
Interfacing a Hitachi HD44780 to a Motorola 68HC11 or
Motorola 68HC12

Table of Contents
 Page

Introduction 1
Hardware Operation 2
 Memory 4
 Instructions 5

Software Operation 8
 C Code Function Descriptions 8
 Test Code 12
 68HC11 Assembly Code 13

Appendix A: Wire Connections 14
Appendix B: LCD11.h and LCDtest11.c 15
Appendix C: LCD12.h and LCDtest12.c 21
Appendix D: LCD.asm 27

Introduction:

This document is intended to explain the basics of interfacing a Hitachi HD44780 LCD Controller
with the Motorola 68HC11 and Motorola 68HC12 microcontrollers and to provide sample code
in the form of a C header file for the HC11 and HC12 and assembly code subroutines for the
HC11. All code for this document was developed and tested with Introl C 4.0. All tables,
diagrams, and charts from the Hitachi data sheets unless credited otherwise.

Hardware Operation:

The hardware in the HD44780 is mostly transparent to the programmer. As a result many of the
features do not need an in depth explanation. Those readers interested in more detailed
information should refer to the Hitachi Data Sheet for the HD44780. For this project the Optrex
DMC-16204 Display Module (DigiKey part number 73-1033ND) was used. This incorporates the
HD44780 as the on board LCD Screen controller.

The Optrex DMC-16204 Display Module has 14 connections between itself and the
microprocessor. On the Optrex DNC-16204, pin 2 provides power and pin 1 is connected to
ground. Pin 3 controls the brightness level of the screen and is connected to the wiper of a 10
kOhm potentiometer. Pin 4 is the register select of the LCD screen. This is used to select between
the instruction register or address counter of the HD44780. When the input to the pin is low the
instruction register is active and the data register is active when the input is high. Pin 5 is the
Read/Write select. When the input to the pin is high, the HD44780 is in read mode, when the
input is low it is set up for a write. Pin 6 is the LCD enable. This is used to clock data and
instructions into the HD44780. Pins 7 to 14 are the data pins. Pin 14 also doubles as the Busy
Flag for the LCD screen. While many LCD screens use this order for the pins, the exact pin
configuration may vary by part type and manufacturer. Be sure to refer to the LCD
documentation before using this code to ensure that they are compatible. Schematics for wiring
the LCD screen to the 6811 and 6812 are included in appendix A.

The basic operation of the screen is controlled by the state of the Register Select (RS) and the
Read/Write (R/W) pins. These operations are summarized in Table 1.

Table 1: Register Selection

Figure 1: HD44780U Block Diagram

Memory:
The HD44780 provides an 80x8 bit Display Data RAM (DDRAM). This is used to store the data
that is being displayed on the screen. This allows the HD44780 to store up to 40 characters per
line. It is important to note that the DMC-16204 will display only 16 characters per line. The
extra memory here can be used to store characters that may then be shifted onto the screen. All
data to be displayed must be stored in the form of an 8 bit ASCII code character.

Figure 2: 1 Line Display

Figure 3: 2 Line Display

Instructions:
The HD44780 has a number of different instructions that it can execute. These instructions are
listed in the following table:

Table 2: Instructions

It is important to note that the HD44780 can only execute one instruction at a time. Before
sending an instruction to the display, the busy flag must to be read. If the busy flag is zero, then
the instruction can be sent to the display, otherwise the instruction must be held by the
microprocessor until the current instruction has completed execution and the busy flag is cleared.

Instruction Descriptions:

Clear Display
This instruction writes a 0x20 to all locations in the DDRAM. It also sets the DDRAM address to
zero and unshifts the display, if it had been shifted. It also sets the display to increment mode.

Return Home
The DDRAM Address is set to zero and the display is unshifted, if it had been shifted.

Entry Mode Set
This instruction has two parameters, which it controls. The first is I/D. If this bit is high, the
display increments the DDRAM address by one every time a character is written to the screen. If
it is low, then the display address will be decremented by one every time a character is written.
The second parameter is S. When S is high, the display shifts after a character is written to the
screen. It will shift to the right if I/D = 0 or to the left if I/D=1. When S is low, the display does
not shift when a character is written.

Display Control On/Off
This instruction has 3 parameters that the user can set. The first is D. This turns the display on
when it is high and off when it is low. The second parameter is C. This displays the cursor when it
is high and turns the cursor off when it is low. The last parameter is B. When this is high the
character indicated by the cursor will blink. When it is low the display will not blink.

Cursor or Display Shift
This instruction shifts either the cursor or display by 1 character, without modifying the data
stored in the DDRAM. The direction of the shift is determined by the value in the R/L bit. Both
lines shift simultaneously. The shifting type and direction are summarized in the following table:

Table 3: Shift Functions

Figure 4: 2 Line by 16 Character Display

Function Set
This instruction is used to initialize the display and what format the display will be using. This is
done only during the initialization process and it may not be changed later in the program. DL is
the data length of the interface. For this program, DL is always high, since the only the 8 bit
interface is used. N is the number of display lines and F is the font size.

Table 4: Function Set

Set DDRAM Address
This sets the DDRAM to the address included in the instruction. When the display is in single line
mode the addresses range from 0x00 to 0x4F. In 2 line mode, the instructions range from 0x00 to
0x27 for the first line and from 0x40 to 0x67 for the second line.

Read Busy Flag
This instruction sends the state of the Busy Flag to the microcontroller. This appears on bit 7 and
is used to determine if the LCD screen controller is still executing an instruction. If the bit is high,
then there is an instruction executing that must be completed before another instruction can be
written to the LCD screen controller

Write Data to DDRAM
This instruction writes an 8-bit pattern to the DDRAM.

Software Operation:

The code to control the LCD screen was developed as both a C header files for the 68HC11 and
68HC12 and as several assembly language subroutines for the 68HC11. The C header files were
written to provide an easy interface to the LCD screen. The two files are similar with the only
differences being the ports used by the screen and the delay cycles used. The assembly code is
much smaller then the C code and is also in many ways far more flexible. The code for these files
is included in the Appendices.

C Code:
The C code was written as a header file that could be included in any program that interfaces with
an LCD screen. For the 68HC11, the code uses Port C for writing data and Port A[3:5] for the
control signals. For the 68HC12, the header file uses Port H for writing data and Port G[0:2] for
the control signals.

The header file contains six functions to control the LCD screen. These are OpenXLCD,
SetDDRamAddr, BusyXLCD, WriteCmdXLCD, WriteDataXLCD, and WriteBuffer. These
functions provide all the basic features needed to display data on the screen and to position the
cursor.

OpenXLCD:
This function executes all the initialization routines required by the HD44780 before it can be
used. This routine sets the controller for 8-bit data entry and also initializes the number of display
lines and the character font of the LCD screen. This is done by passing the desired type of display
to the controller when OpenXLCD is called. The choices available are:

Screen Display Value
5x8 single line 0x30
5x8 double line 0x3F
5x10 single line 0x34

These values may only be changed on startup. They can not be changed after the LCD screen has
been initialized. The initialization routine ends by turning on the display and cursor, clearing the
entire display and setting the DDRAM address to 0.

It is important to note that this function must be customized for the processor on which it is
running. This is because there are several delay loops that are executed by this routine. These are
all time dependant and were designed around the microprocessor’s clock, 2 MHz for the 6811
and 8 MHz for the 6812. If this code is ported to other processors then these, the delay loops will
need to be rewritten to take into account the clock frequency of the processor you are using.

Figure 5: 8 Bit Interface

WriteCmdXLCD:
This function is used to write commands to the LCD screen. The command to be issued is passed
in as a parameter of the function.
There are several different commands, which can be issued to the LCD controller. These are for
clearing the display, resetting the DDRAM address to 0, turning the display and cursor on or off,
and shifting the display and cursor. The basic format of each of these is summarized in Table 2
above.

WriteDataXLCD:

This function is used to write data to the LCD screen. The data to be written is passed in as a
parameter of this function. This is very similar in operation to the WriteCmdXLCD routine. The
data to be displayed must be written to the display as an ASCII character. The character set
stored in the controller is listed in Table 5 below.

Table 5: Character Set

SetDDRamAddr:
This function sets the address of the cursor. This is a special case of the WriteCmdXLCD
function. The function is almost identical to WriteCmdXLCD, the only difference being that the
value passed into the function is logically ORed with 0x80, which places a 1 in the leading
location. This is used to signify that an address is being sent to the display as opposed to a
character or other command.

BusyXLCD:
This function is used to check the busy flag of the LCD screen. When the busy flag is high, the
LCD controller is still processing a previous command and cannot accept any new instructions.
As a result, the busy flag must be checked before each attempt to write a command or data to the
LCD screen. This step is incorporated in the WriteCmdXLCD, WriteDataXLCD and
SetDDRamAddr functions, as they all call the BusyXLCD instruction as their first operation, and
wait until the flag is cleared before proceeding to issue a new instruction.

WriteBuffer:
This command is used to write a string of characters, stored in a buffer, to the LCD screen. This
function contains a while loop that simply makes repeated calls to the WriteDataXLCD function
until the entire buffer has been transmitted. The only limitation on the use of the buffer is that only
data can be sent to the screen. Instructions must be sent separately by calling WriteCmdXLCD.

Test Code:
There are two C programs included with this document. One is LCDtest11.c and the other is
LCDtest12.c. Both programs execute the same set of operations and are used to exercise the
LCD Screen to ensure that it is working properly by issuing a variety of instructions to the LCD
screen.

The code initially turns the display off for a short time. It then prints:

 |Good Morning |
 |Dave |

After another short delay, the cursor moves to address 0xCA and prints "Hello" at this location.

 |Good Morning |
 |Dave Hello|

Following yet another delay, "ABCDE" is written to Address 0x41 and the display is shifted left 5
times.

 |Morning ABCDE|
 | Hello |

The last instruction clears the display after another delay.

 | |
 | |

Assembly Code:
The assembly code for the LCD screen consists of two subroutines that can be included with any
program to provide an interface to the LCD controller to the Motorola 68HC11. It is a good idea
when using these programs to allow for a large stack, since all parameters are passed via the
stack. The subroutines that are used are Writelcd, which writes the data to the LCD screen and
Initlcd which executes all the screen initialization routines.

Writelcd:
This subroutine handles all data and instruction writes to the LCD screen. The data to be written
is passed to the subroutine by the A register and the RS and R/W states are passed by the B
register. In the subroutine, these values are then pushed onto the stack. The subroutine then
checks the busy flag. Once the busy flag is clear the data is popped off the stack and written to
Port C. Then the control pin states are then popped off the stack and written to Port A. Several
clock cycles later the enable is pulsed and the data is written to the HD44780. The control pins
are then cleared and the subroutine returns control to the calling function.

Initlcd:
This subroutine functions identically to the OpenXLCD function in the C code. The screen type is
passed to the subroutine in the A register and is then pushed onto the stack. It is popped off the
stack later in the subroutine so that it can be written to Port C. The user does not need to specify
any other information when using this subroutine.

Test Code:
This is very simple code that shows how the Writelcd and Initlcd subroutines are used in a
program. This is not, however, intended in any way as a diagnostic tool to check the functioning
of the screen. If there is a question as to whether or not the screen is bad, it is recommended that
the sample C code be run, as it provides a far more comprehensive test of the functions and
features of the HD44780.

Function differences between the C code and Assembly code routines

There are very few actual differences between the C header file and the assembly code
subroutines. The differences between them are summarized briefly below.

1) The assembly code version reduces the number of different operations need by the programmer
as it combines the WriteCmdXLCd, WriteDataXLCD, DDRamAddr, and BusyXLCD functions
into a single subroutine. This can be done since the only difference between the first 3
instructions is the state of the RS and R/W pins. As the programmer must pass the state of the
control pins to the subroutine from the main code, the functions can be combined into a single
subroutine. In addition as there is only one subroutine, the BusyXLCD functions can be included
in that subroutine since it is not called by any other subroutine.

2) The C header file provides a function to write a string of ASCII characters to the screen. This
function was omitted from the assembly code subroutine. This was left as an exercise for the
students. To write a string of data or a sequence of data and instructions, the Writelcd subroutine
must be slightly modified.

The programmer simply pushs the data or instructions, and the control signals for them, onto the
stack in reverse execution order. The new Writelcd subroutine must recieve the number of
instructions stored on the stack and continue processing them until all the instructions have been
transmitted. This has an advantage over the C header WriteBuffer function in that it can handle
both instructions and data since the control signals are passed along with the data to be written to
the screen.

Appendix A: Wiring Connections

68HC11

Port A4 Pin 30

Port A 3 Pin 31

Port A 5 Pin 29

Port C0 Pin 9

Port C1 Pin 10

Port C2 Pin 11

Port C3 Pin 12

Port C4 Pin 13

Port C5 Pin 14

Port C6 Pin 15

Port C7 Pin 16

10 Kohm s

(connected
internally)

0V (GROUND)

+5V

(10K pot is included
 on the LCD board)

LCD GND Pin 1 (rightm ost)

LCD +5V Pin 2

LCD Contrast Pin 3

LCD RS Pin 4

LCD R/W Pin 5

LCD Enable Pin 6

LCD Pin 7

LCD Pin 8

LCD Pin 9

LCD Pin 10

LCD Pin 11

LCD Pin 12

LCD Pin 13

LCD Pin 14 (leftm ost)

68HC11 LCD W iring Connections

68HC12

Port G4: J8 Pin 11

Port G3: J8 Pin 14

Port G5: J8 Pin 12

Port H0: J9 Pin 37

Port H1: J9 Pin 38

Port H2: J9 Pin 35

Port H3: J9 Pin 36

Port H4: J9 Pin 33

Port H5: J9 Pin 34

Port H6: J9 Pin 31

Port H7: J9 Pin 32

10 Kohm s

(connected

internally)

0V (GROUND)

+5V

(10K pot is included

 on the LCD board)

LCD GND Pin 1 (rightm ost)

LCD +5V Pin 2

LCD Contrast Pin 3

LCD RS Pin 4

LCD R/W Pin 5

LCD Enable Pin 6

LCD Pin 7

LCD Pin 8

LCD Pin 9

LCD Pin 10

LCD Pin 11

LCD Pin 12

LCD Pin 13

LCD Pin 14

68HC12 LCD W iring Connections

Appendix B: LCD11.h and LCDtest11.c

LCD11.h

// LCD Screen routines for the Motorola 6811 using a Hitachi //
HD44780
// Written by Lee Rosenberg - rosenl@rpi.edu
// Developed for use with Introl C 4.0
// October 21, 1998

#include <HC11A1.h>

void OpenXLCD(char); // configures I/O pins for external
LCD
void SetDDRamAddr(char); // sets display data address
char BusyXLCD(void); // returns busy status of the LCD
void WriteCmdXLCD(char); // write a command to the LCD
void WriteDataXLCD(char); // writes data byte to the LCD
void WriteBuffer(char *buffer); //Writes a string to the LCD

/***

Write Buffer
 Function: Write a string of bytes to the HD44780
 Input Parameters: char *buffer
 Return Type: None

***/

void WriteBuffer(char *buffer)
{
 while(*buffer) // while buffer not empty
 {
 while(BusyXLCD()); // check if screen busy
 WriteDataXLCD(*buffer); // write a character
 buffer++; // increment pointer
 }
 return;
}

/**

OpenXLCD

Function: This configures the LCD screen.
Input Parameters: char lcdtype
Return Type: None
Notes: This function must be run before the LCD screen
 can be used.

***/

void OpenXLCD(char lcdtype)
{ int i;
 _H11PORTC = 0; // initialize control port A and
 _H11DDRC = 0x00; // Data port C
 _H11PORTA = 0x00;

// delay for 15ms. This is customized for the HC11 and must //be
changed for other processors

 for(i=0; i<40,000; i++);

// set up interface to LCD
 _H11DDRC = 0xFF;
 _H11PORTC = 0x3F; // Function set command (8 bit)

 _H11PORTA = 0x20; // clock command in
 for(i=0; i<30;i++); // delay for ~ 15 us
 _H11PORTA = 0x00;

// delay for at least 4.1 ms

 for(i=0;i<9000;i++);

// setup interface
 _H11PORTC=0x3F; // Function set command (8 bit)
 _H11PORTA = 0x20; // clock in command
 for(i=0;i<30;i++); // delay for ~15 us
 _H11PORTA = 0x00;

// delay for at least 100us

for(i=0;i<500;i++);

// set up interface
 _H11PORTC = 0x3F; // function set command (8 bit)
 _H11PORTA = 0x20;
 for(i=0;i<30;i++); // delay for ~15 us
 _H11PORTA = 0x00;

 WriteCmdXLCD(lcdtype); // function set 8 bit interface
 WriteCmdXLCD(0x0C);
 WriteCmdXLCD(0x01); // turn off display
 return;
}

/**

WriteCmdXLCD

Function: Writes a command to the controller
Input Parameter: char cmd

 Return Type: None
 Notes: Before writing the command the function checks
 that the display is not busy by calling
 BusyXLCD.
***/

void WriteCmdXLCD(char cmd)
{
 int i;
 while(BusyXLCD()); // Check LCD is not in use
 _H11DDRC = 0xFF;
 _H11PORTC = cmd; // write cmd to port
 _H11PORTA = 0x00; // set control signals

 for(i=0; i<30; i++); // delay for ~15 us
 _H11PORTA=0x20; // clock in the command
 for(i=0;i<30;i++); // delay for ~15 us
 _H11PORTA=0x00;

 for(i=0;i<30;i++); // delay for ~15 us
 _H11DDRC=0x00;

 return;
}

/**

SetDDRamAddr
 Function: Set the address of the LCD controller
 Input Parameter: char DDaddr
 Return Type: None
 Notes: This function sets the address of the LCD screen

 to the address that is passed in as a char. The
 address is automatically modified to the correct
 format for the screen.

**/

void SetDDRamAddr(char DDaddr)
{
 int i;
 while(BusyXLCD()); // check if screen is in use
 _H11DDRC=0xFF;
 _H11PORTC=(DDaddr | 0x80);// write cmd and addr to port
 _H11PORTA=0x00;
 for(i=0;i<30;i++); // delay for ~15 us
 _H11PORTA=0x20; // clock in the command
 for(i=0;i<30;i++); // delay for ~15 us
 _H11PORTA=0x00;
 for(i=0;i<30;i++); // delay for ~15 us
 _H11DDRC =0x00;

 return;
}

/***

BusyXLCD

Function: This checks the busy status of the HD 44780
 Input Parameter: None
 Return Type: char
 Notes: This is necessary to ensure that the LCD screen
 is ready to recieve data.

**/

char BusyXLCD(void)
{
 int i;
 _H11DDRC=0x00;
 _H11PORTA=0x08; // set control bits
 for(i=0;i<30;i++); // delay for ~15 us
 _H11PORTA=0x28; // clock them in
 for(i=0;i<30;i++); // delay for ~15 us
 if(_H11PORTC & 0x80) // read busy flag
 {
 _H11PORTA = 0x00; // if set
 return 1;
 }
 else
 {
 _H11PORTA = 0x00; // if clear
 return 0;
 }
}

/***

WriteDataXLCD

Function: Writes data to the LCD
 Input Parameter: char data
 Return Type: None
 Notes: This function takes ascii data and writes it to
 the LCD screen. All data is passed in as a char.

**/

void WriteDataXLCD(char data)
{
 int i;
 while(BusyXLCD()); // check if screen is ready
 _H11DDRC = 0xFF;

 _H11PORTC = data; // write data
 _H11PORTA = 0x10;
 for(i=0;i<30;i++); // delay for ~15 us
 _H11PORTA=0x30; // clock in data
 for(i=0;i<30;i++); // dlay for ~ 15 us
 _H11PORTA=0x00;
 _H11DDRC= 0x00;
 return;
}

LCDtest11.c

/* Basic test program for the Hitachi HD 44780
This will test all the major functions and commands to ensure
that the screen is functioning correctly. */

// All necessary include statements

#include <HC11A1.h> // register declarations
#include <introl.h> // Introl functions
#include <stdio.h> // I/O commands
#include <stdlib.h> // Standard C functions
#include <lcd11.h> // LCD functions

void main()
{
 int i, j;
 char buffer[]="hello";

 OpenXLCD(0x3F); //intialize the screen

 WriteCmdXLCD(0x80); // set address to 0

 WriteDataXLCD(0x47); // write "Good Morning Dave"
 WriteDataXLCD(0x6F);
 WriteDataXLCD(0x6F);
 WriteDataXLCD(0x64);
 WriteDataXLCD(0x20);
 WriteDataXLCD(0x4D);
 WriteDataXLCD(0x6F);
 WriteDataXLCD(0x72);
 WriteDataXLCD(0x6E);
 WriteDataXLCD(0x69);
 WriteDataXLCD(0x6E);
 WriteDataXLCD(0x67);
 WriteCmdXLCD(0xC0);
 WriteDataXLCD(0x44);
 WriteDataXLCD(0x61);
 WriteDataXLCD(0x76);
 WriteDataXLCD(0x65);

 WriteCmdXLCD(0x08); // turn off display

 for(i=0; i<10; i++) // delay
 for(j=0; j<40000; j++);

 WriteCmdXLCD(0x0C); // turn on display and cursor

 for(i=0; i<10; i++) // delay
 for(j=0; j<40000; j++);
 SetDDRamAddr(0xCA); // set cursor address to 4F

 WriteBuffer(&buffer); //write buffer to screen
 for(i=0;i<10;i++) // delay
 for(j=0;j<40000;j++);

 SetDDRamAddr(0x90); // go to address 16
 WriteDataXLCD(0x41); // write ABCDE
 WriteDataXLCD(0x42);
 WriteDataXLCD(0x43);
 WriteDataXLCD(0x44);
 WriteDataXLCD(0x45);

 WriteCmdXLCD(0x18); // shift display left 5 times
 WriteCmdXLCD(0x18);
 WriteCmdXLCD(0x18);
 WriteCmdXLCD(0x18);
 WriteCmdXLCD(0x18);

 for(i=0;i<10;i++) // delay
 for(j=0;j<40000;j++);

 WriteCmdXLCD(0x01); // clear display

}

Appendix C: LCD12.c and LCDtest12.c

LCD12.c

// LCD Screen routines for the Motorola 6812 using a Hitachi
// HD44780
// Written by Lee Rosenberg - rosenl@rpi.edu
// Developed for use with Introl C 4.0
// October 21, 1998

#include <hc812a4.h> // register declarations
#include <dbug12.h> // D-Bug12 monitor

void OpenXLCD(char); // configures I/O pins for LCD
void SetDDRamAddr(char); // sets display data address
char BusyXLCD(void); // returns busy status of the LCD
void WriteCmdXLCD(char); // write a command to the LCD
void WriteDataXLCD(char); // writes data byte to the LCD
void WriteBuffer(char *buffer); // Writes a string to LCD

/***

Write Buffer
 Function: Write a string of bytes to the HD44780
 Input Parameters: char *buffer
 Return Type: None

***/

void WriteBuffer(char *buffer)
{
 while(*buffer) // while buffer not empty
 {
 while(BusyXLCD()); // check if screen busy
 WriteDataXLCD(*buffer); // write character
 buffer++; // increment pointer
 }
 return;
}

/**

OpenXLCD

 Function: This configures the LCD screen.
 Input Parameters: char lcdtype
 Return Type: None

Notes: This function must be run before the LCD screen
 can be used.

***/

void OpenXLCD(char lcdtype)
{ int i;
 _H12PORTH = 0;
 _H12DDRH = 0x00;
 _H12PORTG = 0x00;
 _H12DDRG= 0xFF;

// delay for 15ms. This is customized for the HC12 and must //
be changed for other processors

for(i=0; i<130,000; i++);

// set up interface to LCD
 _H12DDRH = 0xFF;
 _H12PORTH = 0x3F; // Function set command (8 bit)
 _H12PORTG = 0x20; // clock command in
 for(i=0; i<100;i++); // delay for ~12.5 us
 _H12PORTG = 0x00;

// delay for at least 4.1 ms

 for(i=0;i<40000;i++);

// setup interface
 _H12PORTH=0x3F; // Function set command (8 bit)
 _H12PORTG = 0x20; // clock in command
 for(i=0;i<100;i++); // delay for ~12.5 us
 _H12PORTG = 0x00;

// delay for at least 100us

 for(i=0;i<1000;i++);

// set up interface
 _H12PORTH = 0x3F; // function set command (8 bit)
 _H12PORTG = 0x20;
 for(i=0;i<100;i++); // delay for ~12.5 us
 _H12PORTG = 0x00;
 WriteCmdXLCD(lcdtype); // function set command 8 bit
 WriteCmdXLCD(0x0C);
 WriteCmdXLCD(0x01); // clear screen
 return;
}

/**

WriteCmdXLCD

 Function: Writes a command to the controller

Input Parameter: char cmd
 Return Type: None
 Notes: Before writing the command the function checks
 that the display is not busy by calling
 BusyXLCD.
***/
void WriteCmdXLCD(char cmd)
{
 int i;
 while(BusyXLCD()); // check status of LCD
 _H12DDRG = 0xFF;
 _H12DDRH = 0xFF;
 _H12PORTG = 0x00; // set control signals

 _H12PORTH = cmd; // write cmd to port

 for(i=0; i<100; i++); // delay for ~12.5 us
 _H12PORTG=0x20; // clock the command in
 for(i=0;i<100;i++); // delay for ~12.5 us
 _H12PORTG=0x00;

 for(i=0;i<100;i++); // delay for ~12.5 us
 _H12DDRH=0x00;

 return;
}

/**

SetDDRamAddr
 Function: Set the address of the LCD controller
 Input Parameter: char DDaddr
 Return Type: None
 Notes: This function sets the address of the LCD screen

 to the address that is passed in as a char. The
 address is automatically modified to the correct
 format for the screen.

**/

void SetDDRamAddr(char DDaddr)
{
 int i;
 while(BusyXLCD()); // check status of LCD
 _H12DDRG = 0xFF;
 _H12DDRH=0xFF;
 _H12PORTH=(DDaddr | 0x80);// write cmd and addr to port
 _H12PORTG=0x00;
 for(i=0;i<100;i++); // delay for ~12.5 us
 _H12PORTG=0x20; // clock command in
 for(i=0;i<100;i++); // delay for ~12.5 us

 _H12PORTG=0x00;
 for(i=0;i<100;i++); // delay for ~12.5 us
 _H12DDRH =0x00;
 return;
}

/***

BusyXLCD

Function: This checks the busy status of the HD 44780
 Input Parameter: None
 Return Type: char
 Notes: This is necessary to ensure that the LCD screen
 is ready to receive data.

**/

char BusyXLCD(void)
{
 int i;
 _H12DDRG = 0xFF;
 _H12DDRH=0x00;
 _H12PORTG=0x08; // set control bits
 for(i=0;i<100;i++); // delay for ~12.5 us
 _H12PORTG=0x28; // clock in the command
 for(i=0;i<100;i++); // delay for ~12.5 us
 if(_H12PORTH & 0x80) // Read the busy flag
 {
 _H12PORTG = 0x00; // if it is busy return 1
 return 1;
 }
 else
 {
 _H12PORTG = 0x00; // if it is not busy return 0
 return 0;
 }
}

/***

WriteDataXLCD

Function: Writes data to the LCD
 Input Parameter: char data
 Return Type: None
 Notes: This function takes ASCII data and writes it to
 the LCD screen. All data is passed in as a char.

**/

void WriteDataXLCD(char data)
{

 int i;
 while(BusyXLCD()); // check if the LCD is busy
 _H12DDRG = 0xFF;
 _H12DDRH = 0xFF;
 _H12PORTH = data; // Write the data
 _H12PORTG = 0x10;
 for(i=0;i<100;i++); // delay for ~12.5 us
 _H12PORTG=0x30; // clock the data in
 for(i=0;i<100;i++); // delay for ~12.5 us
 _H12PORTG=0x00;
 _H12DDRH= 0x00;
 return;
}

LCDtest12.c

/* basic test program for the Hitachi HD 44780
This will test all basic functions of the LCD screen to ensure it
is functioning properly. */

#include <hc812a4.h> // register declarations
#include <introl.h> // Introl functions
#include <lcd12.h> // LCD functions
#include <dbug12.h> // D-Bug12 functions

void __main()
{
 int i, j;
 char buffer[]="hello";

 OpenXLCD(0x3F); // initialize the screen

 WriteCmdXLCD(0x80); // set address to 0

 WriteDataXLCD(0x47); // write "Good Morning Dave"
 WriteDataXLCD(0x6F);
 WriteDataXLCD(0x6F);
 WriteDataXLCD(0x64);
 WriteDataXLCD(0x20);
 WriteDataXLCD(0x4D);
 WriteDataXLCD(0x6F);
 WriteDataXLCD(0x72);
 WriteDataXLCD(0x6E);
 WriteDataXLCD(0x69);
 WriteDataXLCD(0x6E);
 WriteDataXLCD(0x67);
 WriteCmdXLCD(0xC0);
 WriteDataXLCD(0x44);
 WriteDataXLCD(0x61);
 WriteDataXLCD(0x76);
 WriteDataXLCD(0x65);

 WriteCmdXLCD(0x08); // turn off display

 for(i=0; i<10; i++) // delay
 for(j=0; j<40000; j++);

 WriteCmdXLCD(0x0C); // turn on display and cursor

 for(i=0; i<10; i++)
 for(j=0; j<40000; j++);
 SetDDRamAddr(0xCA); // set cursor address to 4F

 WriteBuffer(&buffer); //write buffer to screen
 for(i=0;i<10;i++) // delay
 for(j=0;j<40000;j++);

 SetDDRamAddr(0x90); // go to address 16
 WriteDataXLCD(0x41); // write ABCDE
 WriteDataXLCD(0x42);
 WriteDataXLCD(0x43);
 WriteDataXLCD(0x44);
 WriteDataXLCD(0x45);

 WriteCmdXLCD(0x18); // shift display left 5 times
 WriteCmdXLCD(0x18);
 WriteCmdXLCD(0x18);
 WriteCmdXLCD(0x18);
 WriteCmdXLCD(0x18);

 for(i=0;i<10;i++) // delay
 for(j=0;j<40000;j++);

 WriteCmdXLCD(0x01); // clear display

}

Appendix D: LCD.asm

* 6811 assembly code to interface with the Hitachi HD44780
* LCD Screen Controller.
* This code contains all the necessary subroutines to write
* to the screen.
* It also includes a simple main program that will execute
* the instructions.
* The subroutines are designed to be transferred to other
* programs and simply dropped in.
*
* Important Note: This program requires a significant amount
* of space on the stack. Be sure to initialize the stack
* before beginning to run these routines.

* Equates
* buffalo operations

outa equ $ffb8 output the ASCII character in A
outstrg equ $ffca output string at x
outcrlf equ $ffc4 output crlf
outlhlf equ $ffb2 output left nibble of a in ASCII
outrhlf equ $ffb5 output right nibble of a in ASCII
out2bsp equ $ffc1 output 2byte value at x in HEX
input equ $ffac a=input() ; a=0 if no char entered
inchar equ $ffcd a=input() ; loop till user enters char
upcase equ $ffa0 a=upcase(a)
wchek equ $FFA3 z=1 if A={space,comma,tab}
dchek equ $FFA6 z=1 if A={space,comma,tab,CR}

* Port Declarations
porta equ $1000
portc equ $1003
ddrc equ $1007

* This is the main program that calls the subroutines.

 org $c000
 jmp start
temp rmb 1

* data to be displayed on the screen

test1 fcc "point a"
 fcb $04
test2 fcc "point b"
 fcb $04

start lds #$DFFF ; initialize the stack.

 ldaa #$3F ; Load the screen type
 jsr initlcd ; initialize the screen

 ldaa #$80 ; set address to 0
 ldab #$00 ; set control pins
 jsr writelcd

 ldaa #$47 ; write a character
 ldab #$10
 jsr writelcd

 ldaa #$6F ; write a character
 ldab #$10
 jsr writelcd

 ldaa #$6F ; write a character
 ldab #$10
 jsr writelcd

 ldaa #$64 ; write a character
 ldab #$10
 jsr writelcd

 ldaa #$20 ; write a character
 ldab #$10
 jsr writelcd

 ldaa #$4d ; write a character
 ldab #$10
 jsr writelcd

 ldaa #$6f ; write a character
 ldab #$10
 jsr writelcd

 ldaa #$72 ; write a character
 ldab #$10
 jsr writelcd

 ldaa #$6e ; write a character
 ldab #$10
 jsr writelcd

 ldaa #$69 ; write a character
 ldab #$10
 jsr writelcd

 ldaa #$6e ; write a character

 ldab #$10
 jsr writelcd

 ldaa #$67 ; write a character
 ldab #$10
 jsr writelcd

 ldaa #$c0 ; write address
 ldab #$00
 jsr writelcd

 ldaa #$44 ; write a character
 ldab #$10
 jsr writelcd

 ldaa #$61 ; write a character
 ldab #$10

 jsr writelcd

 ldaa #$76 ; write a character
 ldab #$10
 jsr writelcd

 ldaa #$65 ; write a character
 ldab #$10
 jsr writelcd

 swi

* Initlcd
*
* This subroutine initializes the LCD screen. The LCD
* screen format is passed in by the A register and is
* stored on the stack.
**

initlcd psha ; save the lcdtype
 ldaa #$00 ; clear ports A and C
 staa portc
 staa porta
 staa ddrc

 ldx #$9c40 ; wait for ~15ms
loop dex
 cpx #$0000
 bne loop

 ldaa #$ff ; set port C for output
 staa ddrc
 ldaa #$3f ; write the function set command
 staa portc

 jsr delay ; delay function

 ldaa #$20 ; pulse the enable bit
 staa porta

jsr delay

 ldaa #$00 ; turn off enable
 staa porta
 staa portc

 ldx #$2328 ; wait ~4.1 ms
loop2 dex
 cpx #$00
 bne loop2

 ldaa #$3f ; write the function set command
 staa portc
 jsr delay

 ldaa #$20 ; pulse the enable bit
 staa porta
 jsr delay

 ldaa #$00 ; turn off enable
 staa porta
 staa portc

 ldx #$1f4 ; wait ~100 us
loop3 dex
 cpx #$00
 bne loop3

 ldaa #$3f ; write the function set command
 staa portc
 jsr delay

 ldaa #$20 ; pulse the enable bit
 staa porta
 jsr delay

 ldaa #$00 ; turn off enable
 staa porta
 pula ; get the lcd type from the stack
 ldab #$00
 jsr writelcd ; write the # of lines and font

 ldaa #$0C ; clear screen
 ldab #$00
 jsr writelcd ; write it to the screen

 ldaa #$01 ; set cursor to address 0.

 ldab #$00
 jsr writelcd

rts

**
* Writelcd
*
* This function checks the busy flag and then writes
* either data or instructions to the LCD screen.
* The data to be written is stored in register A
* and the control pin settings are stored in register
* B. These are stored on the stack until they are
* needed.

writelcd pshb ; store the rs and rw values

 psha ; store the data

 ldaa #$00
 staa ddrc ; set port C for input

loop4 ldaa #$08 ; checking the busy flag
 staa porta

 jsr delay

 ldaa #$28 ; pulse the enable
 staa porta
 jsr delay

 ldaa portc ; read port C
 anda #$80 ; check the busy flag

 cmpa #$80 ; if flag set loop else
 beq loop4

 ldaa #$00 ; clear the enable
 staa porta
 ldaa #$ff ; set port C for output
 staa ddrc
 pula ; write data to port C
 staa portc

 pulb ; write control pins to port A
 stab porta
 stab temp

 jsr delay

 ldaa temp
 oraa #$20 ; set the enable and write it to port A

 staa porta
 jsr delay

 ldaa #$00 ; clear control pins
 staa porta

 rts

* delay
*
* This function creates a delay to allow pins time to set up *
and stabilize.
**

delay ldab #$1E ; wait 18 counts
waitloop decb
 cmpb #$00
 bne waitloop

 rts

	Interfacing a Hitachi HD44780 to a Motorola 68HC11 or Motorola 68HC12
	
	Page
	Memory	4
	Appendix A: Wire Connections	14
	Appendix B: LCD11.h and LCDtest11.c	15
	Appendix C: LCD12.h and LCDtest12.c	21
	Appendix D: LCD.asm	27

	Clear Display
	Return Home
	Entry Mode Set
	Display Control On/Off
	Function Set
	Set DDRAM Address
	Read Busy Flag
	Write Data to DDRAM
	Writelcd:
	Initlcd:
	LCD11.h

