
Electronic Instrumentation 
Experiment 5 

* Part A: Bridge Circuits 
* Part B: Potentiometers and Strain Gauges 
* Part C: Oscillation of an Instrumented Beam 
* Part D: Oscillating Circuits 



Part A 

 Bridges 
 Thevenin Equivalent Circuits 



Wheatstone Bridge 
A bridge is just two 
voltage dividers in 
parallel. The output 
is the difference 
between the two 
dividers. 
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A Balanced Bridge Circuit 
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Thevenin Voltage Equivalents 
 In order to better understand how bridges 

work, it is useful to understand how to create 
Thevenin Equivalents of circuits. 

 Thevenin invented a model called a Thevenin 
Source for representing a complex circuit 
using 
• A single “pseudo” source, Vth  
• A single “pseudo” resistance, Rth  
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Thevenin Voltage Equivalents 

   This model can be used interchangeably 
with the original (more complex) circuit 
when doing analysis. 
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     The Thevenin source, 
“looks” to the load on 
the circuit like the actual 
complex combination of 
resistances and sources. 



The Battery Model 

 Recall that we measured the 
internal resistance of a battery.  

 This is actually the Thevenin 
equivalent model for the battery. 

 The actual battery is more 
complicated – including 
chemistry, aging, … 

V1
10.2V

R1

0.4ohms

0



Thevenin Model 
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Any linear circuit connected to 
a load can be modeled as a 
Thevenin equivalent voltage 
source and a Thevenin 
equivalent impedance. 



Note:  

 We might also see a circuit with no load 
resistor, like this voltage divider. 
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Thevenin Method 

 Find Vth (open circuit voltage) 
• Remove load if there is one so that load is open 
• Find voltage across the open load 

 Find Rth (Thevenin resistance) 
• Set voltage sources to zero (current sources to open) – 

in effect, shut off the sources 
• Find equivalent resistance from A to B 
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Example: The Bridge Circuit 
 We can remodel a bridge as a Thevenin 

Voltage source 
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Find Vth by removing the Load 
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Let Vo=12, R1=2k, R2=4k, R3=3k, R4=1k 

VB k
k k

V=
+







=
1

1 3
12 3 VA k

k k
V=

+






=
4

4 2
12 8

Vth VA VB V= − = − =8 3 5



To find Rth 
 First, short out the voltage source (turn it 

off) & redraw the circuit for clarity. 
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Find Rth 
 Find the parallel combinations of R1 & R2 and 

R3 & R4. 
 
 
 
 

 Then find the series combination of the results. 
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Redraw Circuit as a Thevenin 
Source 

 Then add any load and treat it as a voltage divider. 
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Thevenin Method Tricks 

 Note 
• When a short goes across a resistor, that resistor 

is replaced by a short. 
• When a resistor connects to nothing, there will 

be no current through it and, thus, no voltage 
across it. 
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Thevenin Applet (see webpage) 

 Test your 
Thevenin 
skills 
using this 
applet 
from the 
links for 
Exp 3 



Does this really work? 

 To confirm that the Thevenin method 
works, add a load and check the voltage 
across and current through the load to see 
that the answers agree whether the original 
circuit is used or its Thevenin equivalent. 

 If you know the Thevenin equivalent, the 
circuit analysis becomes much simpler. 



Thevenin Method Example 
 Checking the answer with PSpice 

 
 
 
 
 
 

 Note the identical voltages across the load. 
• 7.4 - 3.3 = 4.1 (only two significant digits in Rth) 
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Thevenin’s method is extremely 
useful and is an important topic. 
 But back to bridge circuits – for a balanced 

bridge circuit, the Thevenin equivalent 
voltage is zero. 

 An unbalanced bridge is of interest.  You 
can also do this using Thevenin’s method. 

 Why are we interested in the bridge circuit? 
 



Wheatstone Bridge 

•Start with R1=R4=R2=R3 

•Vout=0 

•If one R changes, even a small amount, 
Vout ≠0 

•It is easy to measure this change. 

•Strain gauges look like resistors and 
the resistance changes with the strain 

•The change is very small. 
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Using a parameter sweep to look at 
bridge circuits. 

V1

FREQ = 1k
VAMPL = 9
VOFF = 0
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R3
350ohms

R4
{Rv ar}

0

Vlef t Vright
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V-
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• PSpice allows you to run simulations with several values for a component. 

• In this case we will “sweep” the value of R4 over a range of resistances. 

This is the “PARAM” part 

Name the variable 
that will be changed  



Parameter Sweep 
 Set up the values to 

use. 
 In this case, 

simulations will be 
done for 11 values 
for Rvar. 



Parameter Sweep 
 All 11 simulations 

can be displayed 
 Right click on one 

trace and select 
“information” to 
know which Rvar is 
shown. 



Part B 

 Strain Gauges 
 The Cantilever Beam 
 Damped Sinusoids 



Strain Gauges 

•When the length of the traces changes, the 
resistance changes.   

•It is a small change of resistance so we use 
bridge circuits to measure the change. 

•The change of the length is the strain. 

•If attached tightly to a surface, the strain of 
the gauge is equal to the strain of the surface.  

•We use the change of resistance to measure 
the strain of the beam. 



Strain Gauge in a Bridge Circuit 



Cantilever Beam 

The beam has two strain gauges, one on the top of the beam 
and one on the bottom.  The stain is approximately equal and 
opposite for the two gauges. 

In this experiment, we will hook up the strain gauges in a 
bridge circuit to observe the oscillations of the beam. 

 

 



Modeling Damped Oscillations 

 v(t) = A sin(ωt)  



Modeling Damped Oscillations  

 v(t) = Be-αt  



Modeling Damped Oscillations 

 v(t) = A sin(ωt) Be-αt = Ce-αtsin(ωt)  



Finding the Damping Constant 
 Choose two maxima at extreme ends of the 

decay. 



Finding the Damping Constant 

 Assume (t0,v0) is the starting point for the 
decay. 

 The amplitude at this point,v0, is C.  
 v(t) = Ce-αtsin(ωt) at (t1,v1):                             

v1 = v0e-α(t1-t0)sin(π/2) = v0e-α(t1-t0) 

 Substitute and solve for α: v1 = v0e-α(t1-t0)  
 



Part C 
 Harmonic Oscillators 
 Analysis of Cantilever Beam Frequency 

Measurements 



Examples of Harmonic 
Oscillators 
 Spring-mass combination 
 Violin string 
 Wind instrument 
 Clock pendulum 
 Playground swing 
 LC or RLC circuits 
 Others? 



Harmonic Oscillator 

 Equation  
 

 Solution    x = Asin(ωt)  
 
 

 x is the displacement of the oscillator while 
A is the amplitude of the displacement 
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Spring 

 Spring Force 
    F = ma = -kx 
 Oscillation Frequency 

 
 This expression for frequency holds for a 

massless spring with a mass at the end, as 
shown in the diagram. 
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Spring Model for the Cantilever 
Beam 

 Where l is the length, t is the thickness, w is 
the width, and mbeam is the mass of the 
beam.  Where mweight is the applied mass 
and a is the length to the location of the 
applied mass.  



Finding Young’s Modulus 
 For a beam loaded with a mass at the end, a is 

equal to l. For this case: 
 
 

   where E is Young’s Modulus of the beam. 
 See experiment handout for details on the 

derivation of the above equation. 
 If we can determine the spring constant, k, and we 

know the dimensions of our beam, we can 
calculate E and find out what the beam is made of. 
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Finding k using the frequency 
 Now we can apply the expression for the ideal 

spring mass frequency to the beam. 
 
 

 The frequency,  fn , will change depending 
upon how much mass,  mn , you add to the end 
of the beam. 
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Our Experiment 

 For our beam, we must deal with the beam mass 
and any extra load we add to the beam to observe 
how its performance depends on load conditions.  

 Real beams have finite mass distributed along the 
length of the beam.  We will model this as an 
equivalent mass at the end that would produce the 
same frequency response.  This is given by m = 
0.23mbeam.  

 



Our Experiment 

• To obtain a good measure of k and m, we will 
make 4 measurements of oscillation, one for 
just the beam and three others by placing an 
additional mass at the end of the beam.  
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Our Experiment 
 Once we obtain values for k and m we can plot                                              

the following function to see how we did. 
 

 
 

 In order to plot mn vs. fn, we need to obtain a 
guess for m, mguess, and k, kguess.  Then we can 
use the guesses as constants, choose values for 
mn (our domain) and plot fn (our range). 
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Our Experiment 

   The output plot 
should look 
something like 
this.  The blue 
line is the plot of 
the function and 
the points are the 
results of your 
four trials. 



Our Experiment 

 How to find final values for k and m. 
• Solve for kguess and mguess using only two of 

your data points and two equations.  (The larger 
loads work best.) 

• Plot f as a function of load mass to get a plot 
similar to the one on the previous slide. 

• Change values of k and m until your function 
and data match. 



Our Experiment 
 Can you think of other ways to more 

systematically determine kguess and mguess ? 
 Experimental hint: make sure you keep the 

center of any mass you add as near to the 
end of the beam as possible. It can be to the 
side, but not in front or behind the end. 



Part D 
 Oscillating Circuits 
 Comparative Oscillation Analysis  
 Interesting Oscillator Applications 



Oscillating Circuits  
 Energy Stored in a Capacitor 
                CE =½CV²  
 
 Energy stored in an Inductor 
                 LE =½LI² 
 
 
 An Oscillating Circuit transfers energy between 

the capacitor and the inductor. 
     http://www.walter-fendt.de/ph11e/osccirc.htm 
       

http://www.walter-fendt.de/ph11e/osccirc.htm
http://www.walter-fendt.de/ph11e/osccirc.htm
http://www.walter-fendt.de/ph11e/osccirc.htm


Voltage and Current  
 Note that the circuit is in series,  
   so the current through the  
   capacitor and the inductor are the same.  
 
  Also, there are only two elements in the 

circuit, so, by Kirchoff’s Voltage Law, the 
voltage across the capacitor and the 
inductor must be the same. 
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Oscillator Analysis 

 Spring-Mass 
 W = KE + PE 
 KE = kinetic 

energy=½mv² 
 PE = potential 

energy(spring)=½kx²  
   W = ½mv² + ½kx²  

 Electronics 
 W = LE + CE  
 LE = inductor 

energy=½LI²  
 CE = capacitor 

energy=½CV²  
 W = ½LI² + ½CV²  



Oscillator Analysis 

 Take the time 
derivative 

 Take the time 
derivative 
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Oscillator Analysis 

 W is a constant.  
Therefore, 
 

 Also  
 

 W is a constant.  
Therefore, 
 

 Also 
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Oscillator Analysis 

 Simplify  Simplify 
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Oscillator Analysis 

 Solution  Solution 
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x = Asin(ωt) V= Asin(ωt) 



Using Conservation Laws 

 Please also see the write up for experiment 
3 for how to use energy conservation to 
derive the equations of motion for the beam 
and voltage and current relationships for 
inductors and capacitors. 

 Almost everything useful we know can be 
derived from some kind of conservation 
law. 



Large Scale Oscillators 

Tall buildings are like cantilever beams, they all 
have a natural resonating frequency. 

Petronas Tower (452m)  CN Tower (553m) 



Deadly Oscillations 
The Tacoma Narrows Bridge 
went into oscillation when 
exposed to high winds.  The 
movie shows what happened. 
http://www.slcc.edu/schools/hum_sci/
physics/tutor/2210/mechanical_oscilla
tions/ 

In the 1985 Mexico City 
earthquake, buildings between 
5 and 15 stories tall collapsed 
because they resonated at the 
same frequency as the quake.  
Taller and shorter buildings 
survived.  

http://www.slcc.edu/schools/hum_sci/physics/tutor/2210/mechanical_oscillations/
http://www.slcc.edu/schools/hum_sci/physics/tutor/2210/mechanical_oscillations/
http://www.slcc.edu/schools/hum_sci/physics/tutor/2210/mechanical_oscillations/


Atomic Force Microscopy -AFM 

 This is one of the 
key instruments 
driving the 
nanotechnology 
revolution 

 Dynamic mode 
uses frequency to 
extract force 
information Note Strain Gage 



AFM on Mars 

 Redundancy is built into the AFM so that 
the tips can be replaced remotely. 



AFM on Mars 

 Soil is scooped up by robot arm and placed on 
sample. Sample wheel rotates to scan head. Scan 
is made and image is stored. 



AFM Image of Human 
Chromosomes 

 There are other ways to measure deflection. 



AFM Optical Pickup 

 On the left is the generic picture of the 
beam. On the right is the optical sensor. 



MEMS Accelerometer 

 An array of cantilever beams can be constructed at 
very small scale to act as accelerometers. 

Note Scale 









Hard Drive Cantilever 

 The read-write head is at the end of a cantilever. 
This control problem is a remarkable feat of 
engineering. 



More on Hard Drives 

 A great example of Mechatronics. 
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