Intro to ECSE

Quiz 2 Solutions
Fall 2023

1.	$/ 12$
2.	$/ 13$
3.	$/ 8$
4.	$/ 15$
Total	$/ 48$

Name \qquad

RIN \qquad

Section \qquad
Notes:
SHOW ALL WORK. BEGIN WITH FORMULAS, THEN SUBSTITUTE VALUES
AND UNITS. No credit will be given for numbers that appear without justification. Use the backs of pages if there is not enough room on the front.

For partial credit on some questions, you may want to re-draw circuit diagrams as you simplify the circuits.

Many problems can be solved using more than one method. check your answers by using a second method.

At least skim through the entire quiz before you begin and then start with the problems you know best. The proctor will only answer clarification questions where wording is unclear or where there may be errors/typos. No other questions will be responded to.

Problem 1 [12 Points]: Miscellaneous Concepts and Short Answer Questions

1.1 [2 pts] What is the minimum value of V 1 that will cause current to flow through the diode such that $\mathrm{I}_{\mathrm{D}}>0$? Assume the simple ideal diode model and $\mathrm{V}_{\mathrm{ON}}=0.7 \mathrm{~V}$.

The diode will turn on as soon as
$V_{0} \geqslant 0.7 V$. Since $V_{D}=V_{E 2,}$ we have

$$
V_{R 2}=V_{1} \frac{R_{2}}{R_{1}+R_{2}} \rightarrow \frac{V_{R 2}}{R_{2}}\left(R_{1}+R_{2}\right)=V_{1}
$$

$$
\text { If we want } V_{R 2} \geqslant V_{\text {on }} \text {, }
$$

$$
V_{1} \geqslant \frac{0.7 \mathrm{~V}}{1000 \Omega}(5000 \Omega+1000 \Omega)=4.2 \mathrm{~V}
$$

$$
\text { so } V_{1} \geqslant 4.2 \mathrm{~V}
$$

[-1] Invalid approach or diode model
[-1] Matherroo

$$
V_{1} \geq 4.2 \mathrm{~V}
$$

1.2 [2 pts] Which of the following circuit blocks or elements are always considered to be functionally non-linear? Circle all that apply. Note: this means without applying any techniques to make them look linear.

1.3 [2 pts] Which of the following are true about measuring currents and voltages? Circle all that apply.
a) When measuring current, the multimeter is placed in series with the circuit element whose current you want to measure.
b) When measuring current, the multimeter is placed in parallel with the circuit element whose current you want to measure.
c) When measuring voltage, the multimeter is placed in series with the circuit element whose current you want to measure.
d) When measuring voltage, the multimeter is placed in parallel with the circuit element whose current you want to measure.
[-1] One incorrect
[-2] Both incorrect
1.4 [2 pts] Shown below is the IV characteristic of a fictional device. Where is the differential resistance $\mathrm{R}_{\text {diff }}$ approximately zero? Circle all that apply.

Point A Point B Point C
Since differential resistance is defined
as Roiff $=\frac{d V}{d I}$, it is inversely
proportional to the slope of an $I V$
characteristic with V on the x-axis
and I on the y-axis. As a result,
Rdiff is approximately zero where the
slope is aparoximately infinite, which
is at point D. [-2] Incorrect
1.5 [4 pts] The transfer characteristic for a comparator circuit is shown below. Using the transfer characteristic, answer the following questions:

i. Which type of comparator is this?

Since Vout is low when $V_{\text {in }}>V_{\text {reef }}$
and Not is high when $V_{i n}<V_{\text {ref }}$,
[-1] Incorrect this is an inverting comparator.
ii. What is the reference voltage for this comparator?

The output voltage switches at V in $=4 \mathrm{~V}$,
so $V_{\text {ref }}=4 \mathrm{~V}$.
iii. What is the Vs^{+}, the positive (or larger) supply voltage for the comparator?

$$
V_{s}^{+}=+9 V \quad[-1] \text { Incorrect }
$$

iv. What is the Vs, the negative (or smaller) supply voltage for the comparator?

$$
V_{S}^{-}=-9 V \quad[-1] \text { Incorrect }
$$

Problem 2 [13 Points]: Nodal Analysis

Figure 1
a. [2 pts] How many voltage nodes in total (both known and unknown) are in this circuit? Label them on the circuit schematic.

* modes : 5] [-2] Incorrect; [-1] not labeled
b. [2 pts] Which of these nodal voltages are already known (if any)? Write their numerical values on the circuit schematic. known nodal voltages: $V_{D}=6 V_{i}, V_{E}=O V[-2]$ Incorrect; $[-1]$ not labeled
c. [2 pts] How many linearly independent equations are needed to solve for all unknowns in this circuit?

$$
\begin{aligned}
& \text { \# eqns needed }=\text { \#odes }- \text { \#oltage }-1 \\
& \text { soorces } \\
&=5-1-1=3][-2] \text { Invalid approach/Incorrect } \\
& {[-1] \text { Math error } }
\end{aligned}
$$

d. [3 pts] Write down the KCL equation for each node in terms of the nodal voltages you labeled on the schematic in 1.a and 1.b.

- at mode A:

$$
\begin{aligned}
\frac{V_{A}}{R_{1}}+I_{5}+\frac{V_{A}-V_{B}}{R_{2}}=0 \rightarrow & \left(\|_{R_{1}}+1 / R_{2}\right) V_{A}+\left(-1 \|_{2}\right) V_{B}=-I_{5} \\
& (1 / 5+1 / 8) V_{A}+(-1 / 8) V_{B}=-2
\end{aligned}
$$

- at node B:
[-1] Equation incorrect

$$
\frac{V_{B}-V_{A}}{R_{2}}+\frac{V_{B}-V_{C}}{R_{3}}=0 \rightarrow\left(-1 R_{2}\right) V_{A}+\left(\left\|_{R_{2}}+\right\| l_{R_{3}}\right) V_{B}+\left(-\| R_{3}\right) V_{C}=0
$$

$$
(-1 / 8) V_{A}+(1 / 8+1 / 2) V_{B}+(-1 / 2) V_{C}=0
$$

- at node C :
[-1] Equation incorrect

$$
\begin{aligned}
\frac{V_{C}-V_{B}}{R_{3}}+\left(-I_{s}\right)+\frac{V_{C}-V_{D}}{R_{4}}=0 & \rightarrow\left(-\|_{R_{3}}\right) V_{B}+\left(\left\|R_{R_{2}}+\right\|_{D_{1}}\right) V_{C}=\frac{V_{0}}{R_{1}}+I_{5} \\
& =(-1 / 2) V_{B}+(1 / 2+1 / 5) V_{C}=6 / 5+2
\end{aligned}
$$

[-1] Equation in correct

e. [4 pts] Write the equations from 1.d in matrix form with numerical values for circuit elements inserted (ie. numbers for all resistances, known voltages, and known currents). You do not need to numerically solve the matrix equation.

Problem 3 [8 Points]: Superposition

Solve for VR1, the voltage across R1, in the circuit below using the superposition method of circuit analysis.

Figure 2
a. [3 pts] Find VR1 vs, the voltage across R1 due to Vs only.
$V_{R 1}$ due to V_{s} only. Turing off I_{s}

yields an open circuit. This gives a series circuit, so
$V_{R_{1}}=V_{s} \frac{R_{1}}{R_{1}+R_{2}+R_{3}+R_{4}}$
$=6 \mathrm{~V} \frac{5}{20}=\frac{6 \mathrm{VV}}{4}=1.5 \mathrm{~V}$
[-2] Is not turned off properly
[-1] Error in finding $V_{R_{1}}$
b. [3 pts] Find VR1 1_{15}, the voltage across R1 due to Is only.
$V_{R 1}$ due to I_{s} only. Tuning off V_{s} yields
a short circuit. This

this gives a parallel circuit

Since the resistance of both current paths is the same, the current is splitevenly between them: $I_{1}=I_{2}=1 \mathrm{~A}$

- $V_{R_{1}}=-I_{2} \cdot R_{1}=-1 \mathrm{~A} \cdot 5 \Omega=-5 \mathrm{~V} J$
c. [2 pts] Using VR1 ${ }_{\text {vs }}$ and $V R 1_{15}$, find VR1 as indicated in Figure 2 above.

$$
\begin{aligned}
& V_{R 1}=V_{R 1, V_{s}}+V_{R 1,} I_{s} \\
&=1.5 V-5 V=-3.5 \mathrm{~V}] \\
& {[-1] \text { Incorrect approach to finding } V_{R 1} } \\
& {[-1] \text { Math error } }
\end{aligned}
$$

Problem 4 [15 Points]: Cascaded Op-Amp Circuit
Determine the value of Vout. The supply voltages Vs+ and Vs- for the op-amps are +5 V and -5 V .
Note: $V_{2}=2 \mathrm{~V}$ is the exam. This was an error.

a. [3 pts] Identify how many stages are in this op-amp circuit. Draw a box around each stage and label them "Stage 1", "Stage 2", etc.

There are 4 stages
[-1] Incorrect \# of stages
[-1] Stages delineated ins correctly
[-1] Stages labeled in correctly
b. [4 pts] Label each stage of the circuit with what type of circuit it is. Note: for all stages, be sure to specify if it is "non-inverting" or "inverting" when applicable.

Stage 1: difference amplifier
stage 2: non-invecting comparator
Stage 3: inverting comparator
stage 4: inverting, weighted summer
c. [4 pts] For each stage, write the transfer function as a numerical value. In cases in which a transfer function cannot be written for a stage, state this clearly, and write the expression for the output voltage of that stage in terms of the input voltage instead. Hint: Vin for a stage may be the sum or difference of two voltages; in this case, also state what you consider to be Win for that stage.

Stage 1: $H_{1}=\frac{R_{2}}{R_{1}}=2$, where $V_{2}-V_{1}=V_{\text {in }}$
stage 2: $V_{02}=\left\{\begin{array}{l}+5 v \\ -5 v \\ -5 i f V_{01}>-2 v\end{array}\right.$
Stage 3: $\underline{V_{03}}=\left\{\begin{array}{l}+5 V \text { if } V_{01}<2 V \\ -5 V \text { if } V_{01}>2 V\end{array}\right.$
Stage 4: $V_{04}=-\frac{R_{7}}{R_{5}} V_{03}-\frac{R_{7}}{R_{6}} V_{02}$

$$
\begin{aligned}
& =-\frac{1}{2} V_{03}-\frac{1}{2} V_{02} \\
& =-\frac{1}{2}\left(V_{03}+V_{02}\right)
\end{aligned}
$$

so $H_{4}=-\frac{R_{7}}{R_{6}}=-\frac{1}{2}$, where $V_{03}+V_{02}=V_{\text {in }}$
[-1] for each V_{0} or transfer function
[-0.5] for math errors in each stage
d. [4 pts] Calculate Vout.

Stage 1: $\left\{\begin{array}{l}V_{\text {in }}=V_{2}-V_{1}=2 V \\ H_{1}=2, A_{0} \\ V_{01}=2.2 V=4 V\end{array}\right.$
Stage 2: $V_{02}=+5 \mathrm{~V}$ because $V_{01}>-2 \mathrm{~V}$
any $\overrightarrow{\text { Value }}$ Stage 3: $V_{03}=-5 \mathrm{~V}$ because $\mathrm{V}_{01}>2 \mathrm{~V}$
between Stage 4: $V_{\text {in }}=V_{03}+V_{02}=O \mathrm{~V}$
-5 V and +5 V
for V_{03} is
$\left\{\begin{array}{l}V_{4}=-\frac{1}{2} \\ V_{\text {out }}=-\frac{1}{2}(o \mathrm{~V})=O \mathrm{~V}\end{array}\right.$
accepted $[-1]$ for each in correct output voltage from
due to the a stage
error in the exam ($V_{\text {in 2 }}=V_{\text {ref z }}=2 V$)
e. [4 pts] Bonus: Write the expression for Vout in terms of V 1 and V 2 in general. In your own words, what is the function of this circuit (overall, what does it do)?

$$
\begin{aligned}
& V_{\text {out }}= \begin{cases}-5 V, \text { if } & -I V<V_{\text {in }}<+I V \\
O V, \text { if } & V_{\text {in }}\left\langle-I V \text { or } V_{\text {in }}\right\rangle+I V\end{cases} \\
& \text { where } V_{\text {in }}=V_{2}-V_{1} \\
& \text { - This circuit outputs-5V if }\left|V_{2}-V_{1}\right|<I V \\
& \text { and } O \text { otherwise. } \\
& \text { [}+1 \text {] correct out for }-I V<\operatorname{Vin}<1 V \\
& \text { [+1] correct out for Vin<-IV } \\
& \text { [I 1] correct out for Ven }>+1 V \\
& \text { [+1] Valid description of what circuit does } \\
& \text { overall }
\end{aligned}
$$

