

Electronic Instrumentation

Experiment 1

- * Part A: Circuit Basics, Equipment, Sound Waves
- * Part B: Resistors, Circuit Analysis, Voltage Dividers
- * Part C: Capture/PSpice

Motivation

- Modern Systems
 - mechanical component
 - electrical component
 - (computer component)
- You will be able to communicate with EE's
- You will be able to take the electronics sections of the FE exam
- You will be using Engineering problem solving skills.

Automobile Electronics

- Previously all mechanical systems have become increasingly electronic
- Over the past few years, for example, the automobile has begun to use more computers (microcontrollers)
- How many microcontrollers are typically found in a modern automobile?

Part A

- Circuit Basics
- Equipment
- Sound Waves

Physical Model for a DC circuit

Physical Model for Resistance

pebbles in pipe = resistance to flow of current

LOW RESISTANCE

Small drop in pressure

Large current flow through pipe

HIGH RESISTANCE

Large drop in pressure

Small current flow through pipe

Symbols

Q	5
å	•
Ï	
ø	
F	口
*	l
÷	
+	
Ŧ	•

	symbol	units	analogy	icon
voltage	V	volts	pressure	V1 +
current	I	amps	flow of water	
resistance	R	ohms (Ω)	pebbles in pipe	─VVV — R1
ground	GND		ocean	<u></u>

Physics vs. Electronics

PHYSICS

ELECTRONICS

Flow of electrons from negative to positive

Flow of current (positive charge) from positive to negative

Ohm's Law: V = IR

COMPONENTS

$$V_{R1} = V_A - V_B$$

$$V_{R1} = I_{R1} R1$$

http://micro.magnet.fsu.edu/electromag/java/generator/ac.html

AC Circuits

$$v(t) = i(t) \cdot R$$

$$v(t) = A \sin(\omega t + \phi)$$

$$i(t) = i_{max} sin(\omega t + \phi)$$

$$i_{max} = \frac{A}{R}$$

Note symbol for AC voltage source

Review of Sinusoids

More on Phase Shift

$$(\omega t + \phi) = \omega (t - t_0)$$
$$\phi = -\omega t_0$$

Negative phase shift: "Lag in phase, lead in time"

$$t_0 = 0.08ms$$
 $\omega = 2\pi(1K)$ $\phi = (0.08m)(2K)(\pi) = -0.5 \, rad$

Positive phase shift: "Lead in phase, lag in time"

$$t_0 = -0.08ms$$
 $\omega = 2\pi(1K)$ $\phi = -(-0.08m)(2K)(\pi) = +0.5 \, rad$

Special Cases of Phase Shift

$$\phi = -\omega t_0 = -2\pi f t_0 = -2\pi \left(\frac{t_0}{T}\right)$$

$$\phi = 0 \, rad$$

$$\phi = \pi$$

General form of the Sinusoid

Time
$$v(t) = A \sin(\omega t + \phi) + V_{DC}$$
$$(\omega t + \phi) = \omega(t - t_0)$$
$$\phi = -\omega t_0$$

T = 1.75ms - .75ms = 1ms
f = 1/1ms = 1K Hz

$$\omega$$
 = 2 π f = 2K π rad/sec
 ϕ = - ω t₀ = -2K π (-.75) = π /2 radians
 ϕ = -2 π (-1/4 cycle) = π /2 radians
A = 2V
 V_{p-p} = 4V
 V_{ave} = V_{DC} = 5V

Sinusoid Units

	symbol	units	
amplitude	A	volts (V) or amps (A)	
frequency	f	1/sec = Hertz (Hz)	
period	Т	seconds (s)	
phase	ф	radians (rad)	
angular frequency	ω	rad/s	

Note: In physics, ω is called angular velocity.

DC Source E3631A – Only for section 2

Note: The connection that looks like the ground symbol is the ground for the building, not the return path for the circuit.

DC Source for section 1

Function Generator 33120A – Only available in JEC 4107

Note: The SYNC connection will give you a signal, but it will not be the one you have set the function generator to display. Do not accidentally plug into it.

Function Generator

Digital Multimeter 34401A – We will have some hand held meters in section 1 for resistance measurements

Note: Always use the voltage plugs on the right as indicated.

Digital Multimeter

The IOBoard can read voltages but it isn't an Ohmmeter, We will use hand held meters for resistance measurements

Oscilloscope 54600B – you guessed it – JEC 4107

Note: Black lead of scope channel is ALWAYS ground

Note: Banana connectors are not connected internally to the holes in the board.

Reading Resistors

Bands: XYZT Resistance = $XY \times 10^Z \pm T\% \Omega$

http://www.dannyg.com/javascript/res/resload.htm

How Ears Work

Pitch = frequency Amplitude = loudness Some pitches sound louder to your ears.

http://members.aol.com/tonyjeffs/text/dia.htm

Part A – Do the lab now

- Use your kit if you purchased one, purchase one if you haven't
- Some of Part A can be done without the kit, just with the IOBoard
- If you don't have a kit
 - Make sure that you have the software loaded and that the IOBoard is working
 - We have some spare protoboards and speakers
 - There will be time during the next 2 classes to catch up
- Next class we start Part B of Experiment 1
- Any questions?

Part B

- Resistors
- Voltage Dividers
- Impedance
- Capacitors and Inductors
- Equipment Impedances
- Circuit Analysis
- Agilent Intuilink Software

Combining Resistors in Series

Combining Resistors in Parallel R1 R2 $\frac{1}{RT} = \frac{1}{R1} + \frac{1}{R2}$ $RT = \frac{R1 \cdot R2}{R1 + R2}$

Measuring Voltage

Total Voltage: $V1 = V_{R1} + V_{R2}$

Voltage across resistors: $V_{R1} = V_A - V_B$ $V_{R2} = V_B - V_C$

Voltage at points wrt GND: $V_A = V1$ $V_B = V_{R2}$ $V_C = 0$

Voltage Dividers

The voltage is divided up in a manner that is proportional to the resistances of the resistors in a series circuit.

More on Voltage Dividers

Impedance vs. Resistance

- Resistance is a property of a material that causes a reduction in the rate of flow of electrons.
- Impedance is the reduction in the rate of flow of electrons caused by the material (resistance) AND other the properties of the component involved (reactance).
- Resistors have no reactance. So the impedance of a resistor is equal to its resistance only.
- Reactance varies with the frequency of the input. Resistance remains the same at all frequencies.
- Both impedance and resistance are measured in ohms.

Impedance

- Definition: A general measure of how a component or group of components pushes against the current flowing through it.
- Impedance = resistance + reactance
- Impedance is used to refer to the behavior of circuits with resistors, capacitors and other components.
- When we consider components in a theoretical circuit diagram, the impedance of inductors and capacitors is their reactance only. Any resistance is modeled separately as a resistor. So theoretical capacitors and inductors have impedance, but no resistance.

Comparison of Components

	resistor	capacitor	inductor
symbol	R		
equation	V = IR		
icon	-\\\		
series	$R_T = R_1 + R_2$		
parallel	$R_T^{-1} = R_1^{-1} + R_2^{-1}$		
low freq	R		
high freq	R		

Capacitors

Capacitors consist of two plates with a dielectric material in-between. When a potential difference is placed across the plates, a charge builds up until it is large enough to cause a discharge across the plates through the material.

A parallel-plate capacitor with no dielectric between the plates, resulting in a large electric field.

A parallel-plate capacitor with a dielectric. The electric field is reduced between the plates because the dielectric material is polarized, producing an opposing field.

Capacitors in Series

$$\frac{1}{CT} = \frac{1}{C1} + \frac{1}{C2}$$
 $CT = \frac{C1 \cdot C2}{C1 + C2}$

$$\frac{1}{CT} = \frac{1}{C1} + \frac{1}{C2} + \dots + \frac{1}{Cn}$$

Capacitors in Parallel C1 C2 CT = C1 + C2٧ C1 C2 CT = C1 + C2 + · · + Cn

Understanding Capacitor Behavior

$$I_C = C \frac{dV_C}{dt} \quad I_C = C \frac{V_1 - V_0}{t_1 - t_0}$$

General Equation

If voltage change is linear.

Capacitor Impedance

frequency	frequency	impedance	looks like	called
	approaches	approaches		
low	>0	>infinity	•	open circuit
high	>infinity	>0		short

Note: Real capacitors have effectively no resistance, so impedance is reactance for all capacitors.

Comparison of Components

	resistor	capacitor	inductor
symbol	R	C	
equation	$V_R = I_R R$	$I_C = C \frac{dV_C}{dt}$	
icon	- VV	_	
series	$R_T = R_1 + R_2$	$C_T^{-1} = C_1^{-1} + C_2^{-1}$	
parallel	$R_T^{-1} = R_1^{-1} + R_2^{-1}$	$C_T = C_1 + C_2$	
low freq	R	open circuit	
high freq	R	short circuit	

Inductors

 An inductor is a coil of wire through which a current is passed. The current can be either AC or DC.

Inductors

$$V_L = L \frac{dI_L}{dt}$$

 This generates a magnetic field, which induces a voltage proportional to the rate of change of the current.

Combining Inductors

- Inductances add like resistances
- Series

$$L = L_1 + L_2 + ... + L_N$$

Parallel

$$\frac{1}{L} = \frac{1}{L_1} + \frac{1}{L_2} + \dots + \frac{1}{L_N}$$

Inductor Impedance

frequency	frequency approaches	impedance approaches	looks like	called
low	>0	>0		short
high	>infinity	>infinity	•	open circuit

Note: Real inductors always have a small resistance (that is not shown in these circuits). The impedance of the theoretical inductor shown is only its reactance.

Comparison of Components

	resistor	capacitor	inductor
symbol	R	C	L
equation	$V_R = I_R R$	$I_C = C \frac{dV_C}{dt}$	$V_L = L \frac{dI_L}{dt}$
icon	- VV-	<u> </u>	5
series	$R_T = R_1 + R_2$	$C_T^{-1} = C_1^{-1} + C_2^{-1}$	$L_T = L_1 + L_2$
parallel	$R_T^{-1} = R_1^{-1} + R_2^{-1}$	$C_T = C_1 + C_2$	$L_T^{-1} = L_1^{-1} + L_2^{-1}$
low freq	R	open circuit	short circuit
high freq	R	short circuit	open circuit

Equipment Impedances

- Each measuring device changes the circuit when you use it.
- The impedance of the device helps you understand how much.
- Device Impedances
 - Function Generator: 50 ohms
 - 'Scope: 1Meg ohms
 - DMM (DC voltage): 10Meg ohms
 - DMM (AC voltage): 1Meg ohms
 - DMM (DC current): 5 ohms (negligible)

Effect of Impedance on Circuit

Effect of Impedance on Circuit

$$V_{out} = \frac{50}{50 + 50} (V_{in})$$

$$V_{out} = \frac{V_{in}}{2}$$

$$V_{out} = \frac{V_{in}}{2}$$

$$V_{out} = \frac{1 \times 10^6}{1 \times 10^6 + 50} (V_{in})$$

$$V_{out} \approx V_{in}$$

The IOBoard function generator has an output impedance of much less than 50Ω , so we can ignore it. Our battery however is a different story, as you will see in the experiment.

Kirchoff's Laws

loop1:
$$V_{S} - V_{R1} - V_{R2} = 0$$

Ioop2:
$$V_{R2}$$
- V_{R3} - V_{R4} = 0

loop3:
$$V_8 - V_{R1} - V_{R3} - V_{R4} = 0$$

sum of voltages in any loop is zero

junction:
$$|_{R1} = |_{R2} + |_{R3}$$

also:
$$I_S = I_{R1}$$

$$I_{R3} = I_{R4}$$

sum of currents entering a junction is the same as the sum of the currents leaving a junction

Circuit Analysis (Combination Method)

<u>Solution</u>

volt.div.(3.)
$$V_{a} = \frac{4K}{1K+4K} 5V = 4V$$

$$V_{R1} = 5V - V_{a} = 1V$$

$$I_{R1} = \frac{V_{R1}}{1K} = 1mA$$

$$V_{R2} = V_{a} = 4V$$

$$I_{R2} = \frac{V_{R2}}{8K} = 0.5mA$$

volt.div (1.)

$$Vb = \frac{4K}{4K+4K} Va = 2V$$

$$V_{R4} = Vb = 2V$$

$$I_{R4} = \frac{V_{R4}}{4K} = 0.5 \text{mA}$$

$$V_{R3} = Va - Vb = 2V$$

 $|_{R3} = |_{R4} = 0.5 \text{mA}$

Useful Aside: SI Suffixes

pico	p	10-12
nano	n	10-9
micro	μ (u)	10-6
milli	m	10-3
Kilo	k	10^3
Mega	M (Meg)	10^{6}
Giga	G	109
Tera	T	10^{12}

$$n = \frac{1}{G} \quad G = \frac{1}{n}$$

$$\mu = \frac{1}{M} \quad M = \frac{1}{\mu}$$

$$m = \frac{1}{k} \quad k = \frac{1}{m}$$

$$ex. \quad \frac{1}{10k} = \frac{1}{10} \frac{1}{k} = 0.1m$$

Part C

- Capture
 - Create circuits visually
 - Set up simulation parameters
- PSpice
 - Analyzes circuit
 - Displays results

Capture

Simulations $runtotime \approx \frac{\#cycles}{free}$ $step size \approx \frac{runtotime}{1000}$

Simulation Settings - AC		1000
		>
☐ I Ime Domain [I ransient] ▼ ☐ Sta ☐ General Settings	time: 2ms seconds (TS eving data after: 0 seconds ent options mum step size: 2us seconds kip the initial transient bias point calculation	

PSpice Note: To get copy of trace into word use Window menu → "copy to clipboard" 👺 SCHEMATIC1-AC - OrCAD PSpice A/D Demo - [ac-SCHEMAT/c1-AC.d... 🔳 🗖 🗵 📂 📴 🗐 🎒 🧱 <u>File Edit View Simulation Trace Plot Tools Window H</u>elp 🕵 _ B × ¾ 🖺 📵 🕰 🔛 SCHEMATIC1-AC 1 0 V 鲴 匐 5Ų-**6** 蓮 驟 0V -05 0.5ms 1.0ms 1.5ms 2.0ms □ U(U1:+) Time 🗟 ac-SCHEMA. For Help, press F1 Time= 2,000E-03 100%

Cursors

Note: You can drag the left mouse button to move one cursor and the right mouse button to move the other.

Adding Traces "Add Trace"

Note: To add a trace use Trace menu → "Add Trace"

Part D

- Oscilloscopes
- Lissajous Figures

Variation in potential difference (voltage) placed on plates causes electron beam to bend different amounts.

"Sweep" refers to refreshing repeatedly at a fixed rate.

http://www.chem.uiuc.edu/clcwebsite/video/Cath.avi

Cathode Ray Tube Animation

http://webclass.cqu.edu.au/Units/81120_FOCT_Hardware/Study_Material/Study_Guide/chap2/toc.html

Oscilloscopes

Horizontal sweeps at a constant rate. Vertical plates are attached to an external voltage, the signal you attach to the scope.

http://boson.physics.sc.edu/~hoskins/Demos/CathodeRay.html

Lissajous Figures

http://encyclozine.com/Science/Mathematics/Graphs/Lissajous/

Normally the scope will plot a voltage signal with respect to time. In a Lissajous figure, two voltage signals are plotted against each other.

Lissajous Example 1

time	Х	У
tO	0	0
t1	В	A
t2	0	0
t3	$-\mathbf{B}$	$-\mathbf{A}$
t4	0	0

Lissajous Example 2

Vy(t) = A sin(wt+0)

time	Х	<u> 7</u>
tO	В	0
t1	0	A.
t2	-B	0
t 3	O	- A
t4	В	0

 $Vx(t) = B \sin(ut+pi/2)$

Lissajous Example 3

 $Vy(t) = \lambda \sin(wt+0)$

time	ж	У
tO	0	0
t1	В	.7A
t2	0	A
t3	$-\mathbb{B}$.7A
t 4	0	0
t5	В	7A
t6	0	-14
t7	-B	7A
t8	0	0

More Figures FREQUENCY PHASE SHIFT 1:1 45° 90° 180° 360° 1:2 45° 900 136° <u> 180°</u> 1:3 60°

