A c0s(¢), and a y coordinate, y = A sin(¢).
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Polar coordinates give us a good way to express the important features of our sinusoid,
but we still need a way to operate on the sinusoids to simulate the behavior of the circuit.
For this, we will need to rethink our model in terms of complex numbers.

B.3 Complex Numbers

Complex numbers are numbers expressed as ordered pairs, consisting of a “real” part and
an “imaginary” part. In other words, a complex number is a point on a plane called the
complex plane. A complex number z can be written as Zz=X + jy. In a complex

number: X is called the “real” part, y is called the “imaginary” part, and j =+/—1. (Note

that in common mathematical notation, i is used for +—1, however, in electrical
engineering, since i is commonly used for current, we denote+/—1 with j.) The term
“imaginary” comes from the fact that j =+/—1 is not a “real” number. Complex

numbers are generally represented on a plane where Y is plotted against X. The x
coordinate consists of the basic number line containing all real numbers. They

coordinate is the same set of numbers multiplied by +—1. Each complex number, z, is a
unique point on the complex plane, shown in figure 6, where the x coordinate is the real
part and the y coordinate is the imaginary part.

iv

Figure 6

Before we continue there are two useful identities to remember about j:

I 1-] 1 ) 1 )
and _.——J.—i:_l -—=-].

| ]
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Why do we need complex numbers? What good could having a signal defined in terms
of something that doesn’t exist possibly do? What we are working towards is defining
our sinusoid as a combination of a real part, X = Acos(wt+¢), and an imaginary part,

y = jAsin(at+¢). This will enable us to work easily with sinusoids that have different
phases relative to one another. To do this, we need to define complex polar coordinates.

B.4 Complex Numbers in Polar Format
As we mentioned above, points on a plane can be represented in polar coordinates.
Similarly any complex number can be written in the polar format shown in figure 7.

+imaginary (j)
z=rcosO+jrsing
r
]
-real +real
- imaginary
Figure 7

Now we have a complex number, z, defined in terms of a real part, X = rcosé, and an
imaginary part, y = j rsind. It is a simple matter to translate this so that it represents the
phase and amplitude of our sinusoid, shown in figure 8. Note that the constant cycling of
ot (2w for each cycle) does not really affect the value of x and y in the model.

v
z =Acos(@®)+ j Asin(d)
|
A I v= Asin($)
|
" ¢

|
v 1./ %= Acos(d)

Figure 8
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In this representation, we can translate from the time domain to the frequency domain by
using X = Acos¢ and y = Asing and back to the time domain using A= /x> +y* and

¢=tan"' {l} . This is the final representation we will use. We will call this model a
X

phasor and base steady state analysis upon this representation. Before, we go into details,
however, let’s look at a brief example. Hopefully this will help clarify how the
representation works.

B.5 An Example — Adding Two Cosine Waves

We know that a complex polar number is given by z = Acos¢ + j Asind . The whole
signal (assuming it is a cosine), can be represented only by the x part of this complex
polar number. What will we use y for? Let’s look at the example in figure 9.

Vout V2 V1

(49,43)
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Figure 9

Figure 9 shows two sinusoids in the time domain that we want to add together. The sum
(with the largest amplitude) is also shown.

The first input sinusoid is V1 = 6.5 cos(wt + 0.27)

and the second sinusoid is V2 = 6 cos(wt + 0.7m).

If we use complex polar notation (adding the imaginary part), these two signals become:
V1 =6.5 cos(wt + 0.2m) +j 6.5 sin(wt + 0.21) and
V2 =6 cos(ot + 0.7n) +j 6 sin(owt + 0.77).

To translate into the frequency domain, we use X = Acos¢ and y = Asing. This gives us
the components of the two input vectors: z1 =4.9 +j4.3 and z2 = -3.5 + j4.7. We can add
the x and y coordinates of these vectors to get the vector sum, z,, = 1.4+ 9.0. This
represents the sum of the sinusoids. The real part can be found by determining the
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amplitude using A= \/X2 +y2 =+4/1.47 +9.0%> =9.1and the phase angle by using
¢=tan"' {X} =tan”' {%} =0.45zrad . This means that the sum is
X .

Vout =9.1 cos (ot + 0.457). Since the amplitude and phase (along with the original
frequency) define the new signal, the vectors have given us the sum. Although the
imaginary part is inserted at the beginning and discarded at the end, it is instrumental in
determining how much of the two signals overlap in time. This representation is even
more useful when dealing with multiplication and transfer functions.

C. Phasors

A phasor is a representation of a sinusoidal wave in complex polar form. The variables
are expressed in terms of the phase offset and amplitude. Therefore, if we have a
sinusoidal signal,

v(t) = Acos(at + @),

the phasor of this signal would be expressed as
V = Acos(at + ¢) + jAsin(wt + @) .

Since we know that the ot will simply return a multiple of 2, this can be further
simplified to:

V = Acos ¢ + jAsin ¢ [equation 2]

Phasors have special terminology. The amplitude of the sine wave, is called the
magnitude of the phasor and is denoted ‘\7 ‘ . The phase offset of the sine wave is called

the phase of the phasor and is denoted £V . The magnitude and phase of a phasor given
in terms of Cartesian coordinates, Z = X + j Y, can be determined using the equations for

polar coordinates:
7 2 2
‘V ‘ =4 X" +Y" [equation 3]

and 2V =tan™ (%) [equation 4]

C.1 Euler’s Formula

In order to make it easier to manipulate our phasors, we must understand Euler’s formula.
Euler’s formula relates the complex polar definition we have defined to the natural
logarithm, e. Euler’s formula can be stated as follows:
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el =cos@+ jsin@
This means that our definition of phasors can be extended as follows:
V = Ae’ = Acos¢+ jAsing.

Along with Euler’s formula, come several shortcuts that we can use to manipulate
phasors. By a natural extension of Euler’s formula, it can be shown that, if we have two

0 jo
complex polar numbers, Z, = [,€’% and z, =r,€'™  then, the product of these two
numbers is given by

— rnlby alt _ i(6,+6,)
Z,=7Z7,=re're =nre""" ="
and the quotient of the two numbers is given by
i0,
23221 _h¢€ _ N giwi-en

z, r,el’* r,
We can use these rules to multiply phasors:
If V,=Ae" andV, =Ae' thenV, =VV, = A Ae/#*
We find that the magnitude of the product is the product of the magnitudes,
M‘ = M‘M‘ = A/A,, and the phase of the product is the sum of the phases,
4\73 = 4\71 + 2V, =@, +¢,. We can also use these rules to divide phasors:

If V,=Ae andV, = Ae!, thenV, = Lo A it

<1| <

2
We find that the magnitude of the quotient is the quotient of the magnitudes,

vl _A

N ‘ — and the phase of the quotient is the difference of the phases,
LV, = 4\/1 -4V, =¢,—9,.

If the two phasors are expressed as a ratio of two Cartesian complex numbers,

~ _ _ _ VX 4
V,=Xx,+jy, and V,=x,+jy, and V3=71=1—J_y1,
\Y X+ 1Y,
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then the magnitude and phase of the quotient can be found as follows:

‘— ‘_‘vl‘_vxf+yf

V,|[=—1 = |
7 [ tion 5
‘Vz ‘ XZZ N y22 [equation 5]
and
7 AT 7 .ol Y | Ya
4V3 = 4\/1 — ZVZ = tan X— —tan X— [equation 6]
1 2

C.2 Phasors and Transfer Functions

Recall that we are looking for a transfer function that relates the output to the input signal
of a circuit using the relationship in equation 1. We have an input signal of arbitrary
amplitude and phase, and a corresponding output signal,

By defining the input and output in terms of phasors,
7 — |( t+¢in) 7 — |( t+¢ou )
Vin - Aine ’ and Vout - Aoute ’ t

we can express the function, H, as follows:

7 i(ot+dy,) jot o 100, 1%ou
H :Vi)ut _ Aoute t _ Aoute e _ Aoute t _ Aout ej(¢out—¢m)

Vin Ainei(w':+¢|n) Amela)teW}m Amel¢|n Ain

If we have the phasor for the input and a complex polar expression for H, we can
calculate the phasor for the output as follows:

\70ut =H .V, [equation 7]

In

By defining H, we have also defined a new type of phasor. The magnitude of H, is not
the amplitude of any sinusoidal signal, it is a factor that we multiply by the input
amplitude to determine the output amplitude. Likewise, the phase of H is not a phase
angle, but the change in phase between the input and the output wave. Thus, given the
transfer function, H, the amplitude and phase of the output phasor can be determined by
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Aout - ‘H ‘ ) Aﬁn [equation 8]

and

¢out =/H + ¢in [equation 9]

Now we need to find a way to use the components in the circuit itself to derive some
phasor, H, that allows us to map the input phasor of the circuit to an appropriate output
phasor.

D. Finding Transfer Functions

We know that by using phasors and complex polar coordinates, we can greatly simplify
the problem of determining the output of an AC circuit for any input. It still remains,
however, to develop a strategy for finding the transfer function phasor.

D.1 The Influence of Resistors, Capacitors, and Inductors

Conceptually, H, defines how the circuit alters the phase and amplitude of the input wave
to produce the output wave. Each component in the circuit is influencing the amplitude
and the phase in some way. We can use the equations that govern the behavior of each of
the three basic passive components (resistors, capacitors, and inductors) to determine the
nature of the influence of each.

In order to do this, we will consider a sinusoidal input, V,, (t) = A, sin(@t + @, ), and

examine the way in which each device alters its phase and amplitude. Then we will
examine what this influence means in the complex polar coordinate system. We will
define the influence of each component in terms of a complex quantity called impedance
and denote it by the letter Z.

The fundamental equation that governs the behavior of a resistor is Vi (t) =i5(t)-R. If
we let Vg (1) = A, sin(awt + @), then the output signal will be

vy, (1) = (R A, )sin(a)t + @.,). Note that the resistor changes the amplitude of the
input by a factor of R, but it does not affect the phase at all. Since

A= ‘H ‘ -A, and ¢, = ZH + ¢, , the magnitude of a phasor showing the influence

of a resistor, Zgr, must be R and the phase must be zero. In complex polar form, this
would mean Z, =Re'®=Rcos0+ jRsin0=R.
Therefore, the impedance of a resistor, is given simply by

ZR =R [equation 10]
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di (t)
dt

The fundamental equation that governs the behavior of an inductor is V, (t) = L

Ifwe let v, (1) = A, sin(at + ¢,,) , then the output signal will be
Vou (1) = (L - A, - w)fcos(at + ¢,)] = @LA, sin( + ¢, + 7). The inductor changes the

amplitude of the input by a factor of oL and shifts the phase by +n/2. (Recall that the
return from sine to cosine shifts the phase by +m/2.) Since

At = ‘H‘ - A, and ¢, = ZH + ¢, , the magnitude of a phasor showing the influence

of a inductor, Z;, must be oL and the phase must be +n/2. In complex polar form, this
5 _ 167 . : .

wouldmean Z, =wL-e" "> =awlL- cos(+ %)+ jol - s1n(+ %)— jol .

Therefore, the impedance of a capacitor, is given by
Z = joL  [equation11]

dv, (1)
dt

The fundamental equation that governs the behavior of a capacitor is i (t) =C

1 ¢.
If we solve this for the voltage, we get that V¢ (1) = EI ic () dt. If we let

Ve (1) = A, sin(at + @, ), then the output signal will be

v, (D)= (é A, %)[— cos(at + ¢, )] = (2'(”: j sin(at + ¢, — %) The capacitor

changes the amplitude of the input by a factor of 1/wC and shifts the phase by -n/2. (The
return from cosine to sine shifts the phase by +n/2 and the negative sign shifts it by -m.
The net phase shift caused by the integration is -n/2.) Since

A, = ‘H‘ A, and ¢,, = ZH + ¢, , the magnitude of a phasor showing the influence

of a capacitor, Z¢, must be 1/wC and the phase must be -n/2. In complex polar form,
this would mean

2o (o= (L Yo b e 7))L

Therefore, the impedance of a capacitor, is given by

5 _ 1
c J wC [equation 12]

We can now use these complex expressions to define transfer functions of RLC circuits.
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D.2 Transfer Functions and Complex Impedance

Recall that, in figure 2, we used a voltage divider to find the transfer function of a
resistive circuit. We can extend the use of voltage dividers to complex phasors in order
to find transfer functions for passive circuits containing capacitors, inductors and
resistors. In figure 10, we have taken the circuit in figure 3 and represented the influence
of each component by its complex impedance. To this, we can apply the voltage divider
rule in the same way as we did in figure 2 to find H.

joC
I Hyw _ % ZL +ZR
. out in
E: z,=jolL Le+Z +Z,
[Cil) Vin ( H _Vout _ ZL + ZR
N = =
| l V., Z.+Z +1;
e]; Z.=R
T
-0
Figure 10

Let’s look at some simpler examples.

D.3 An RC Circuit Example
Let’s see how transfer functions work by considering the following circuit:

=
Wi, ‘VDut

® L.

N

1
First note the impedances of the two devices: Z; =R and Z_ = FPrel Using the
J

- Zo =

voltage divider rule, we can write the output as Vou = 7 Lz inor equivalently
R c
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1
H(i — VOUt — ja)C . . . ..
(Jo)=—= 1 - To make working with the transfer function easier, it is
in R+ —_—
JaC

best to simplify it by multiplying by % :
Jo

1 .
— _7 M J
i [R+_j- joC Jork
JaC
Therefore, the transfer function of the circuit is
H(jo)=————
1+ JowRC

Now, using equation 5, we can find an expression for the magnitude:

[1+j0] 1P 40° 1

1+ joRC| /1> 1 (wRC)’ ) J1+(@RC)?

[H(jo)|=

and, using equation 6, the phase:

ZH(jo) = Z(1+ j0)— Z(1+ joRC) =tan™' (%j—tan‘l (gj =—tan"' (wRC).

What is the output of this circuit, if we let R=1KQ and C=1pF, and if the input is
Vin(t) = Aincos(awt +¢in) = 2Vcos(272K t + 74)?

We know from the input signal that ® = 2nK rad/sec. We can substitute the angular
frequency and the component values into the equations for the magnitude and phase of
H(jo) to find:

1
J1+ QKK (12))?

|H(j2Kn)|= =0.157 and ZH(jw)=—tan"' 22KIKlyu)=—1.41

We can now find the amplitude, phase, and function for the output of this circuit at 2nK
rad/sec using equations 8 and 9.
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A =[H(j®)|A, = (0.157)2V) = 0.314V
b, = ZH(jw)+ 4, = 0.785-1.41 = -0.625 rad

Therefore the output of the circuit for this input is

Vou(t) = 0.314V cos(27K t - 0.625)

D.4 An RLC Circuit Example
Let’s look at an example with all three types of components.

'Vnut

First we will find the transfer function of this circuit:

R _ joRC ~ joRC
j’0’LC+1+ joRC (1-@’LC)+ joRC"

H(jo)=

joL+ +R

JoC

Since this is a more complex example, let’s substitute in the numerical values before we
find expressions for the magnitude and the phase. If we let L=1mH, C=1pF, and R=1KQ
and we use the same input in the previous example,

Vin(t) = Aincos(wt +¢in) = 2Vcos(27K t + #4).

The transfer function becomes:

1CA)AK)Ap) j6.3 . j63

)= O (my L) 1 J2AOTK) (L) (1=39.5m)+ j6.3 0,96+ 6.3

Now we can find the magnitude and phase using equations 5 and 6:
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. 6.3
IH(jo)|= =1.0

J(0.96)* +(6.3)?

and ZH(ja))=tan‘(%}—tan_l(o6—'936j=7r/2—1.42:0.15 rad

This means that the output of this circuit for the given input is
Vou(t) = 2(1.0)V cos(27K t +(.785+0.15))=2V cos(2K t +.935)

Note that the phase of j6.3 is /2. This is because it is a positive imaginary number and
therefore lies on the +j axis (in figure 8) which is 90 degrees from the positive x axis. For
details on finding phases, consult appendix A.

E. Filters

Filters are a fundamental concept in electronics. Many RL, RC and RLC circuits act as
some type of filter. Figure 11 shows the transfer functions of the four basic filter types:
low pass filter, high pass filter, band pass filter, and band reject filter.

0 frequency OO 0 frequency OO 0 frequency 00 0 frequency 0O
low pazs filter high pass filter hand pass filter hand reject filter

The names of the filters indicate exactly what they do. A low pass filter, for example,
passes low frequencies. This means that if the input has a low frequency, the output will
be the same as the input. (Note that the value of the transfer function of a low pass filter
at low frequencies is 1.) If the input has a high frequency, the output will be multiplied
by the value of the transfer function at high frequencies, which is zero. Hence, the output
for a high frequency input will be filtered out. The filter has passed low frequencies and
rejected high frequencies.

In order to figure out what type of filter a circuit is, it is helpful to know how it behaves
at very high and very low frequencies. The transfer function can be used to easily
determine both the magnitude and phase of the output of a circuit at these extremes.
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E.1 Transfer Functions at Low Frequencies
First, let’s consider how to find the magnitude and phase of a transfer function at low
frequencies. If we have a transfer function with a general form:

a,0’ +a,0+a,

H(jow)= , then we first find how this function looks at very low

b,w* +b,w+b,
frequencies. To do this you must find the single term in the numerator and the
denominator which dominates the behavior of the function as o gets very small. This
term will be the one with the smallest power of ®. (Remembering, of course, that o =

1)

To understand why this works, consider ©=10" . Since ®*=10"°, ®'=107 , and ©’=1,
a2m2+a10)+ao = aleO'6 + a1xlO'3 + ap which is approximately ay. If you assume all the a;
are 1, then the term becomes 1.001001, which rounds to 1. As » gets even smaller, the
number just gets closer to 1. The same holds true for the denominator. For more on
taking limits, see Appendix B.

In our first example from the last section, H( jw) = ; , the lowest power of ® in
1+ joRC

both the numerator and denominator is «’ (or 1) and the function simplifies to:
How(jo) = % =1 (This is the complex number “1 +j 07).
We can use equations 5 and 6 to find the magnitude and phase.
. . 4(0
|How(jo)|aso > 0=]1|=1  ZHy, (jo)=tan (szo rad

Note that when we calculate the magnitude at low frequencies, we want to take the
magnitude of Hrow(jo) and then take its limit as @ approaches 0. The phase should be
found by applying the phase equation to Hrow(j®), NOT to its magnitude. Taking the
phase of the magnitude is meaningless.

jJoRC
(1-@’LC)+ joRC
lowest power of ® in the numerator is jJoRC. The term with the lowest power of ® in the
denominator is 1. Therefore, the transfer function at low frequencies is:

Let’s look at our other example, H(jw)= . The term with the

H ow (ja))=@ = JoRC (This is complex number “0 + joRC”)

To find the magnitude, we take the limit of the magnitude of this function as ®
approaches zero.
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|H oy (jo)|as® - 0=wRCasw —>0=0

To find the phase, go back to the general function for Hy ow(j®) and find its phase.
ZH oy (jo) =tan™ (%} =xz/2rad why?

In this particular case, we have run into a problem with the phase equation. We are
dealing with a point where the tangent approaches infinity. However, since HLow(jo),
joRC, is a positive imaginary number, we know its phase must be /2. The special cases
(when either the real or imaginary term is zero) are fairly easy to deal with. Decide
whether the complex number you found for Hrow(j®) is positive real, negative real,
positive imaginary, or negative imaginary. Then, use the following chart:

Case tan” (xHy) in radians
(+real) 0

(+imaginary) /2

(-real) -TOr It

(-imaginary) -n/2

Although finding the phase for the limits of transfer functions is fairly straight forward
(because the limit always ends up one of the four cases in the chart), finding phases in the
general case can be quite complicated. Please see appendix A for more information.

E.2 Transfer Functions at High Frequencies

For high frequencies, we must consider what happens when ® gets very large. Let us use
the general form again and let @ be 10", This means that ®*=10"°, ®'=10" , and =1
and that the numerator is aleO+6 + alXIO+3 + ap . If you assume all the a; are 1, than the
term becomes 1,001,001, which rounds to 1 million. As ® gets even larger, the number
just gets closer to a,. Clearly, the contribution of a; is much more than the others.
Therefore, at high frequencies, the dominant term in both the numerator and denominator
has the highest order of ®. For additional information on taking limits, see appendix B.

In our first example, H(jw) = ; , the numerator has only one term, so the
1+ joRC

highest power of @ is 0. In the denominator, we have two terms and we use the o' term,
joRC. Therefore, at high frequencies, the function that governs the behavior is

Hyeu(Jo) = J% (This is imaginary number “0 — j ®RC” because 1/j = -j.)
@

Now we can find the magnitude and phase.
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1 . . .
asw —>wo=—=0 ZHyen(Jo) :"—lmagmar)/':‘% rad

|HH|GH(jw)|asw_)OOZwRC -

Since the transfer function is a negative imaginary number, the phase (from the chart)
must be -n/2. For more information about determining phase, see appendix A.

jaRC
(1-@’LC)+ jo RC

In our other example, H(jw)= . At high frequencies, this simplifies

to

JoRC - R . (This is imaginary number “0 —j (R/®L)”.)

HUo) = e ™ el

The magnitude and phase of this function at high frequencies is

Hyon (@) aSa)—>oo=iL asw—>o=0 and LHH,GH(ja)):"—imaginary":—%rad
[0

E.3 Filters and Limits
Once we have the limits of a transfer function, it is simple to determine the type of filter

it is. In our first example, H(jw) = ; , the magnitude at low frequencies is 1
1+ joRC

and the magnitude at high frequencies is 0. It must be a low pass filter. At low

frequencies, this filter will not change the phase of the signal at all and at high

frequencies, there will be a -n/2 phase shift.

JoRC
(1-w’LC)+ joRC
frequencies and at high frequencies. This does not mean that it is zero at all frequencies.
It means that it is a band pass filter. It rejects both very low and very high frequencies,
but passes some band of frequencies in between. The phase of this function shifts from
+1/2 to -1/2 over the frequency range from zero to infinity.

Our second example, H(jw)= , has a magnitude of 0 both at low

In order to understand how a filter functions, we must know how it behaves at high and
low frequencies, but we must also know what else it does. Where does it transition from
high to low?...from low to high? Where is the pass or reject band on a band filter? How
wide is the band? To answer these questions, we must know how to find the corner
frequency and the resonant frequency.

E.4 The Corner Frequency

We have established that our first example, H( jo) = ; ,1s a low pass filter. We
1+ joRC

still don’t know, however, the frequency at which the filter switches from passing the
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input to rejecting it. This is called the corner frequency. In an ideal filter, the transfer
function would switch instantaneously from 1 to 0. In reality, there is a range over which
the value of the transfer function goes from 1 to 0. We assign a single frequency to
define the approximate location of this area and call it the corner frequency. By
definition, the corner frequency is the location at which the value of the transfer function

is T or about 0.707. This point is chosen since the power that goes through the circuit,
2

at this frequency, is half of the input power.

For our first example we can use the definition of the corner frequency to derive an
equation that we can use to find it for any simple RC circuit.

H(jo)=————  [H(jo)|= ————=— L.
1+ joRC 1+ (wRC)? V2 1+(wRC)* 2
2 =1+ (wRC)? ! : 1

= 0, =——
(RC)’ RC

o is the frequency which defines about where our simple RC low pass filter switches
from high to low. As a matter of fact, the corner frequency for any simple RC filter is
given by
1
. = R_C [equation 13]

You can go through a similar process to prove that the corner frequency for a simple RL
circuit is

. =

R |
L [equation 14]

E.5 The Resonant Frequency

For the circuits that include capacitors and inductors, such as our second example,

H(jo)=—A R
(1-0°LC)+ joRC

is defined. We already know that this circuit is a band pass filter. The resonant

frequency of a simple RLC circuit like this one, is the frequency at which resonance

between the capacitor and the inductor occurs. For the practical purposes of this course,

the resonant frequency occurs when the (1-w°LC) term in the denominator goes to zero.
This occurs at:

, another special frequency, called the resonant frequency,

1

ﬁ [equation 15]
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The above is the definition of resonant frequency we use in this course. It is an
approximation to the actual resonant frequency of any simple RLC circuit. In the
analysis of more complex circuits, engineers look for poles (locations where the
denominator of the transfer function is equal to zero) and zeros (locations where the
numerator of the transfer function is equal to zero). We don’t have time to go into this
amount of detail, so we use this fairly accurate (and very simple) approximation.

In the case of our circuit, the resonant frequency defines the center of the pass band. This
filter also has two corners (that define the width of the band). These can be found using

the corner equations: @, = % and o, = % RLC filters can be low pass, high pass,

band pass or band reject. In the band filters, the resonant frequency gives you the
location of the center of the band. In low and high pass filters, it gives you the
approximate location of the corner.

F. A More Complicated Example

In this last example, we will examine a band pass filter with some components in parallel.
This is the most complex type of transfer function circuit you are likely to have to
analyze in this class.

YWout

h I
L C

@ =

Recall that voltage dividers only work for series circuits. Hence, in order to determine
the transfer function for this circuit, we must first combine the two parallel components.
This is done using the combination rules for parallel resistors.

L Lo JoC joL  JolL
oz 4z, ij+_1 j’@’LC+1 1-w’LC
JoC

Using the voltage divider rule, the transfer function is given by:
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joL
. Z 1—w’LC . l1-w’LC . joL
H(jo)=—%—= @ multiplyby————  H(jo)= : _
R+Ze o, oL 1—w’LC RI-@’LC)+ joo L
1-w°LC

Now that we have H(jo) we can look at the behavior at low and high frequencies:

i joL . : T
HLOW““’)=JT [Hiow(j@)[0 >0=0 " ZH gy (jo) = rad
Hpen (j@) = JoL _ -] |H (ja))|a)—>oo:l=() ZH o (jo) =" rad
er ~@’LRC wRC ' "M » HIGH 5

This filter, although it approaches 0 at both high and low frequencies, does not block all
frequencies. It will pass a band around the resonant frequency, which by definition is

1
W, =—

Nk

More useful information about a filter can be found by finding the transfer function,
magnitude and phase at the resonant frequency. To do this, you simply substitute the
expression for the resonant frequency, wy, into the equation for H(jm).

) 1
| J(jL
H(jo,) = Jo b _ JLe o

_R(l—a)ozLC)+ja)0L_R1 | ch (1)
—_ + -
( (m] : J(mj

|H(jo,)|=1  ZH(jw,)=0rad

You can see that this filter does indeed pass a band of frequencies around the resonant
frequency, because the magnitude of the transfer function at the resonant frequency is 1.
Therefore, for some band of frequencies centered around the resonant frequency, the
output will be equal to the input. The width of the band can be found using the corner
frequency equations. Further information can be found in the Gingrich on-line notes at
http://www.phys.ualberta.ca/~gingrich/phys395/notes/node20.html.

G. Conclusion

Transfer functions relate the output to the input of a circuit. For AC circuits, we can use
phasors to easily find and manipulate transfer functions. Phasors are defined in terms of
the complex polar coordinate system, because AC signals are sinusoids which are easily
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manipulated using this representation. Transfer functions are useful for finding the
output of a circuit for any given input. They can also be used to determine if a circuit is
behaving as a filter, and enable us to find important features of that filter. Other useful
features of filters are the corner frequency and the resonant frequency.

Appendix A — More about Phases

Phases can be determined by looking at the real and imaginary parts of the H(jw)
function. The general equation for phase is given by:

2V = tan“(lj whenV =x+jy
X

Calculating phases using the inverse tangent function
If the transfer function is given as a ratio of two complex numbers, then the phase is
given by the difference between the phases of the numerator and denominator:

it H(jo)=2"3" then sH= tan{ij —tan‘[ﬁ)
2 + J y2 Xl X2

If x4, y1, X2 and y; are all positive, then the phase changes are all in the first quadrant, and
the equation can be applied directly with a calculator. If one or more of them is negative,
then one must worry about which quadrant the phase angle is in. The most reliable way
to determine a phase change is to take the absolute value of the x and y coordinates of a
complex number, calculate tan™ (Jy/x]) to find the reference angle, use the signs of x and y
to determine the quadrant, and find the phase based on the reference angle and the
quadrant.

Il I

f 5]
- - -
a g
i i
n v
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In the figure above, B is the reference angle for 6. We want to find 0 -- the actual phase.
tan”'(ly/x|) will always give us the reference angle p. We can find 0 based on the sign and
the quadrant:

X y quadrant 0 (radians) 0 (degrees)
x>0 y>0 I B B

x<0 y>0 I n-B 180-B
x<0 y<0 I B-m B-180
x>0 y<0 v -B -B

Note that all angles in the above chart represent a phase shift between -n and +r radians
(between -180 and +180 degrees).

some examples: H(jw) = ii in
numerator: = tan™(|4/3]) = 0.93 (x>0, y>0, Q1)
Znum = 0.93
denominator: B = tan'(]3/4]) = 0.54 (x>0, y>0, Q1)
Zden = 0.54

/Z H=/num - Zden = 0.93-0.54 = 0.39 rad

-3+ j4
4-]3
numerator: p = tan™' (|4/3[) = 0.93 (x<0, y>0, Q2)
Znum = 3.14-0.93 =2.21
denominator: § = tan'l(\3/4\) =0.54 (x>0, y<0, Q3)
Zden =0.54-3.14 =-2.60
/ZH=/num - Zden=2.21-(-2.60) = 4.81 rad = -1.47 rad

H(jw)=

) -3-j4
H(jo)=
(J) 4+ j3
numerator: B = tan™ (|4/3]) = 0.93 (x<0, y<0, Q4)
Znum =-0.93
denominator: B = tan™'(]3/4]) = 0.54 (x>0, y>0,Q1)
Zden = 0.54

/Z H= Znum - Zden =-0.93-0.54 =-1.47 rad

Special cases for finding phases
Note that a calculator can be used to find phases where the real and imaginary parts of a
complex number have a non-zero value. What does one do when the real or imaginary
part of a complex number is zero? These cases are best determined by examination using
the complex plane. Most functions we deal with in this class can be found using this
simple method, which avoids the use of the calculator entirely.
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Whenever one is considering the limits of the transfer function at very high or very low
frequencies, there will be only one term in the numerator and one term in the
denominator of the simplified transfer function. For these two types of limits, either the
real or imaginary part of the complex transfer function will always be zero. This makes
finding the phase with a calculator difficult. It is easier to find the phase in these
common cases by using the complex plane shown below. If we determine which of the
four axes the function lies on, we can determine its phase by inspection:

+]
+x
xf2
-real y +real
. 4
-J

In the above figure, any point on the axis listed has the indicated phase:
+real (ex. R) = 0 radians

+j (ex. joL) = n/2 radians
-real (ex. -©’LC) > = (or -n) radians
-j (ex. 1/joC or -joL) = -n/2 radians

Or one can remember the simple relationships in the following table:

Case real part (x) | Imaginary tan” (xHy) in | tan” (x+jy) in
part (y) degrees radians

(b) (+real) | X 0 0 0

(©) (1) 0 Y 90 /2

(d) (-real) |-X 0 -180 or 180 -TOr T

(e) (1) 0 Y -90 2

Another common case, is when the absolute value of the real and imaginary parts of the
complex number are equal. These cases are easily determined using a calculator or by

inspection because the transfer function lies along either y=x or y=-x.
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In the above figure, any point on y=x or y=-x when |y|=|x| has the indicated phase:
x>0 and y>0 (ex. 1+j) = n/4 radians
x<0 and y>0 (ex. -1+j) = 3n/4 radians
x<0 and y<0 (ex. -1-j) = -3m/4 radians
x>0 and y<0 (ex. 1-j) = -n/4 radians

The following chart contains some other useful values of tan™* Note that these values
can be determined simply by finding the quadrant in the real/imaginary plane.

Case real part (x) | Imaginary tan” (x+jy) in | tan” (x+y) in
part (y) degrees radians

(a) 0 0 0 0

HAdH) |A A 45 /4

(2 AC1) | -A -A -135 31/4

MAd-) |A -A -45 /4

() A1) | -A A 135 3n/4

Some examples:

Susan Bonner

H(Gjo)= R+joL /(R +joL + 1/joC)

at high frequencies

H(jo) = (joRC — »’LC) / joRC + 1 — »°LC )

H(jo) = -o°LC/-0’LC — 1 atm —> o

Z H(jw) — tan'(0/1) or £(+real) at @ —> o

this is case(b)

ZH®)=0atm®—> x©

H(jo) = joL /(R +joL + 1/joC ) at low frequencies
H(jo) = (- ®’LC) / (joRC + 1 — »’LC)

H(jo) > -0’LCat® — 0
ZH(Gjw) > tan (0/-w’LC ) or Z(- real) at @ — 0

this is case(d)

ZH®)=matow —>0

H(o) =joRC / (joRC + 1) at the corner frequency
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Z H(jo) = Z(numerator) - Z(denominator)

Z H(jo) = tan™ (joRC/0) - tan™ oRC/1) = Z(+j)-Z(joRC+1)
this is case(c) — case(f) iff o, = 1/RC

Z H(joe) = /2 - tan” ' (1/1) = /2 - n/4 at @, = 1/RC

Z H(jo,) = n/4 at o, = 1/RC

Appendix B — More on Taking Limits

You must be able to take limits in order to use transfer functions effectively. Basically,
to take a limit as ® — 0 or ® — o, you must determine the dominant term in both the
numerator and denominator and then consider the value of the ratio as the function
approaches the limit. Note that when you first write out a transfer function (by looking at
the circuit), it is often not in the best form for taking a limit. Multiplying all terms by
(joC) usually puts it in a form where there are no fractions in the numerator and
denominator. More complex circuits may require more reduction. When you take the
limit, try considering which of the two forms makes it easiest to understand. It might be
either one. I like the one below.

When the transfer function has the general form:

(Aw’> +Bo + C) + j(Dw’ + En + F)
(Go® +Ho + ) +jJo* + Ko + L)

To find the dominant term as ® — 0, look for the lowest power of ® in the numerator and
the lowest power in the denominator.
example:
R +joL Next, multiply num and den by joC.
R +joL + 1/joC

joRC - ®’LC Next, find dominant terms as ©—0.
joRC - ’LC + 1

JjoRC Reduce.
1
joRC Use this to approximate H(jo) at ®—0.

To find the dominant term as @ — oo, look for the highest power of ® in the denominator
and the highest power in the numerator.
example:
R Next, multiply num and den by joC.
R +joL + 1/joC
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Next, find dominant terms as @—>oo.

This can be used for H(jw) at m—o.

Once you have the dominant term for both the numerator and the denominator, you can
decide how the function behaves as o approaches the desired limit. I made a chart of the
different cases, as this is easier on the computer.

limit dominant | dominant limit approaches comments
term in term in
numerator | denominator
0 1/joC 1/joC lasw—0 Hal
0 1/joC 1/joC las®—> o Hal
0 1/jw?*C 1/jw?*C las ®>—0 Hal
o0 1/jw*C 1/jw*C 1 as @* > © Hal
0 joRC 1 Dasw— 0 Hoao o
0 JoRC 1 00 as M —> 0 Ho o
0 jo*’RC 1 0as ®*—>0 Ho o?
o0 jo’RC 1 0 as ®*> — © H o o?
0 1 joRC was®m— 0 Ha l/o (o)
0 1 joRC 0as ® — o Ha l/o (o)
0 1 jw*RC 0 as ®» — 0 Ho l/o? (072)
00 1 jw?RC 0 as ®* — © H o 1/o* (0 ?)
0 jo’RC joLC Dasw—0 Hoo
o0 jo’RC joLC 00as M —> ™ Hoo
0 joRC jw’LC was®m— 0 Ha l/o (o)
o0 joRC jo’LC 0asw— oo Ho l/o (o)
Appendix C — Examples of Transfer Functions
Resonant or
CIRCUIT Transfer Function Corner
Frequency
1
R _
—W—— - % oC “c T Re
/. jowRC +1 1
1a) T R+ A e ) f, = T
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c 1
S H - R JoRC a’czﬁ
R 1 R_1+CURC
% ch+ J fC:L
1b) : 27RC
R
| o R
L __Jab L
R+ joL fo R
c=——
2a) ! 271
L1 R
v L
R R+ jol . _R
2b) L ¢
1
joL +R+ V. " JLc
—Nm_lvw_l_[_ jol + +A0)C l
1 f():
g = 27+/LC
32) —@’LC + jaRC +1 d
c R - jolL 1
] Aa)CJFRJerL " JLC
H - - w’LC f, = 1
3b) : 1+ joRC —@”LC 27JLC
R
L C H: 1
- 1 ), =—
—_— - JwLJrAa)CJFR " JLC
H joRC R
3¢) - —w’LC +1+ jaRC 2zvLC
C
1 * H - joL+R 1
" U 4 jel+R ©o =TS
ch ) JLC
_ —w’LC+ joRC .= 1
R 1->LC + joRC 2z4LC
4a) o
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R
i 1
o ja)L+Aa)C . 1
) R'Fij+}}1wC *JLc
1
_a)zLC+l foz
C =~ 2 2 LC
4b) T joRC —@’LC +1 v
ja)Lx%a)C
i 1
R . JwL+/€wC - 1
L ja)Lx%wC * JLc
c R+ 1
joL + V. =
_[ 1o Aa)C ‘ 27~/ LC
5a) - - joL
" R-®’RLC + jolL
joL xR
¢ y joL + R 1
—.I = - @, = ——
. y +ja)L><R *JLC
R JoC " jpl + R 1
“ _ —®’RLC " ardLC
) S joL+R—w>RLC
C R
H =
I ja)Lx%wC 1
—X =" +R T e
__AL\AJLKI: j@L*:}/ ’ C
L R JjaC _ 1
_ R-o’RLC * 2ryLC
6a) 1 joL +R —»°RLC
C - joL
{} - . x R 1
oC . 0, =——
—e [ 4 R+Ja)L 0 A LC
Viec* I
R L f =
___jeL-w’RLC * o2xJLC
6b) ° R—-@’RLC + jolL
? * ? 1
@, = ——
L1 i c 0 \/E
_[ R H=1 1
f =
7) - . L * 2zLC
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Appendix D —Algebra Review

We want our transfer functions to be a ratio of two polynomials. In order to achieve this,
we often have to eliminate fractions from the numerator and denominator of an
expression.

Sometimes it is simply one fraction we need to get rid of. In this case, we multiply the
top and the bottom by the denominator.

A+ g A+@ B_AB+l . o.B_,
c+% c+% B CB+D ‘B

For example:

/a)C /a)C daC 1

R+/a)C R+/wc joC ~ joRC +1

Other times, we have more than one fraction in the denominator. This can be dealt with
in one step by multiplying by the product of both denominators:

M+ lg Do+ @ BC__AB+C . BC_

e:
E+% E+% BC EBC+DC BC

or by eliminating one fraction at a time:

Aotlg_fctlp B ABctt MBetl ¢ msic

E+% E+% EB+D EB+D C EBC+DC

For example:

JoRL JoRL

H— joL+R _ joL+R ja)L+R joRL

.1 N .ja)RL .1 N .Ja)RL ja)L—I-R JafL+R+ja)RL

JoC JjoL+R jowC JowL+R JaC
B joRL deC _ -o'RLC

JoL+R joRL 1eC joL+R—w’RLC

jaC
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