
Electronic Instrumentation 
Experiment 2 

* Part A: Intro to Transfer Functions and AC Sweeps 
* Part B: Phasors, Transfer Functions and Filters 
* Part C: Using Transfer Functions and RLC Circuits 
* Part D: Equivalent Impedance and DC Sweeps 



Part A   
 Introduction to Transfer 

Functions and Phasors 
 Complex Polar Coordinates 
 Complex Impedance (Z) 
 AC Sweeps 

 
 



Transfer Functions 

 The transfer function describes the 
behavior of a circuit at Vout for all 
possible Vin. 
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More Complicated  Example 

What is H now? 

 H now depends upon the input frequency 
(ω = 2πf) because the capacitor and 
inductor make the voltages change with 
the change in current. 
 



How do we model H? 
 We want a way to combine the effect of 

the components in terms of their 
influence on the amplitude and the 
phase. 

 We can only do this because the signals 
are sinusoids 
• cycle in time 
• derivatives and integrals are just phase 

shifts and amplitude changes 
 



We will define Phasors 

 A phasor is a function of the amplitude and 
phase of a sinusoidal signal 

 Phasors allow us to manipulate sinusoids in 
terms of amplitude and phase changes. 

 Phasors are based on complex polar 
coordinates. 

 Using phasors and complex numbers we will 
be able to find transfer functions for circuits. 
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Review of Polar Coordinates 

point P is at 
( rpcosθp , rpsinθp ) 
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Review of Complex Numbers 

 zp is a single number represented by two numbers 
 zp has a “real” part (xp) and an “imaginary” part (yp) 
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Complex Polar Coordinates 

 z = x+jy where x is A cosφ and y is A sinφ 
 ωt cycles once around the origin once for each 

cycle of the sinusoidal wave (ω=2πf) 



Now we can define Phasors 
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 The real part is our signal. 
 The two parts allow us to determine the 

influence of the phase and amplitude changes 
mathematically. 

 After we manipulate the numbers, we discard 
the imaginary part. 
 



The “V=IR” of Phasors 

 The influence of each component is 
given by Z, its complex impedance 

 Once we have Z, we can use phasors to 
analyze circuits in much the same way 
that we analyze resistive circuits – 
except we will be using the complex 
polar representation. 
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Magnitude and Phase 
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 Phasors have a magnitude and a phase 
derived from polar coordinates rules. 
 



Influence of Resistor on Circuit 

 Resistor modifies the amplitude of the 
signal by R 

 Resistor has no effect on the phase 
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Influence of Inductor on Circuit 

 Inductor modifies the amplitude of the 
signal by ωL 

 Inductor shifts the phase by +π/2 
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Influence of Capacitor on Circuit 

 Capacitor modifies the amplitude of the 
signal by 1/ωC 

 Capacitor shifts the phase by -π/2 
 

∫= dtI
C

V CC
1

)
2

sin(*1)
2

sin(*1)(

)cos(*1)cos(*1)(

)sin()(

πω
ω

ππω
ω

πω
ω

ω
ω

ω

−=−+=

−=
−

=

=

tA
C

tA
C

tVor

tA
C

tA
C

tVthen

tAtIif

C

C

C



Understanding the influence of Phase 
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Complex Impedance 

 Z defines the influence of a component 
on the amplitude and phase of a circuit 
• Resistors:     ZR = R    

• change the amplitude by R 

• Capacitors:   ZC=1/jωC    
• change the amplitude by 1/ωC 
•  shift the phase -90 (1/j=-j) 

• Inductors:   ZL=jωL   
• change the amplitude by ωL 
• shift the phase +90 (j) 
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AC Sweeps 
AC Source 
sweeps from 
1Hz to 10K Hz 

Transient at 10 Hz                 Transient at 100 Hz                Transient at 1k Hz 



Notes on Logarithmic Scales 



Capture/PSpice Notes 
 Showing the real and imaginary part of the signal 

• in Capture: PSpice->Markers->Advanced 
• ->Real Part of Voltage 
• ->Imaginary Part of Voltage 

• in PSpice: Add Trace 
• real part: R( ) 
• imaginary part: IMG( ) 

 Showing the phase of the signal 
• in Capture: 

• PSpice->Markers->Advanced->Phase of Voltage 

• in PSPice: Add Trace 
• phase: P( ) 

 



Part B   
 Phasors 
 Complex Transfer Functions 
 Filters 
 
 



Definition of a Phasor 
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 The real part is our signal. 
 The two parts allow us to determine the 

influence of the phase and amplitude 
changes mathematically. 

 After we manipulate the numbers, we 
discard the imaginary part. 
 



Phasor References 

 http://ccrma-
www.stanford.edu/~jos/filters/Phasor_Notat
ion.html  

 http://www.ligo.caltech.edu/~vsanni/ph3/Ex
pACCircuits/ACCircuits.pdf  

 http://ptolemy.eecs.berkeley.edu/eecs20/ber
keley/phasors/demo/phasors.html 
 

http://ccrma-www.stanford.edu/~jos/filters/Phasor_Notation.html
http://ccrma-www.stanford.edu/~jos/filters/Phasor_Notation.html
http://ccrma-www.stanford.edu/~jos/filters/Phasor_Notation.html
http://www.ligo.caltech.edu/~vsanni/ph3/ExpACCircuits/ACCircuits.pdf
http://www.ligo.caltech.edu/~vsanni/ph3/ExpACCircuits/ACCircuits.pdf
http://ptolemy.eecs.berkeley.edu/eecs20/berkeley/phasors/demo/phasors.html
http://ptolemy.eecs.berkeley.edu/eecs20/berkeley/phasors/demo/phasors.html


Phasor Applet 

http://ptolemy.eecs.berkeley.edu/eecs20/berkeley/phasors/demo/phasors.html


Adding Phasors & Other Applets 

http://www.sussex.ac.uk/physics/teaching/btv/electronics/page5.html


Magnitude and Phase 
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 Phasors have a magnitude and a phase 
derived from polar coordinates rules. 
 



Euler’s Formula 
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Manipulating Phasors (1) 
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 Note ωt is eliminated by the ratio 
• This gives the phase change between 

signal 1 and signal 2 
 



Manipulating Phasors (2) 
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Complex Transfer Functions 

 If we use phasors, we can define H for 
all circuits in this way. 

 If we use complex impedances, we can 
combine all components the way we 
combine resistors. 

 H and V are now functions of j and ω 
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Complex Impedance 

 Z defines the influence of a component 
on the amplitude and phase of a circuit 
• Resistors:     ZR = R    
• Capacitors:   ZC=1/jωC    
• Inductors:   ZL=jωL  

 We can use the rules for resistors to 
analyze circuits with capacitors and 
inductors if we use phasors and complex 
impedance. 
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Simple Example 
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Simple Example (continued) 
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High and Low Pass Filters 
High Pass Filter 

H = 0 at ω → 0 

H = 1 at ω → ∞ 

Η = 0.707 at ωc 

Low Pass Filter 

H = 1 at ω → 0 

H = 0 at ω → ∞ 

Η = 0.707 at ωc 

ωc=2πfc 

fc 

fc 

ωc=2πfc 



Corner Frequency 
 The corner frequency of an RC or RL circuit 

tells us where it transitions from low to high or 
visa versa. 

 We define it as the place where 
 

 For RC circuits: 
 

 For RL circuits: 
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Corner Frequency of our example 
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H(jω), ωc, and filters 
 We can use the transfer function, H(jω), and the 

corner frequency, ωc, to easily determine the 
characteristics of a filter. 

 If we consider the behavior of the transfer 
function as ω approaches 0 and infinity and 
look for when H nears 0 and 1, we can identify 
high and low pass filters. 

 The corner frequency gives us the point where 
the filter changes: 
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Taking limits 

01
2

2

01
2

2)(
bbb
aaajH

++
++

=
ωω
ωωω

 At low frequencies, (ie. ω=10-3), lowest 
power of ω dominates 
 
 

 At high frequencies (ie. ω =10+3), highest 
power of ω dominates 
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Taking limits -- Example 
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Our example at low frequencies 
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Our example at high frequencies 

22
0

0
tan

1
0tan)(

011)(

11 ππωω

ω
ωω

−=−=





−






=∠

=
∞

==∞→

−− RCjH

RCj
asjH

HIGH

HIGH

RCj
jH

ω
ω

+
=

1
1)(

RCj
jH HIGH ω
ω 1)( =



Our example is a low pass filter 

RC
f c

c ππ
ω

2
1

2
==

01 == HIGHLOW HH

What about the phase? 



Our example has a phase shift 
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Part C 
  
 Using Transfer Functions 
 Capacitor Impedance Proof 
 More Filters 
 Transfer Functions of RLC Circuits 



Using H to find Vout 
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Simple Example (with numbers) 
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Capacitor Impedance Proof 
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Band Filters 

f0 

f0 

Band Pass Filter 

H = 0 at ω → 0 

H = 0 at ω → ∞ 

Η = 1 at ω0=2πf0 

Band Reject Filter 

H = 1 at ω → 0 

H = 1 at ω → ∞ 

Η = 0 at ω0 =2πf0 



Resonant Frequency 
 The resonant frequency of an RLC circuit tells 

us where it reaches a maximum or minimum.  
 This can define the center of the band (on a band 

filter) or the location of the transition (on a high 
or low pass filter). 

 The equation for the resonant frequency of an 
RLC circuit is: 
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Another Example 
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At Very Low Frequencies 
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At the Resonant Frequency 
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Our example is a low pass filter 
Phase 

φ = 0 at ω → 0 

φ = -180 at ω → ∞  

Magnitude 

Η = 1 at ω → 0 

Η = 0 at ω → ∞  

f0=16k Hz 

1 

−90 

Actual circuit resonance is only at the theoretical 
resonant frequency, f0,  when there is no resistance. 



Part D 

 Equivalent Impedance 
 Transfer Functions of More 

Complex Circuits 
 



Equivalent Impedance 

 Even though this filter has parallel components, we can 
still handle it. 

 We can combine complex impedances like resistors to 
find the equivalent impedance of the components 
combined. 



Equivalent Impedance 
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Determine H 
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At Very Low Frequencies 
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At the Resonant Frequency 
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Our example is a band pass filter 

Phase 

φ = 90 at ω → 0 

φ = 0 at ω0 

φ = -90 at ω → ∞  

Magnitude 

Η = 0 at ω → 0 

H=1 at ω0 

Η = 0 at ω → ∞  

f0 
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