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AC Steady State Analysis 
 
What if we are given a circuit and we wish to find the output of that circuit for a range of 
inputs?  We could wire the circuit, attach the function generator to the input, and hook up 
the scope to the output.  Then, we could alter the input systematically and observe how 
the output responds to these changes.  If we could use this information to find a 
mathematical function that relates the input to the output, then we could use the function 
to predict how the circuit will behave for any given input, as shown in figure 1 below.  
What if we could use the components in the circuit to derive this function?  Then we 
could predict the output of any circuit for any given input. 

 
Figure 1 

 
 
A. What is a Transfer Function? 
 
A transfer function relates the output and the input of a circuit.  In order for a transfer 
function to be useful, it must be simple to use and easy to find using the circuit diagram.  
Therefore, let us define a transfer function, H, as the ratio of the output to the input of a 
circuit.   

in

out

V
VH ≡     [equation 1] 

 
In a circuit containing only resistors, transfer functions can be easily found using voltage 
dividers.  In figure 2, a voltage divider is used to find the transfer function at Vout. 
 

 
Figure 2 
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Since H is 5/6 for this circuit, we can find the output at Vout by multiplying any input, 
Vin, by 5/6.  What if the circuit contains components other than resistors? 
 

 
Figure 3 

 
The equations that govern the behavior of capacitors and inductors are not linear, like 
those for resistors.  Voltage dividers are based on these simple linear relationships.  How 
can we find a simple transfer function for a circuit with voltage relationships that have 
derivatives and integrals?  We could use differential equations, but that would not be the 
simple solution we are looking for.  We need to find a way to get rid of these integrals 
and derivatives so that we can get back to a simple linear relationship.  This is the 
fundamental motivation for steady state analysis. 
 
 
B. A Model for Steady State Analysis 
 
Steady state analysis is a way to analyze AC circuits mathematically.  We can do this 
using linear transfer functions (and without the use of differential equations) if we do two 
important things.  The first is to take advantage of the fact that AC signals are sinusoids 
that do not change in frequency.  The second is to map the input from the time domain 
into a domain based on the amplitude and frequency of the signals involved. 
 
B.1 Steady State Sinusoids 
 
The term steady state refers to the concept that a circuit, when attached to an AC input 
signal, will, after a finite period of time, reach a state in which the signal across each 
device in the circuit behaves like a sinusoid of the same frequency as the input.  The 
signal across each device will have a constant amplitude and phase relative to the input 
that does not change once steady state has been reached.  Once a circuit has reached 
steady state, the output at any point in the circuit will look like a sinusoid with the same 
frequency as the input, a constant amplitude, and a phase that does not change relative to 
the input phase.  It is this feature that we will exploit to find transfer functions. 
Sinusoids have a special mathematical property in that the derivative of a sinusoid is just 
another sinusoid with the same frequency, but shifted in phase.  The same is true for the 

Vout
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integral os a sinusoid.  So when we need to take the derivative (or integral) of a 
sinusoidal signal, we can think of it simply as the application of some change in 
amplitude and some shift in phase. 
 
Mathematically, the derivative of a sine wave of frequency ω and amplitude A, 

)sin( φω += tAVin , is given by a cosine wave of frequency ω and amplitude Aω, 

)cos( φωω += tA
dt

dVin .  The output of the derivative operation is a new sine wave with a 

different amplitude and a phase shifted by and additional 90 degrees, 

)2sin( πφωω ++= tA
dt

dVin .  Mathematically, this means that 

2'')'sin(' πφφωφω +==+= andAAwheretA
dt

dVin .  The derivative of a cosine (or any 

other sinusoid) results in the same changes.  For example, if )cos( φω += tAVin , then 

)2cos()2cos()sin()sin( πφωωππφωωπφωωφωω ++=−++=++=+−= tAtAtAtA
dt

dVin

 and, therefore, 2'')'cos(' πφφωφω +==+= andAAwheretA
dt

dVin .  Similarly, the 

integral of a sinusoid has a new amplitude of A/ω and an additional phase shift of -90 
degrees.  So, if )sin( φω += tAVin , then 

2'')'sin(' πφφ
ω

φω −==+=∫ andAAwheretAdtVin . 

 
If we can somehow model our input and output waves so that we are concerning 
ourselves just with the changes in amplitude and phase brought about by the integrals and 
derivatives involved, then we can eliminate the need to use differential equations.  Since 
the phase is an angle, it seems logical to begin with polar coordinates. 
 
 
B.2 Polar Coordinates 
Polar coordinates are a simple re-mapping of the traditional rectangular (x-y) coordinates 
on a plane into another set of variables, r and θ, where r is the distance from the origin 
and θ is the angle measured from the positive x axis in counter-clockwise direction.  This 
is shown in figure 4. 
 
To convert a point between the polar and x-y coordinate systems, trigonometric identities 
must be used.  The distance to the origin can be found using the Pythagorean theorem: 

22 yxr +=  and the angle from the x axis is simply found by 
x
y

=θtan  or 

⎥⎦
⎤

⎢⎣
⎡= −

x
y1tanθ .  To go the other way, we can use x = r cos θ  and y = r sin θ. 
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Figure 4 

 
If we think of our signal as having a phase offset of φ and an amplitude of A, we can 
model a sinusoid (of angular frequency, ω) as pictured in figure 5.  Note that the sinusoid 
begins at φ and cycles around the origin one time for each cycle (ωt).  The ray has a 
length of A, the amplitude of the sinusoid.  If we want to get back the original sinusoid, 
we have only look at either the x coordinate, x = A cos(ωt+φ), or the y coordinate, y = 
Asin(ωt+φ).  Note that ωt represents a complete cycle around the circle (2π) at a rate of ω 
radians per second.  This corresponds to the constant cycling of the sinusoid in time.  We 
could just as easily drop the ωt, since it is a simple multiple of 2π, and we would have an 
x coordinate, x = A cos(φ), and a y coordinate, y = A sin(φ). 
 

 
Figure 5 
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Polar coordinates give us a good way to express the important features of our sinusoid, 
but we still need a way to operate on the sinusoids to simulate the behavior of the circuit.  
For this, we will need to rethink our model in terms of complex numbers. 
 
B.3 Complex Numbers 
Complex numbers are numbers expressed as ordered pairs, consisting of a “real” part and 
an “imaginary” part. In other words, a complex number is a point on a plane called the 
complex plane.  A complex number z can be written as  z = x + j y.  In a complex 
number:  x is called the “real” part, y is called the “imaginary” part, and 1−=j . (Note 
that in common mathematical notation, i is used for 1− , however, in electrical 
engineering, since i is commonly used for current, we denote 1−  with j.)   The term 
“imaginary” comes from the fact that 1−=j  is not a “real” number.  Complex 
numbers are generally represented on a plane where y is plotted against x.  The x 
coordinate consists of the basic number line containing all real numbers.  The y 
coordinate is the same set of numbers multiplied by 1− .  Each complex number, z, is a 
unique point on the complex plane, shown in figure 6, where the x coordinate is the real 
part and the y coordinate is the imaginary part. 
 

 
Figure 6 

 
Before we continue there are two useful identities to remember about j: 
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Why do we need complex numbers?  What good could having a signal defined in terms 
of something that doesn’t exist possibly do?  What we are working towards is defining 
our sinusoid as a combination of a real part, x = Acos(ωt+φ), and an imaginary part, 
y = jAsin(ωt+φ).  This will enable us to work easily with sinusoids that have different 
phases relative to one another.  To do this, we need to define complex polar coordinates. 
 
B.4  Complex Numbers in Polar Format 
As we mentioned above, points on a plane can be represented in polar coordinates. 
Similarly any complex number can be written in the polar format shown in figure 7.   

 

 
Figure 7 

 
Now we have a complex number, z, defined in terms of a real part, x = rcosθ,  and an 
imaginary part, y = j rsinθ.  It is a simple matter to translate this so that it represents the 
phase and amplitude of our sinusoid, shown in figure 8.  Note that the constant cycling of 
ωt (2π for each cycle) does not really affect the value of x and y in the model. 
 

 
Figure 8 
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In this representation, we can translate from the time domain to the frequency domain by 
using x = Acosφ  and y = Asinφ  and back to the time domain using 22 yxA += and 

⎥⎦
⎤

⎢⎣
⎡= −

x
y1tanφ .   This is the final representation we will use.  We will call this model a 

phasor and base steady state analysis upon this representation.  Before, we go into details, 
however, let’s look at a brief example.  Hopefully this will help clarify how the 
representation works. 
 
B.5  An Example – Adding Two Cosine Waves 
We know that a complex polar number is given by z = Acosφ + j Asinφ . The whole 
signal (assuming it is a cosine), can be represented only by the x part of this complex 
polar number.  What will we use y for?  Let’s look at the example in figure 9. 
 

 
Figure 9 

 
Figure 9 shows two sinusoids in the time domain that we want to add together.  The sum  
(with the largest amplitude) is also shown.   
The first input sinusoid is V1 = 6.5 cos(ωt + 0.2π)  
and the second sinusoid is V2 = 6 cos(ωt + 0.7π).  
 
If we use complex polar notation (adding the imaginary part), these two signals become:  
V1 = 6.5 cos(ωt + 0.2π) + j 6.5 sin(ωt + 0.2π) and 
V2 = 6 cos(ωt + 0.7π) + j 6 sin(ωt + 0.7π). 
 
To translate into the frequency domain, we use x = Acosφ  and y = Asinφ.  This gives us 
the components of the two input vectors: z1 = 4.9 +j4.3 and z2 = -3.5 + j4.7.  We can add 
the x and y coordinates of these vectors to get the vector sum, zout = 1.4 + j 9.0.  This 
represents the sum of the sinusoids.  The real part can be found by determining the 

V1 V2 

V1 
V2 

Vout 

Vout 
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amplitude using 1.90.94.1 2222 =+=+= yxA and the phase angle by using 

rad
x
y

πφ 45.0
4.1
0.9tantan 11 =⎥⎦

⎤
⎢⎣
⎡=⎥⎦

⎤
⎢⎣
⎡= −− .  This means that the sum is  

Vout = 9.1 cos (ωt + 0.45π).  Since the amplitude and phase (along with the original 
frequency) define the new signal, the vectors have given us the sum.  Although the 
imaginary part is inserted at the beginning and discarded at the end, it is instrumental in 
determining how much of the two signals overlap in time.  This representation is even 
more useful when dealing with multiplication and transfer functions. 
 
 
C.  Phasors 
 
A phasor is a representation of a sinusoidal wave in complex polar form.  The variables 
are expressed in terms of the phase offset and amplitude.  Therefore, if we have a 
sinusoidal signal, 

)cos()( φω += tAtv , 
 

the phasor of this signal would be expressed as 
 

)sin()cos( φωφω +++= tjAtAV
v

. 
 
Since we know that the ωt will simply return a multiple of 2π, this can be further 
simplified to: 

φφ sincos jAAV +=
v

  [equation 2] 
 
Phasors have special terminology.  The amplitude of the sine wave, is called the 
magnitude of the phasor and is denoted V

v
.  The phase offset of the sine wave is called 

the phase of the phasor and is denoted V
v

∠ .  The magnitude and phase of a phasor given 
in terms of Cartesian coordinates, z = x + j y, can be determined using the equations for 
polar coordinates: 

            
22 yxV +=

v
   [equation 3] 

 

and       ⎟
⎠
⎞

⎜
⎝
⎛=∠ −

x
yV 1tan

v
   [equation 4] 

 
C.1  Euler’s Formula 
In order to make it easier to manipulate our phasors, we must understand Euler’s formula.  
Euler’s formula relates the complex polar definition we have defined to the natural 
logarithm, e.  Euler’s formula can be stated as follows: 
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This means that our definition of phasors can be extended as follows: 
 

φφφ sincos jAAAeV j +==
v

. 
 
Along with Euler’s formula, come several shortcuts that we can use to manipulate 
phasors.  By a natural extension of Euler’s formula, it can be shown that, if we have two 

complex polar numbers, 21
2211

θθ jj erzanderz == , then, the product of these two 
numbers is given by 

)(
2121213

2121 θθθθ +=== jjj errererzzz , 
 
and the quotient of the two numbers is given by 
 

)(

2

1
2

2

1

2

1
3

21

1
θθ

θ

θ
−=== j

j

j

e
r
r

er
er

z
z

z . 

 
We can use these rules to multiply phasors: 
 

)(
212132211

2121 , φφφφ +==== jjj eAAVVVtheneAVandeAVIf
vvvvv

 
 
We find that the magnitude of the product is the product of the magnitudes, 

21213 AAVVV ==
vvv

, and the phase of the product is the sum of the phases, 

21213 φφ +=∠+∠=∠ VVV
vvv

. We can also use these rules to divide phasors: 
 

)(

2

1

2

1
32211

2121 , φφφφ −==== jjj e
A
A

V
VVtheneAVandeAVIf v

v
vvv

 

 
We find that the magnitude of the quotient is the quotient of the magnitudes, 

2

1

2

1
3 A

A
V

V
V == v

v
v

 and the phase of the quotient is the difference of the phases, 

21213 φφ −=∠−∠=∠ VVV
vvv

. 
 
If the two phasors are expressed as a ratio of two Cartesian complex numbers, 
 

22

11

2

1
3222111 yjx

yjx
V
V

VandyjxVandyjxV
+
+

==+=+= v

v
vvv

, 

θθθ sincos je j +=
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then the magnitude and phase of the quotient can be found as follows: 
 

2
2

2
2

2
1

2
1

2

1
3

yx

yx

V

V
V

+

+
== v

v
v

      [equation 5] 

 
 and 
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⎠
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.    [equation 6] 

 
 
C.2  Phasors and Transfer Functions 
Recall that we are looking for a transfer function that relates the output to the input signal 
of a circuit using the relationship in equation 1.  We have an input signal of arbitrary 
amplitude and phase, and a corresponding output signal, 
 

)cos()()cos()( outoutoutininin tAtvandtAtv φωφω +=+=  
 
By defining the input and output in terms of phasors, 
 

)()( outin ti
outout

ti
inin eAVandeAV φωφω ++ ==

vv
 

 
 we can express the function, H, as follows: 
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If we have the phasor for the input and a complex polar expression for H, we can 
calculate the phasor for the output as follows: 
 

inout VHV
vvv

⋅=    [equation 7] 
 
By defining H, we have also defined a new type of phasor.  The magnitude of H, is not 
the amplitude of any sinusoidal signal, it is a factor that we multiply by the input 
amplitude to determine the output amplitude.  Likewise, the phase of H is not a phase 
angle, but the change in phase between the input and the output wave.  Thus, given the 
transfer function, H, the amplitude and phase of the output phasor can be determined by 
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inout AHA ⋅=
v

  [equation 8] 
 

and 
 

inout H φφ +∠=
v

   [equation 9] 
 

Now we need to find a way to use the components in the circuit itself to derive some 
phasor, H, that allows us to map the input phasor of the circuit to an appropriate output 
phasor. 
 
 
D. Finding Transfer Functions 
 
We know that by using phasors and complex polar coordinates, we can greatly simplify 
the problem of determining the output of an AC circuit for any input.  It still remains, 
however, to develop a strategy for finding the transfer function phasor. 
 
D.1  The Influence of Resistors, Capacitors, and Inductors 
Conceptually, H, defines how the circuit alters the phase and amplitude of the input wave 
to produce the output wave.  Each component in the circuit is influencing the amplitude 
and the phase in some way.  We can use the equations that govern the behavior of each of 
the three basic passive components (resistors, capacitors, and inductors) to determine the 
nature of the influence of each. 
 
In order to do this, we will consider a sinusoidal input, )sin()( ininin tAtv φω += , and 
examine the way in which each device alters its phase and amplitude.  Then we will 
examine what this influence means in the complex polar coordinate system.  We will 
define the influence of each component in terms of a complex quantity called impedance 
and denote it by the letter Z. 
 
The fundamental equation that governs the behavior of a resistor is Rtitv RR ⋅= )()( .  If 
we let )sin()( ininR tAtv φω += , then the output signal will be 

( ) ).sin()( ininout tARtv φω +⋅=   Note that the resistor changes the amplitude of the 
input by a factor of R, but it does not affect the phase at all.  Since 

inoutinout HandAHA φφ +∠=⋅=
vv

, the magnitude of a phasor showing the influence 
of a resistor, ZR,  must be R and the phase must be zero.   In complex polar form, this 
would mean  RjRRZ j

R =+== 0sin0cosRe )0(v
. 

Therefore, the impedance of a resistor, is given simply by 
 

RZ R =
v

   [equation 10] 
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The fundamental equation that governs the behavior of an inductor is 
dt

tdi
Ltv L

L
)(

)( = .   

If we let )sin()( ininL tAtv φω += , then the output signal will be 

( )[ ] ).2sin()cos()( πφωωφωω ++=+⋅⋅= ininininout tLAtALtv  The inductor changes the 

amplitude of the input by a factor of ωL and shifts the phase by +π/2.  (Recall that the 
return from sine to cosine shifts the phase by +π/2.)  Since 

inoutinout HandAHA φφ +∠=⋅=
vv

, the magnitude of a phasor showing the influence 

of a inductor, ZL,  must be ωL and the phase must be +π/2.   In complex polar form, this 

would mean ( ) ( ) LjLjLeLZ j
L ωπωπωω

π
=+⋅++⋅=⋅= +

2sin2cos)2(v
. 

 
Therefore, the impedance of a capacitor, is given by 
 

LjZL ω=
v

     [equation 11] 
 

The fundamental equation that governs the behavior of a capacitor is 
dt

tdv
Cti C

C
)(

)( = .   

If we solve this for the voltage, we get that ∫= dtti
C

tv CC )(1)( .  If we let 

)sin()( ininC tAtv φω += , then the output signal will be 

[ ] ).2sin()cos(11)( πφω
ω

φω
ω

−+⎟
⎠

⎞
⎜
⎝

⎛=+−⎟
⎠
⎞

⎜
⎝
⎛ ⋅⋅= in

in
ininout t

C
A

tA
C

tv     The capacitor 

changes the amplitude of the input by a factor of 1/ωC and shifts the phase by  -π/2.  (The 
return from cosine to sine shifts the phase by +π/2 and the negative sign shifts it by -π.  
The net phase shift caused by the integration is -π/2.)  Since 

inoutinout HandAHA φφ +∠=⋅=
vv

, the magnitude of a phasor showing the influence 

of a capacitor, ZC,  must be 1/ωC and the phase must be -π/2.   In complex polar form, 
this would mean   

( ) ( )
CjC

j
C

j
C

e
C

Z j
C ωω

π
ω

π
ωω

π 11
2sin1

2cos11 )2(
=⎟

⎠
⎞

⎜
⎝
⎛−=−⎟

⎠
⎞

⎜
⎝
⎛+−⎟

⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛=

−v
. 

Therefore, the impedance of a capacitor, is given by 
 

Cj
ZC ω

1
=

v
   [equation 12] 

 
We can now use these complex expressions to define transfer functions of RLC circuits. 
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D.2  Transfer Functions and Complex Impedance 
Recall that, in figure 2, we used a voltage divider to find the transfer function of a 
resistive circuit.  We can extend the use of voltage dividers to complex phasors in order 
to find transfer functions for passive circuits containing capacitors, inductors and 
resistors.  In figure 10, we have taken the circuit in figure 3 and represented the influence 
of each component by its complex impedance.  To this, we can apply the voltage divider 
rule in the same way as we did in figure 2 to find H. 
 

 
Figure 10 

 
Let’s look at some simpler examples. 
 
D.3  An RC Circuit Example 
Let’s see how transfer functions work by considering the following circuit: 

 

First note the impedances of the two devices: 
Cj

ZandRZ cR ω
1

== .  Using the 

voltage divider rule, we can write the output as in
CR

C
out V

ZZ
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+
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Cj
R

Cj
V
V

jH
in

out

ω

ω
ω

1

1

)(
+

== r

r

.  To make working with the transfer function easier, it is 

best to simplify it by multiplying by 
Cj
Cj

ω
ω

:  

1
1

1

1
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⋅⎟⎟

⎠
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out
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ω
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Therefore, the transfer function of the circuit is 
 

RCj
jH

ω
ω

+
=

1
1)(  

 
Now, using equation 5, we can find an expression for the magnitude: 
 

222

22

)(1

1

)(1

01
1

01
)(

RCRCRCj
j

jH
ωωω

ω
+

=
+

+
=

+

+
=  

 
and, using equation 6, the phase: 
 

)(tan
1

tan
1
0tan)1()01()( 111 RC

RC
RCjjjH ω

ω
ωω −−− −=⎟

⎠

⎞
⎜
⎝

⎛−⎟
⎠
⎞

⎜
⎝
⎛=+∠−+∠=∠ . 

 
What is the output of this circuit, if we let R=1KΩ and C=1µF, and if the input is  
Vin(t) = Aincos(ωt +φin) = 2Vcos(2πK t + π/4)? 
 
We know from the input signal that ω = 2πK rad/sec.  We can substitute the angular 
frequency and the component values into the equations for the magnitude and phase of 
H(jω) to find:   
 

2))1(12(1
1)2(

µπ
π

KK
KjH

+
=  = 0.157   and  41.1)112(tan)( 1 −=−=∠ − µπω KKjH  

 
We can now find the amplitude, phase, and function for the output of this circuit at 2πK 
rad/sec using equations 8 and 9. 
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inout AjHA )( ω= = (0.157)(2V) = 0.314V    

inout jH φωφ +∠= )(  =  0.785-1.41 = -0.625 rad 
 
Therefore the output of the circuit for this input is 
 
Vout(t) = 0.314V cos(2πK t – 0.625)  
 
 
D.4  An RLC Circuit Example 
Let’s look at an example with all three types of components. 
 

 
First we will find the transfer function of this circuit: 
 

RCjLC
RCj

RCjLCj
RCj

R
Cj

Lj

RjH
ωω

ω
ωω

ω

ω
ω

ω
+−

=
++

=
++

=
)1(11

)( 222 .   

 
Since this is a more complex example, let’s substitute in the numerical values before we 
find expressions for the magnitude and the phase.  If we let L=1mH, C=1µF, and R=1KΩ 
and we use the same input in the previous example,  
Vin(t) = Aincos(ωt +φin) = 2Vcos(2πK t + π/4).   
 
The transfer function becomes: 
 

3.696.0
3.6

3.6)5.391(
3.6

)1)(1)(2())1)(1()2(1(
)1)(1)(2()( 2 j

j
jm

j
KKjmK

KKjjH
+

=
+−

=
+−

=
µπµπ

µπ
ω  

 
Now we can find the magnitude and phase using equations 5 and 6: 
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( )
0.1

3.6)96.0(

3.6)(
22

=
+

=ωjH   

 

and radjH 15.042.12/
96.0
3.6tan

0
3.6tan)( 11 =−=⎟

⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛=∠ −− πω  

 
This means that the output of this circuit for the given input is 
 
Vout(t) = 2(1.0)V cos(2πK t +(.785+0.15))=2V cos(2πK t +.935) 
 
Note that the phase of j6.3 is π/2.  This is because it is a positive imaginary number and 
therefore lies on the +j axis (in figure 8) which is 90 degrees from the positive x axis.  For 
details on finding phases, consult appendix A. 
 
 
E. Filters 
 
Filters are a fundamental concept in electronics.  Many RL, RC and RLC circuits act as 
some type of filter.  Figure 11 shows the transfer functions of the four basic filter types:  
low pass filter, high pass filter, band pass filter, and band reject filter. 
 

 
 
The names of the filters indicate exactly what they do.  A low pass filter, for example, 
passes low frequencies.  This means that if the input has a low frequency, the output will 
be the same as the input.  (Note that the value of the transfer function of a low pass filter 
at low frequencies is 1.)  If the input has a high frequency, the output will be multiplied 
by the value of the transfer function at high frequencies, which is zero.  Hence, the output 
for a high frequency input will be filtered out.  The filter has passed low frequencies and 
rejected high frequencies. 
 
In order to figure out what type of filter a circuit is, it is helpful to know how it behaves 
at very high and very low frequencies.  The transfer function can be used to easily 
determine both the magnitude and phase of the output of a circuit at these extremes. 
 

 frequency frequency  frequency  frequency 
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E.1  Transfer Functions at Low Frequencies 
First, let’s consider how to find the magnitude and phase of a transfer function at low 
frequencies.  If we have a transfer function with a general form: 

01
2

2

01
2

2)(
bbb
aaa

jH
++
++

=
ωω
ωω

ω , then we first find how this function looks at very low 

frequencies.  To do this you must find the single term in the numerator and the 
denominator which dominates the behavior of the function as ω gets very small.  This 
term will be the one with the smallest power of ω.  (Remembering, of course, that ω0 = 
1.) 
 
To understand why this works, consider ω=10-3 .  Since ω2=10-6, ω1=10-3 , and ω0=1, 
a2ω2+a1ω+a0 = a2x10-6 + a1x10-3 + a0 which is approximately a0. If you assume all the ai 
are 1, then the term becomes 1.001001, which rounds to 1.  As ω gets even smaller, the 
number just gets closer to 1.  The same holds true for the denominator.  For more on 
taking limits, see Appendix B. 

In our first example from the last section, 
RCj

jH
ω

ω
+

=
1

1)( , the lowest power of ω in 

both the numerator and denominator is ω0 (or 1) and the function simplifies to: 
 

1
1
1)( ==ωjHLOW   (This is the complex number “1 + j 0”). 

 
We can use equations 5 and 6 to find the magnitude and phase. 
 

0
1
0tan)(110)( 1 =⎟

⎠
⎞

⎜
⎝
⎛=∠==→ −ωωω jHasjH LOWLOW  rad 

 
Note that when we calculate the magnitude at low frequencies, we want to take the 
magnitude of  HLOW(jω) and then take its limit as ω approaches 0.  The phase should be 
found by applying the phase equation to HLOW(jω), NOT to its magnitude.  Taking the 
phase of the magnitude is meaningless. 

Let’s look at our other example, 
RCjLC

RCjjH
ωω

ω
ω

+−
=

)1(
)( 2 .  The term with the 

lowest power of ω in the numerator is jωRC.  The term with the lowest power of ω in the 
denominator is 1.  Therefore, the transfer function at low frequencies is: 
 

RCjRCjjH LOW ωωω ==
1

)(   (This is complex number “0 + jωRC”) 

 
To find the magnitude, we take the limit of the magnitude of this function as ω 
approaches zero. 
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000)( =→=→ ωωωω asRCasjH LOW  
 
To find the phase, go back to the general function for HLOW(jω) and find its phase. 
 

?2/
0

tan)( 1 whyradRCjH LOW πωω =⎟
⎠
⎞

⎜
⎝
⎛=∠ −  

 
In this particular case, we have run into a problem with the phase equation.  We are 
dealing with a point where the tangent approaches infinity.  However, since HLOW(jω), 
jωRC, is a positive imaginary number, we know its phase must be π/2.  The special cases 
(when either the real or imaginary term is zero) are fairly easy to deal with.  Decide 
whether the complex number you found for HLOW(jω) is positive real, negative real, 
positive imaginary, or negative imaginary.  Then, use the following chart: 
 

Case tan-1(x+jy) in radians 
(+real) 0 
(+imaginary) π/2 
(-real) -π or π 
(-imaginary) -π/2 

 
Although finding the phase for the limits of transfer functions is fairly straight forward 
(because the limit always ends up one of the four cases in the chart), finding phases in the 
general case can be quite complicated.  Please see appendix A for more information. 
 
E.2  Transfer Functions at High Frequencies 
For high frequencies, we must consider what happens when ω gets very large.  Let us use 
the general form again and let ω be 10+3.  This means that ω2=10+6, ω1=10+3 , and ω0=1 
and that the numerator is a2x10+6 + a1x10+3 + a0 .  If you assume all the ai are 1, than the 
term becomes 1,001,001, which rounds to 1 million.  As ω gets even larger, the number 
just gets closer to a2.  Clearly, the contribution of a2 is much more than the others.    
Therefore, at high frequencies, the dominant term in both the numerator and denominator 
has the highest order of ω.  For additional information on taking limits, see appendix B. 
 

In our first example, 
RCj

jH
ω

ω
+

=
1

1)( , the numerator has only one term, so the 

highest power of ω is 0.  In the denominator, we have two terms and we use the ω1 term,  
jωRC.  Therefore, at high frequencies, the function that governs the behavior is  
 

RCj
jHHIGH ω
ω 1)( = .  (This is imaginary number “0 – j ωRC” because 1/j = -j.) 

 
Now we can find the magnitude and phase.  
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2
"")(011)( πωω

ω
ωω −=−=∠=

∞
=∞→=∞→ imaginaryjHas

RC
asjH HIGHHIGH  rad 

 
Since the transfer function is a negative imaginary number, the phase (from the chart) 
must be -π/2.  For more information about determining phase, see appendix A. 
 

In our other example, 
RCjLC

RCjjH
ωω

ω
ω

+−
=

)1(
)( 2 .  At high frequencies, this simplifies 

to  

L
jR

LC
RCjjH

ωω
ω

ω
−

=
−

= 2)( .  (This is imaginary number “0 – j (R/ωL)”.)  

 
 The magnitude and phase of this function at high frequencies is  
 

2
"")(0)( πωω

ω
ωω −=−=∠=∞→=∞→ imaginaryjHandas

L
RasjH HIGHHIGH rad 

 
 
E.3  Filters and Limits 
Once we have the limits of a transfer function, it is simple to determine the type of filter 

it is.  In our first example, 
RCj

jH
ω

ω
+

=
1

1)( , the magnitude at low frequencies is 1 

and the magnitude at high frequencies is 0.  It must be a low pass filter.   At low 
frequencies, this filter will not change the phase of the signal at all and at high 
frequencies, there will be a -π/2 phase shift. 
 

Our second example, 
RCjLC

RCjjH
ωω

ω
ω

+−
=

)1(
)( 2 , has a magnitude of 0 both at low 

frequencies and at high frequencies.  This does not mean that it is zero at all frequencies.  
It means that it is a band pass filter.  It rejects both very low and very high frequencies, 
but passes some band of frequencies in between.  The phase of this function shifts from 
+π/2 to -π/2 over the frequency range from zero to infinity. 
 
In order to understand how a filter functions, we must know how it behaves at high and 
low frequencies, but we must also know what else it does.  Where does it transition from 
high to low?...from low to high?  Where is the pass or reject band on a band filter?  How 
wide is the band?  To answer these questions, we must know how to find the corner 
frequency and the resonant frequency. 
 
E.4 The Corner Frequency 

We have established that our first example, 
RCj

jH
ω

ω
+

=
1

1)( , is a low pass filter.  We 

still don’t know, however, the frequency at which the filter switches from passing the 
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input to rejecting it.  This is called the corner frequency.  In an ideal filter, the transfer 
function would switch instantaneously from 1 to 0.  In reality, there is a range over which 
the value of the transfer function goes from 1 to 0.  We assign a single frequency to 
define the approximate location of this area and call it the corner frequency.  By 
definition, the corner frequency is the location at which the value of the transfer function 

is 
2

1  or about 0.707. This point is chosen since the power that goes through the circuit, 

at this frequency, is half of the input power. 
 
For our first example we can use the definition of the corner frequency to derive an 
equation that we can use to find it for any simple RC circuit. 
 

2
1

)(1
1

2
1

)(1

1)(
1

1)(
22

=
+

=
+

=
+

=
RCRC

jH
RCj

jH
ωω

ω
ω

ω  

RCRC
RC c

1
)(

1)(12 2
2

2 ==+= ωωω  

 
ωc is the frequency which defines about where our simple RC low pass filter switches 
from high to low.  As a matter of fact, the corner frequency for any simple RC filter is 
given by  

RCc
1

=ω   [equation 13] 

 
 You can go through a similar process to prove that the corner frequency for a simple RL 
circuit is  
 

L
R

c =ω    [equation 14] 

 
 
E.5  The Resonant Frequency 
For the circuits that include capacitors and inductors, such as our second example, 

RCjLC
RCjjH

ωω
ω

ω
+−

=
)1(

)( 2 , another special frequency, called the resonant frequency, 

is defined.  We already know that this circuit is a band pass filter.  The resonant 
frequency of a simple RLC circuit like this one, is the frequency at which resonance 
between the capacitor and the inductor occurs.  For the practical purposes of this course, 
the resonant frequency occurs when the (1-ω2LC) term in the denominator goes to zero.  
This occurs at: 

LC
1

0 =ω     [equation 15] 
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The above is the definition of resonant frequency we use in this course.  It is an 
approximation to the actual resonant frequency of any simple RLC circuit.  In the 
analysis of more complex circuits, engineers look for poles (locations where the 
denominator of the transfer function is equal to zero) and zeros (locations where the 
numerator of the transfer function is equal to zero).  We don’t have time to go into this 
amount of detail, so we use this fairly accurate (and very simple) approximation. 
 
In the case of our circuit, the resonant frequency defines the center of the pass band.  This 
filter also has two corners (that define the width of the band).  These can be found using 

the corner equations: 
RCc
1

=ω  and 
L
R

c =ω .   RLC filters can be low pass, high pass, 

band pass or band reject.  In the band filters, the resonant frequency gives you the 
location of the center of the band.  In low and high pass filters, it gives you the 
approximate location of the corner. 
 
 
F. A More Complicated Example 
 
In this last example, we will examine a band pass filter with some components in parallel.  
This is the most complex type of transfer function circuit you are likely to have to 
analyze in this class. 

 
Recall that voltage dividers only work for series circuits.  Hence, in order to determine 
the transfer function for this circuit, we must first combine the two parallel components.  
This is done using the combination rules for parallel resistors. 
 

LC
Lj

LCj
Lj

Cj
Lj

Cj
Lj

ZZ
ZZ

Z
CL

CL
CL 222 111

1

ω
ω

ω
ω

ω
ω

ω
ω

−
=

+
=

+

⋅
=

+
⋅

=  

 
Using the voltage divider rule, the transfer function is given by: 
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Now that we have H(jω) we can look at the behavior at low and high frequencies: 
 

2
)(00)()( πωωωωω =∠=→= jHjH

R
LjjH LOWLOWLOW rad 

 

2
)(01)()( 2

πωωω
ωω

ω
ω −=∠=

∞
=∞→

−
=

−
= jHjH

RC
j

LRC
Lj

jH HIGHHIGHHIGH rad 

 
This filter, although it approaches 0 at both high and low frequencies, does not block all 
frequencies.  It will pass a band  around the resonant frequency, which by definition is 

LC
1

0 =ω . 

 
More useful information about a filter can be found by finding the transfer function, 
magnitude and phase at the resonant frequency.  To do this, you simply substitute the 
expression for the resonant frequency, ω0, into the equation for H(jω). 
 

1
1)11(
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L
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j
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jH
ωω

ω
ω  

 
0)(1)( 00 =∠= ωω jHjH rad 

 
You can see that this filter does indeed pass a band of frequencies around the resonant 
frequency, because the magnitude of the transfer function at the resonant frequency is 1.  
Therefore, for some band of frequencies centered around the resonant frequency, the 
output will be equal to the input.  The width of the band can be found using the corner 
frequency equations.  Further information can be found in the Gingrich on-line notes at 
http://www.phys.ualberta.ca/~gingrich/phys395/notes/node20.html. 
 
 
G. Conclusion 
 
Transfer functions relate the output to the input of a circuit.  For AC circuits, we can use 
phasors to easily find and manipulate transfer functions.  Phasors are defined in terms of 
the complex polar coordinate system, because AC signals are sinusoids which are easily 
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manipulated using this representation.  Transfer functions are useful for finding the 
output of a circuit for any given input.  They can also be used to determine if a circuit is 
behaving as a filter, and enable us to find important features of that filter.  Other useful 
features of filters are the corner frequency and the resonant frequency. 
 
 
Appendix A – More about Phases 
 
Phases can be determined by looking at the real and imaginary parts of the H(jω) 
function.  The general equation for phase is given by:   
 

yjxVwhen
x
yV +=⎟

⎠
⎞

⎜
⎝
⎛=∠ −

vv 1tan  

 
Calculating phases using the inverse tangent function 
If the transfer function is given as a ratio of two complex numbers, then the phase is 
given by the difference between the phases of the numerator and denominator: 
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If x1, y1, x2 and y2 are all positive, then the phase changes are all in the first quadrant, and 
the equation can be applied directly with a calculator.  If one or more of them is negative, 
then one must worry about which quadrant the phase angle is in.  The most reliable way 
to determine a phase change is to take the absolute value of the x and y coordinates of a 
complex number, calculate tan-1(|y/x|) to find the reference angle, use the signs of x and y 
to determine the quadrant, and find the phase based on the reference angle and the 
quadrant. 
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In the figure above, β is the reference angle for θ.  We want to find θ -- the actual phase.  
tan-1(|y/x|) will always give us the reference angle β.  We can find θ based on the sign and 
the quadrant: 
 
x y quadrant θ (radians) θ (degrees) 
x>0 y>0 I β β 
x<0 y>0 II π - β 180 - β 
x<0 y<0 III β - π β - 180 
x>0 y<0 IV -β -β 
Note that all angles in the above chart represent a phase shift between -π and +π radians  
(between -180 and +180 degrees). 
 

some examples:  
34
43)(

j
jjH

+
+

=ω  

  numerator: β = tan-1(|4/3|) = 0.93 (x>0, y>0, Q1)  
   ∠num = 0.93 
  denominator: β = tan-1(|3/4|) = 0.54  (x>0, y>0, Q1)  
   ∠den = 0.54 
  ∠ H = ∠num - ∠den = 0.93-0.54 = 0.39 rad 
 

  
34
43)(

j
jjH

−
+−

=ω  

  numerator: β = tan-1(|4/3|) = 0.93 (x<0, y>0, Q2)  
   ∠num = 3.14-0.93 = 2.21 
  denominator: β = tan-1(|3/4|) = 0.54 (x>0, y<0, Q3)  
    ∠den = 0.54-3.14 = -2.60 
  ∠ H = ∠num - ∠den = 2.21-(-2.60) = 4.81 rad = -1.47 rad 
 

  
34
43)(

j
jjH

+
−−

=ω  

  numerator: β = tan-1(|4/3|) = 0.93 (x<0, y<0, Q4)  
   ∠num = -0.93 
  denominator: β = tan-1(|3/4|) = 0.54 (x>0, y>0,Q1)  
    ∠den = 0.54 
  ∠ H = ∠num - ∠den = -0.93-0.54 = -1.47 rad 
 
 
Special cases for finding phases 
Note that a calculator can be used to find phases where the real and imaginary parts of a 
complex number have a non-zero value.  What does one do when the real or imaginary 
part of a complex number is zero?  These cases are best determined by examination using 
the complex plane.  Most functions we deal with in this class can be found using this 
simple method, which avoids the use of the calculator entirely. 
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Whenever one is considering the limits of the transfer function at very high or very low 
frequencies, there will be only one term in the numerator and one term in the 
denominator of the simplified transfer function.  For these two types of limits, either the 
real or imaginary part of the complex transfer function will always be zero. This makes 
finding the phase with a calculator difficult.  It is easier to find the phase in these 
common cases by using the complex plane shown below.  If we determine which of the 
four axes the function lies on, we can determine its phase by inspection: 
 

 
 

In the above figure, any point on the axis listed has the indicated phase: 
 +real (ex. R)  0 radians 
 +j (ex. jωL)  π/2 radians 
 -real (ex. -ω2LC)  π (or -π) radians 
 -j (ex. 1/jωC or -jωL)  -π/2 radians 
 
 Or one can remember the simple relationships in the following table: 
 

Case real part (x) Imaginary 
part (y) 

tan-1(x+jy) in 
degrees 

tan-1(x+jy) in  
radians 

(b) (+real) X 0 0 0 
(c) (+j) 0 Y 90 π/2 
(d) (-real) -X 0 -180 or 180 -π or π 
(e) (-j) 0 -Y -90 -π/2 

 
Another common case, is when the absolute value of the real and imaginary parts of the 
complex number are equal.  These cases are easily determined using a calculator or by 
inspection because the transfer function lies along either y=x or y=-x. 
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In the above figure, any point on y=x or y=-x  when |y|=|x| has the indicated phase: 
 x>0 and y>0  (ex. 1+j)  π/4 radians 
 x<0 and y>0  (ex. -1+j)  3π/4 radians 
 x<0 and y<0  (ex. -1-j)  -3π/4 radians 
 x>0 and y<0 (ex. 1-j)  -π/4 radians  
 
The following chart contains some other useful values of tan-1.   Note that these values 
can be determined simply by finding the quadrant in the real/imaginary plane. 
 
Case real part (x) Imaginary 

part (y) 
tan-1(x+jy) in 
degrees 

tan-1(x+jy) in  
radians 

(a) 0 0 0 0 
(f) A(1+j) A A 45 π/4 
(g) A(-1-j) -A -A -135 -3π/4 
(h) A(1-j) A -A -45 -π/4 
(i) A(-1+j) -A A 135 3π/4 
 
Some examples:  H(jω) =  R + jωL / (R + jωL + 1/jωC )  at high frequencies 

H(jω) = (jωRC – ω2LC) / (jωRC + 1 – ω2LC )  
   H(jω) → -ω2LC/-ω2LC  → 1 at ω → ∞ 
   ∠ H(jω) → tan-1(0/1) or ∠(+real) at ω → ∞ 

this is case(b) 
∠ H(ω) = 0 at ω → ∞ 
 
H(jω) =  jωL / (R + jωL + 1/jωC )  at low frequencies 
H(jω) = (– ω2LC) / (jωRC + 1 – ω2LC )  

   H(jω) → -ω2LC at ω → 0 
   ∠ H(jω) → tan-1(0/-ω2LC ) or ∠(- real) at ω → 0 

this is case(d) 
∠ H(ω) = π at ω → 0 

 
  H(jω) = jωRC / (jωRC + 1) at the corner frequency 
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   ∠ H(jω) = ∠(numerator) - ∠(denominator) 
   ∠ H(jω) = tan-1(jωRC/0) - tan-1(jωRC/1) = ∠(+j)-∠(jωRC+1) 

this is case(c) – case(f) iff ωc = 1/RC 
∠ H(jωc) = π/2 - tan-1(1/1) = π/2 - π/4 at ωc = 1/RC 
∠ H(jωc) = π/4 at ωc = 1/RC 

 
 
Appendix B – More on Taking Limits 
 
You must be able to take limits in order to use transfer functions effectively.  Basically, 
to take a limit as ω → 0 or ω → ∞, you must determine the dominant term in both the 
numerator and denominator and then consider the value of the ratio as the function 
approaches the limit.  Note that when you first write out a transfer function (by looking at 
the circuit), it is often not in the best form for taking a limit.  Multiplying all terms by 
(jωC) usually puts it in a form where there are no fractions in the numerator and 
denominator.  More complex circuits may require more reduction. When you take the 
limit, try considering which of the two forms makes it easiest to understand.  It might be 
either one.  I like the one below. 
 
When the transfer function has the general form: 
 
 (Aω2 + Bω + C) + j(Dω2 + Eω + F) 
 (Gω2 + Hω + I) + j(Jω2 + Kω + L) 
 
To find the dominant term as ω → 0, look for the lowest power of ω in the numerator and 
the lowest power in the denominator.  
 example: 
         R + jωL               Next, multiply num and den by jωC. 
   R + jωL + 1/jωC 
 
       jωRC - ω2LC        Next, find dominant terms as ω→0. 
   jωRC  - ω2LC + 1 
 
            jωRC                Reduce.   
      1  
            jωRC                Use this to approximate H(jω) at ω→0.   
                
 
To find the dominant term as ω → ∞, look for the highest power of ω in the denominator 
and the highest power in the numerator. 
 example: 
              R                    Next, multiply num and den by jωC. 
   R + jωL + 1/jωC 
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            jωRC                 Next, find dominant terms as ω→∞. 
   jωRC  - ω2LC + 1 
 
            jωRC                Reduce. 
            ω2LC  
 
             jR                     This can be used for H(jω) at ω→∞.   
            ωL  
 
Once you have the dominant term for both the numerator and the denominator, you can 
decide how the function behaves as ω approaches the desired limit. I made a chart of the 
different cases, as this is easier on the computer. 
 
limit dominant 

term in 
numerator 

dominant 
term in 
denominator

limit approaches comments 

0 1 / jωC 1 / jωC 1 as ω → 0 H α 1 
∞ 1 / jωC 1 / jωC 1 as ω → ∞ H α 1 
0 1 / jω²C 1 / jω²C 1 as ω² → 0 H α 1 
∞ 1 / jω²C 1 / jω²C 1 as ω² → ∞ H α 1 
0 jωRC  1 0 as ω → 0 H α ω 
∞ jωRC  1 ∞ as ω → ∞ H α ω 
0 jω²RC  1 0 as ω² → 0 H α ω² 
∞ jω²RC  1 ∞ as ω² → ∞ H α ω² 
0 1 jωRC  ∞ as ω → 0 H α 1/ω (ω−1) 
∞ 1 jωRC  0 as ω → ∞ H α 1/ω (ω−1) 
0 1 jω²RC  ∞ as ω² → 0 H α 1/ω² (ω−2) 
∞ 1 jω²RC  0 as ω² → ∞ H α 1/ω² (ω−2) 
0 jω2RC  jωLC 0 as ω → 0 H α ω 
∞ jω2RC  jωLC ∞ as ω → ∞ H α ω 
0 jωRC  jω2LC ∞ as ω → 0 H α 1/ω (ω−1) 
∞ jωRC  jω2LC 0 as ω → ∞ H α 1/ω (ω−1) 
 
 
Appendix C – Examples of Transfer Functions 

 

CIRCUIT Transfer Function 
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Corner 
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Appendix D –Algebra Review 
 
We want our transfer functions to be a ratio of two polynomials.  In order to achieve this, 
we often have to eliminate fractions from the numerator and denominator of an 
expression. 
 
Sometimes it is simply one fraction we need to get rid of.  In this case, we multiply the 
top and the bottom by the denominator. 
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Other times, we have more than one fraction in the denominator.  This can be dealt with 
in one step by multiplying by the product of both denominators: 
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or by eliminating one fraction at a time: 
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