S

The Variational Approach to
Optimal Control Problems

In this chapter we shall apply variational methods to optimal control prob-
lems. We shall first derive necessary conditions for optimal control
assuming that the admissible controls are not bounded. These necessary
conditions are then employed to find the optimal control law for the impor-
tant linear regulator problem. Next, Pontryagin's minimum principle is
introduced heuristically as a generalization of the fundamental theorem of
the calculus of variations, and problems with bounded control and state
variables are discussed. The three concluding sections of the chapter are
devoted to time-optimal problems, minimum control-effort systems, and
problems involving singular intervals.

5.1 MNECESSARY CONDITICNS FOR
OPTIMAL CONTROL

Let us now employ the techniques introduced in Chapter 4 to determine
necessary conditions for optimal control. As stated in Chapter 1, the problem
is to find an admissible control u* that causes the system

x(t) = a(x(z), u(r), 1) (5.1-1)

to follow an admissible trajectory x* that minimizes the performance
measure
184
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I = hxte), 1) + [ g0, w(e), ) det (5.12)

We shall initially assume that the admissible state and control regions are

“not bounded, and that the initial conditions x(#,) = X, and the initial time

t, are specified. As usual, x is the n x 1 state vector and uis the m X 1 vector
of control inputs.

In the terminology of Chapter 4, we have a problem involving » <~ m
functions which must satisfy the n differential equation constraints (5.1-1).
The m control inputs are the independent functions.

The only difference between Eq. (5.1-2) and the functionals considered
in Chapter 4 is the term involving the final states and final time. However,
assuming that 4 is a differentiable function, we can write

hxtey), £ = [ L[, O)de + B 1), (5.13)
so that the performance measure can be expressed as

7y = [ {0, e, 0 + 35 [HxCe), O} e + hxeo), 1), (5.1-4)

Since x(#,) and ¢, are fixed, the minimization does not affect the A(x(z,), £,)
term, so we need consider only the functional

Jw = | {g(x(t), w(®), ) + & [, :)]} dr. (5.1-5)
Using the chain rule of differentiation, we find that this becomes
1w = [ s, w0, 0 + [ &, 0] %0 + Fxy o} ar. 5,16

To include the differential equation constraints, we form the augmented
functional

[ ) = [ {otx, 5, 0 + o, 0] 20 + G o
+ PO, 00, 1 — X1} de 5.1-7)

by introducing the Lagrange multipliers p,(2), . . ., p(#). Let us define

1 In general, the functional J depends on x(¢g), %9, X, u, the target set S, and ¢y, However,
here it is assumed that x(fo) and ¢, ate specified; hence, x is determined by u and we write
J(u)—the dependence of J on § and f; will not be explicitly indicated.
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£5(), X0, u(r), DO, D £ g(x(2), u(®), ) + PO, w0, ) — 2]
+ [ B, 0] 30 + P,

so that
700 = |7 {eu(0), 2(r u), 0, 0} . (5.1-8)

We shall assume that the end points at ¢ = ¢, can be specified or free. To
determine the variation of J,, we introduce the variations dx, dx%, du, dp, and
dt,. From Problem 4q in the preceding chapter this gives [see Eq. (4.3-16}],
on an extremal,

81 a%) = 0 = | Boxr(e,), 14, we ), w0, 1) | 6%,
+ [0, X4ep, W, PG 1)
— (B, 10, w10, 1] 1500 31,
+ [ {[[&e@, 220, v, v, 0] (5.1-9)
— & [%eoc@, e, w @, 0. 0] |ox0
+ [ B, 220, w140, 9| 6
+ [Beoew, 220, w0, 0. 0] 30} @

Notice that the above result is obtained because 4(¢) and p(¢} do not appear

ing,.
Next, let us consuier only those terms inside the integral which involve

the function #; these terms contain
d T o
25 S, 0] 0]}

(5.1-10)

= [{ax("*@ t)] %) + P, 0] ~

Writing out the indicated partial derivatives gives
3k . i
[Shera, o]0 + [gasee 0] — G096

or, if we apply the chain rule to the last term,
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[5 Gz(x*(f)’ t)] e

If it is assumed that the second partial derivatives are continuous, the order
of differentiation can be interchanged, and these terms add to zero. In the
integral term we have, then,

[ {[Ge e, war o] + w70 |2, w9
_4 [_p*r(z)}] 8x(7) + [B—g(x*@, w(e), z)}
+ 9770 [ B0, w0, 0] 60+ [ae @, w00, 0220 000} @

(5.1-13)

This integral must vanish on an extremal regardless of the boundary con-
ditions. We first observe that the constraints

241 = a(x*(t), w¥(®, 1)

must be satisfied by an extremal so that the coefficient of dp(s) is zero. The
Lagrange multipliers are arbitrary, so let us select them to make the coefii-
cient of §x{¢) equal to zero, that is,

(5.1-14a)

%’(x*(;), ui(), ). (5.1-14b)

@ = | e, wo. 0] ro -

We shall henceforth call (5.1-14b) the costate equations and p(¢) the costate.
The remaining variation du(?) is independent, so its coefficient must be

~zero; thus,

0= 6g(X*(t), u*(z), 1) + [ (), W (2)s :)} P, (Gll4g
Equations (5.1-14) are important equations; we shall be using them through-
out the remainder of this chapter. We shall find that even when the admis-

sible controls are bounded, only Eq. (5.1-14¢) is modified.
There are still the terms outside the integral to deal with; since the varia-

tion must be zero, we have
T
[Pxrey), 1 — 04| 6%, + [, w(e, ) + Gh6cke 1)

+ 26, 9, 1] 3t = 0. (5.1-15)
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In writing (5.1-15), we have used the fact that (e p) = a(x*(1,), u*(t,), tp)-
Equation (5.1-15) admits a variety of situations, which we shall discuss
shortly.

Equations (5.1-14) are the necessary conditions we set out fo determine.
Notice that these necessary conditions consist of a set of 2n, first-order
differential equations——the state and costate equations (5.1-14a) and (5.1-
14b)—and a set of m algebraic relations—(5.1-14¢)—which must be satisfied
throughout the interval [t,, £,]. The solution of the state and costate equations
will contain 2n constants of integration. To evaluate these consfants we use
the n equations x*(z,) == X, and an additional set of # or (n + 1) relationships
-—depending on whether or not ¢, is specified—from Eq. (5.1-15). Notice
that, as expected, we are again confronted by a two-point boundary-value
problem.

In the following we shall find ‘it convenient to use the function 57, called
the Hamiltonian, defined as

(D), w(e), p(D), D) 2 g(x(), (D), 1) + pT(Ofalx(0), u@@), H]. (5.1-16)

Using this notation, we can write the necessary conditions (5.1-14) through
(5.1-15) as follows:

and

(286032, 02| 8%+ [ £, w2 97 1)

+ %? x*(t,), t,)] dt, =0,

(5.1-18)

Let us now consider the boundary conditions that may occur.

50 = S (0, w0, D0, 0 (5.1-17a)
PRty = — %—Jf(x*(r), w(6), PH(E) £) i"; “’[Etlm o] (5.1-17b)
0= Qf(x*(f), u*(t), é*(z), 3] (5.1-17¢)
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Boundary Conditions

In a particular problem either g or /# may be missing; in this case, we
simply strike out the terms involving the missing function. To determine the
boundary conditions is a matter of making the appropriate substitutions
in Eq. (5.1-18). In all cases it will be assumed that we have the 7 equations
x*{t,) = X,.

Problems with Fixed Final Time. If the final time 1, is specified, x(¢,) may be
specified, free, or required to lie on some surface in the state space.

CASE 1. Final state specified. Since x(t;) and ¢, are specified, we substitute
dx;, = 0 and ¢, = 0 in (5.1-18). The required n equations are

x*(t;) = X;. (5.1-19)
CASE 1I. Final state free. We substitute df, = 0 in Eq. (5.1-18); since
x, is arbitrary, the n equations

hexr(e,) — 97) = O (5.1-20)

must be satisfied.

CASE IIL Final state lving on the surfuce defined by m(x(#)) = 0. Since
this is a new situation, let us consider an introductory example. Suppose
that the fina} state of a second-order system is required to lie on the circle

m(x(6)) = [x,(6) — 3]* + [xat) — 4]F — 4 =0 (5.1-21)

shown in Fig. 5-1. Notice that admissible changes in x(z,) are (to first-order)
tangent to the circle at the point {(x*(¢,), #,). The tangent line is normal to
the gradient vector

dm » 2x(1,) — 3]
S X)) = [2[x§(rf) _ 4]} (5.1-22)
at the point (x*(z,), t,). Thus, §x(¢;) must be normal to the gradient (5.1-22),
so that
[mence || oxtey) = 20xte) — 31 63,07) + 2xt(ey) — 4] dtey) = 0.
(5.1-23)

1 Since the final time is fixed, 4 will not depend on 7y
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Figure 5-1 An exiremal and a comparison curve that terminate on
the curve fx1 (1) — 312 + [x2{f) — 41* — 4 = 0 at the spegified final
time, 25

Solving for dx,(f,} gives

—[x¥(z,) —_3} 52,(25),

= (5.1-24
axz(ff) [xak(ff) — 4] { )
which, when substituted in Eq. (5.1-18), gives
1
S5 — 27| | e ~0 5.1-25)
) — P | | —[x%0,) — 3] = (5.

(310 — 4]

since d¢, = 0 and Jx,(¢,) is arbitrary. The second required equation at the
final time is

mx*(e)) = [x1()) — 3 + [x5() — 4P —4=0.  (5.1-26)

In the general situation there are » state variables and 1 <k <<m -1
relationships that the states must satisfy at ¢ == 7. In this case we write
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m, (x(2))

li
&

m(x(n)) = (5.1-27)

m(x(t))

and each component of m represents a hypersurface in the n-dimensional
state space. Thus, the final state les on the intersection of these & hypersur-
faces, and dx(r,) is tangent to each of the hypersurfaces at the point
{(x*(t;), t;). This means that dx(¢,) is normal to each of the gradient vectors

I (e - - SCer(2,), (5.1-28)

which are assumed to be linearly independent. From Eq. (5.1-18) we have,
since 8¢, == 0,

[g;ﬁ(x*(tf)) — p*(tf)]r SX(t;) A ¥ 8x(t;) == 0. (5.1-29)

It can be shown that this equation is satisfied if and only if the vectorvis a
linear combination of the gradient vectors in Eq. (5.1-28), that is,

SR — 1) = 4, [GEeee) + -+ a[Seee]-
, (5.1-30)

To determine the 2n constants of integration in the solution of the state-
costate equations, and d,...,d,, we have the » equations x*(¢,) = x,,
the » equations (5.1-30), and the & equations

m(x*(t,)) = 0. (5.1-31)

Let us show that Egs. (5.1-30) and (5.1-31) lead to the results obtained
in our introductory example. The constraining relation is

m(x()) == [, () — 3] + [, () — 4] — 4 = 0. (5.1-21)

From Eq. (5.1-30) we obtain the two equations

0k, . wp y o 2D68) =31 )
X)) PR = d[?.[xf(r;) B 4]} (5.1-32)
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and (5.1-31) gives

m(x*(t,)) = [xH() — 3]+ [a) — 4P —4=0.  (5.1-33)

By solving the second of Egs. (5.1-32) for d and substituting this into the
first equation of (5.1-32), Eq. (5.1-25) is obtained.

Problems with Free Final Time. If the final time is free, there are several
situations that may occur.

CASE 1. Final state fixed. The appropriate substitution in Eq. (5.1-18) is
dx, = 0. §t; is arbitrary, so the (2n + 1)st relationship is

HOHE ), W), Pt 1) + ‘f,—f(x*(tf), 1) = 0. (5.1-34)

CASE 11 Final state free. %, and dt, are arbitrary and independent;
therefore, their coefficients must be zero; that is,

() = g;’z(x*(:f), ()  (nequations) (5.1-35)
(1 equation).

(5.1-36)

A, W), V), 1) + ) 1) = 0

Notice that if 2 == 0

p*it) =0 (5.1-37)

A1), W), ¥ 1) = 0. (5.1-38)

CASE III. x(z,) lies on the moving point 6(z). Here §x, and dt, are related by
I, = (dgg(rf)} Jtg;
making this substitution in Eq. (5.1-18) yields the equation
H(X*(t), u (tf}ﬂ P )+ B?(X (ff): te) + B}(X (ff)s tp) P (ts)
de _
bd [Zﬁ(r,)} == (0,

This gives one equation; the remaining # required relationships are

(5.1-39)

x*(t;) = 0(t;).
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CASE V. Final state lying on the surface defined by m(x(#)) == 0. As an
example of this type of end point constraint, suppose that the final state is
required to lie on the curve

mx(£) = [%,(5) — 3] + [x,() — 4P — 4 = 0. (5.1-40)

Since the final time is free, the admissible end points lie on the cylindrical
surface shown in Fig. 5-2. Notice that

1. To'ﬁrst-order, the change in x(7;) must be in the planc tangent to the
cylindrical surface at the point (x*(¢5), (,).
2. The change in x({¢,) is independent of Jt,.

xz(f)

xy (8

Figure 5-2 An extremal and a comparison curve that terminate on
the surface [x1{f) ~ 312 + [x2() — 4]2 — 4 =0

Since dx, is independent of J¢,, the coefficient of §¢, must be zero, and

SHEXH (), W), p¥(p)s 1) + %?(x*(z,}, 1) =0. (5.1-41)

The plane that is tangent to the cylinder at the point (x*(z,), #,) is described

by its normal vector or gradient; that is, every vector in the plane is normal
to the vector

, olte)
%%I(X*(tf))=[ 2ty 3]]. (5.1-42)

2x3(t;) — 4]
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This means that

(2260000 53, = 2x1) — 3155, + 2xk(e) — 4] 33, = 0. (5149
Solving for dx,, gives

=[x = 3]
8x,, = ) —4] (t;’) —4] 3xy, (5.1-44)

Substituting this for dx,, in Eq. (5.1-18) gives

1
[gwg(x*(tf), 1) - p*(tf)] —[x¥(t;) — 3] | 0%, = 0. (5.1-49)
[x3(,) — 4]

Since dx,, is arbitrary, its coefficient must be zero. Equations (5.1-41) and
(5.1-45) give two relationships; the third is the copstraint

mx*(r,)) = [x¥(t;) — 32 + [x3@) — 4P —4=0.  (5.1-46)

In the general situation we have n state variables, and there may be
1 <k < n — 1 relationships that the states are required to satisfy at the
terminal time. In this case we write

my(x(2))
m(x{t)) = =0, (5.1-47)
m(X(2))

and each component of m describes a hypersurface in the n-dimensional
state space. This means that the final state lies on the intersection of the
hypersurfaces defined by m, and that J%, is (to first order) tangent to each
of the hypersurfaces at the point (x*(¢;), t;). Thus, dx, is normal to each
of the gradient vectors

I ekt ), - - » S ), (5.1-48)

which we assume to be linearly independent. It is left as an exercise for the
reader to show that the reasoning used in Case 1II with fixed final time also
applies in the present situation and leads to the (2n + X - 1) equations
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x*(to) = X,

Thien(e ), 1) — 180 = & [T )] + -+ o+ [ Feete)]
m(x*(t ) =0

D, W), B, 1) + ), 1) = O (5.1-49)

involving the 2n constants of integration, the variables dy, ..., ;, and #,.
It is also easily shown that Egs. (5.1-49) give Egs. (5.1-41), (5.1-45), and
(5.1-46) in the preceding example.

CASE V. Final state Iying on the moving surface defined by m(x(t), £) == 0.
Suppose that the final state must lie on the surface

m(x@, ) = [x,(6) — 3] +[x2(@) — 4 — P~ 4=0 (5.1-50)

shown in Fig. 5-3. Notice that d¢, does influence the admissible values of
O%,; that is, to remain on the surface m(x{z), £} = O the value of §x, depends
on 8¢,. The vector with components dx,,, x,,, 61, must be contained ina
plane tangent to the surface at the point (x*(¢,), f,). This means that the
normal to this tangent plane is the vector
x5(8)
A

X1 )

Figare 5-3 An extremal and a comparison curve that terminate on
the surface [x1(6) — 3P + [x2() —4 —¢]2 — 4 =0
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I, s
OM x*(¢,), t,)
dx e, £ dm

! "ax‘ (X*(tf)s rf)

I (xr(e ), 1) | | ————— (5.1-51)

dx,

am
1 x4t 1)
O xeep, 1) -

in the three-dimensional space. Thus, admissible variations must be normal
to the vector (5.1-51}, so

[9m oty 1] 9, + [0 1] 63, + (G0, 1] 01, =0
1

{5.1-52)
For the surface specified we have

2xx@p) — 3] 0x,, + 2xF() — 4~ rf} 0xy, — 2[x3(t,) — 4 — t;] 8¢, = 0.
(5.1-53)

Solving for ¢, gives

_ [xte) —3] )
Sty = e dx,, + 6xs,. (5.1-54)

Substituting in Eq. (5.1-18) and collecting terms, we obtain
(22 6ev(e. 1) = p¥teg) + |G, W), W) 1)
1) —
+ ‘é”"{(X*(!;’)s If)} [X*(f ) o 4 - rf:‘] axlr
[ (et 1) — pEag) + AN, WD, 9, 1)
+ %?(x*(z,), :,,)] Sx,, = 0. (5.1-55)

Since there is one constraint involving the three variables (0x,,, dx,,, df;),
dx,, and &x,, can be varied independently; therefore, the coefficients of
dx,, and 8x,, must be zero. This gives two equations; the third equation is

nix*(t,), £,) = 0. (5.1-56)

In general, we may have 1 << k < n relationships
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m, (x(2), 1)
mx(t), 1) = | - =0, (5.1-57)
m{x(2), £)

which must be satisfied by the (z 4 1) variables x(z,) and ¢,. Reasoning as
in the situation where m is not dependent on time, we deduce that the admis-
sible values of the (m 4 1) vector

!: Jx,
o,
are normal to each of the gradient vectors
d d
L), 1) T2y, 1)

S P i — ; (5.1-58)
Mt )| | e, 1)

which are assumed to be linearly independent. Writing Eq. (5.1-18) as

O xtt,), 1) — p* ’

a'x'" sh i} — P (ff) 5Xf éxf

————————————————— ——— == 0 é VT JO—

(L), w*(t), B 1) -+ (“;""? x¥(t5) t5) dt; ot,
(5.1-39)

and again using the result that v must be a linear combination of the gradient
vectors in (5.1-58), we obtain

I (e 1) I xv2), 1)

9% (1, 1) (42, 1)

o1
Dhxrteg) 1) — 94 = o | G 6eg), 1)

4+ 4 dy [%"f(x*(tf), tf)]
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and
HH ) W) B, 1) + G, 1) = dy [ e, 1)
g dk[%”.rﬁc(x*(zf), zf)] . (5161)

Equations {5.1-61), the &k equations
m(x*(t), 1) = 0, (5.1-62)

and the n equations x*(#,) = x, comprise a set of (2n + k -} 1) equations
in the 2n constants of integration, the variables d,,d,, ..., di, and ;. It is
left as an exercise for the reader to verify that (5.1-62) and (5.1-6F) yield
Egs. (5.1-55) and (5.1-56).

The boundary conditions which we have discussed are summarized in
Table 5-1. Of course, mixed situations can arise, but these can be handled
by returning to Eq. (5.1-18) and applying the ideas introduced in the preced-
ing discussion.

Although the boundary condition relationships may look foreboding,
setting up the equations is not difficult; obtaining solutions is another matter.
This should not surprise us, however, for we already suspect that numerical
techniques are required to solve most problems of practical interest. Let us
now illustrate the determination of the boundary-condition equations by
considering several examples.

Example 5.1-1. The system

X1{1) = x,()

5.1-63
F2(t) = —x3(8) + ult) ( )

is to be controlled so that its control effort is conserved; that is, the
performance measure

T(@) = j L2 d (5.1-64)

is to be minimized. The admissible states and controls are not bounded.
Find necessary conditions that must be satisfied for optimal control.
The first step is to form the Hamiltonian

HEx(L), u(t), i) = 22} -+ pi()xat) — pAx{8) + po(Oult). (5.1-65)

From Eqgs. (5.1-17b) and (5.1-17¢) necessary conditions for optimality are
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2
st = ~5E =0

P (5.1-66)
5O = — a_ii = —p¥0) + PO,
and
0=22 i) + 230 (5.1-67)

If Eq. (5.1-67) is solved for u*(r) and substituted into the state equations
(5.1-63), we have

D) = x§()

(5.1-68)
25(@) = — x3(@) — p1@)-

Equations (5.1-68) and (5.1-66)—the state and costate equations—are a
set of 2 linear first-order, homogeneous, constant-coefficient differential
equations. Solving these equations gives

xFE = oy + el — e el —F€77 4+ 1 €]
4ol — fer — €]
YO = €+ esl—1H e 4€] + el — 3] (5.1-69)
P = ¢;
PE) = el — €]+ cq€t.

Now let us consider several possible sets of boundary conditions.

a. Suppose x(0) =0 and x(2) =[5 2J'. From x(0) = ¢ we obiain
¢ = ¢ = {; the remaining two equations to be solved are

5= cal—2 — 3672 + $€21 + el ~ 3% — 4€7]

(5.1-70)
2w egf—1 + 3672 4+ 1€7] 4 g i€~ — $€°L
Solving these linear algebraic equations gives ¢; = —7.289 and
¢, = —6.103, so the optimal trajectory is
*(1) = 7.289f — 6.103 -+ 6.6966~+ — 0.593¢
S * (5.1-71)

x¥(r) = 7.289 — 6.6966~ — 0.593¢",

b. Let x(0) == 0 and x(2) be unspecified ; consider the performance measure

T = 3x: @) — 52+ $xa(@® — 27 + 3 j: Ao d. (.17
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The modified performance measure affects only the boundary condi-
tions at ¢ = 2. From entry 2 of Table 5-1 we have

PER) = x}(2) -5
P32 = x$(2) ~ 2. (5.1-73)

¢; and ¢, are again zero because x*(0) = 6. Putting ¢+ =2 in Eq.
(5.1-69) and substituting in (5.1-73), we obtain the linear algebraic

equations

0.627  ~2.7627 ['es 5

[9.151 »—11.016} {cJ N (2} (5.1-74)
Solving these equations, we find that ¢ = 2,697, ¢, = —2.422;
hence,

XH(E) = 2,697t — 2.422 + 2.5606~* — 0.137¢

x¥() = 2.697 ~ 2.560¢~" — 0.137¢". (3.1-15)

¢. Next, suppose that the system is to be transferred from x(0) = @ to
the line

i) + Sag) = 15 (5.1-76)

while the original performance measure (5.1-64) is minimized. As
before, the solution of the staic and costate equations is given by
Eq. (5.1-69), and ¢; = ¢, = 0. The boundary conditions at £ =2
are, from entry 3 of Table 3-1,

XHD) + Sx5Q) = 15

~pH2) =d (5.1-77)
—p§(2) = 5d.

Eliminating 4 and substituting ¢ = 2 in (5.1-69), we obtain the equations

[15.437 ~20.8977 fe;7 (15
11.389 -7,339} [cj"”[o]’ G.1-78)

which have the solution ¢; = —0.8%94, ¢, == —1.379. The optimal
trajectory is then

xF(0) = 0.894¢ — 1.379 4 L1366~ + 0.242¢

X5(r) = 0.894 — 1.136€~ -+ 0.242¢". (.1-79)
Example 5.1-2. The space vehicle shown in Fig. 5-4 is in the gravity field
of the moon. Assume that the motion is planar, that aerodynamic forces
are negligible, and that the thrust magnitude T is constant. The control
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‘Space vehicle

Reference axis

Figure 5-4 A space vehicle in the gravity field of the moon

variable is the thrust direction S(7), which is measured from the local
horizontal. To simplify the state equations, we shall approximate the
vehicle as a particle of mass M. The gravitational force exerted om
the vehicle is F,(f) = Mg, R3/r¥(f); g, is the gravitational constant at the
surface of the moon, R is the radius of the moon, and r is the distance
of the spacecraft from the center of the moon. The instantancous velocity
of the vehicle is the vector v, and & is the angular displacement from the
reference axis. Selecting x, &7, X, &8, X3 & 7, and x, 2 rd as the
states of the system, letting u & f§, and neglecting the change in mass
resulting from fuel consumption, we find that the state equations are

#1(8) = x5(1)

. x4

xZ(t) = x:(r)

e XM goR? T .

#o =20 -G+ [H] sin u(f) (5.1-80)

X5{f) = — 353(;—1)%@ -+ [%] cos u{t).

Motice that these differential equations are nonlinear in both the states
and the control variable. Let us consifler several possible missions for

the space vehicle.

Mission a. Suppose that the spacecraft is to be launched from the point g
on the reference axis at # = 0 into a circular orbit of altitude D, as shown in
Fig. 5-5(a), in minimum time. a(?,) is unspecified, and the vehicle starts from
rest; thus, the initial conditions are x(0) =[R 0 0 OF.

From the performance measure

) = | a dt (5.1:81)
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Figure 5-5 (a) Orbit injection. (b) Rendezvous. {c} Reconnaissance
of synchronous satellite, (d) Reconnaissance of approaching

spacecraft
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and the state equations, the Hamiltonian is

(0, u(r), p()) = 1 - POx, (1) 4 ng)é-t)(t)

pio[5 58« [ nsc]

+P4(t)[w—-—x;(%§‘*{t) + [ ] cos u(r)]

The costate equations are, from (5.1-17b},

(5.1-82)

0L _ PO | pyp [0 28R pHOSIOR)

PO = =55 = 5 OO F5e0)
po=—-% =0

a.;; (5.1-83)
0= =5 = = —pi() wimp“gl’(‘;}(‘)
om0 PR 20303 | pEOX@).
PO =—go =30 " " a0
The state equations

X*(2) = a(x*(t), w(0) (5.1-84)

must be satisfied by an optimal trajectory, and Eq. (5.1-17¢) gives the alge-
braic relationship

0= % - [%:' [p3(2) cos w*(r) — pi() sinw*(@)].  (5.1-85)

Solving Eq. (5.1-85) for u*(z) gives

WwH(E) = tan” lf’;gg (5.1-86)
or, equivalently,
C ey J0) .
sin u¥(r) == N OENE0) (5.1-87a)
frn i) ) .
cos u*(f) = NCLOEY E0) (5.1-87b)

+ Motice that 2 is not explicitly dependent on time; hence, the argument ¢ is omitted.
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By substituting (5.1-87a) and (5.1-87b) in the state equations, ©*(¢) can
be eliminated ; unfortunately, as is often the case, the resulting 2» first-order
differential equations are nonlinear.

Next, let us determine the boundary conditions at the final time. There
will be five relationships to be satisfied at ¢ = r,; hence, the initial and final
boundary conditions will give nine equations involving the eight constants
of integration and ¢,. From the problem statement we know that x§¥ (z,) must
equal R -+ D. In addition, to have a circular orbit, the cenfrifugal force must
be exactly balanced by the gravitational force; therefore, M[r*(Na*(H]/r*(2)
= Mg,R2[r**(¢) for t = t,. Evaluating this expression at ¢ = 7, and using the
specified value of x¥(f;), we obtain x¥(#;) = /g, R*/[R -+ D]. The radial
velocity must be zero at ¢ = £,, so x¥(,) = 0. The final time is not related
to the unspecified final state value x§(¢,), so in Eq. (5.1-18) the coefficients
of 8¢, and 8x,, must both be zero. To summarize, the required boundary
condition relationships are

xf(@) =R+ D
P%(tf) =
=0 (5.1-88)

HEH), P =0

In writing the last equation it has been assumed that «*(¢z) has been eliminated
from the Hamiltonian by using Egs. (5.1-87).

Mission b, In this mission, shown in Fig. 5-5(b), the space vehicle is to be
launched from point ¢ and is to rendezvous with another spacecraft that is
in a fixed circular orbit D miles above the moon with a period of two hours.
At t =0 both spacecraft are on the reference axis. The rendezvous is to be
accomplished in minimum time,

Only the boundary conditions are changed from Mission a. The ﬁnai
state values of the controlled vehicle must lie on the moving point

R4+ D

modulo (m)
6(r) = 2"0

7R -+ D]

Modulo (7£) means that after each revolution 2z radians are subfracted

p1
from the angular displacement of the spacecraft. Only the final value of
x, depends on ¢, so we have
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%z, = [%(If)] o1,

=rdt, (5.1-89)
Thus, from Eq. (5.1-18), or entry 6 of Table 5-1,
—7pi(t,) + HE), PHE)) = O, (5.1-90)
since & = 0. The remaining four boundary relationships are
R4+ D
modulo (7z,)
xXt,) = 2a = 0(t,). (5.1-51)

2[R + Dj

Mission ¢. A satellite is in synchronous orbit E miles above the point z
shown in Fig. 5-5(c). It is desired to investigate this satellite with a spacecraft
as quickly as possible. The spacecraft transmits television pictures to the

_ lunar base upon arriving at a distance of € miles from the satellite.

Again, the state and costate equations and Eq. (5.1-85) remain unchanged.
For this mission, however, the final states must lic on the curve given by

m(x(0)y = [r(t) cos &(t) — [R + E]cos y]*

+ @ sina(r) — [R + Elsiny]PP —C*=0. (5.1-92)

Since the curve m(x(f)) does not depend explicitly on ¢, we have from
entry 7 of Table 5-1 (putting / = 0),

~p*(e) = d[ Gece |-

Performing the gradient operation, and simplifying, we obtain

2r%(2 ) — 2[R + EJ cos (a¥(t,) — 7)
2r* IR + Elsin@*(t;) — M)
0
0
x¥(t) — (R -+ E] cos (x¥(¢;) — 7
xT R -+ Elsin (x3(2) — 7)
0
0

—p*(t) =d

(5.1-93)

. where d is an unknown variable,
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Thus, p¥(,) = 0 and p¥(t,) = 0. The other boundary condition equa-
tions are

m(x*(z ) = [x$(z;) cos x5(2;) — [R + E] cos 7]

+ [x¥(t,) sin x3(s,) — [R + Elsiny}r — C* =0, (5.1-94)

and

H(XH(1,), pH(Es)) = 0. {5.1-93)

Equations (5.1-93) through (5.1-95) and x*(0) =[R 0 0 OF give a total
of ten equations involving the eight constants of integration, the variable d,
and £;.

Mission d, A lunar-based radar operator detects an approaching space-
craft at £ = 0 in the position shown in Fig. 5-5(d), and at this time 2 recon-
naissance spacecraft is dispatched from point ¢. The reconnaissance vehicle
is to close to a distance of C miles of the approaching spacecraft as quickly
as possible, and relay television pictures to the lunar base. From the radar
data the position history of the approaching spacecraft is

m(x(1), £) = [r(¢) cos a(¥) — 2.78Rt + 6.95Re* — R}
+ [r(t) sin () — 1.85R¢ + 0.32R}2 — C* = 0. (5.1-96)

It is to be assumed that this position history will not change.
From Table 5-1, entry 8, we have

—p¥(z) = d[%_';’(x*(:f), zf)]- (5.1-97)

Performing the gradient operation and simplifying, we obtain

—p¥(t,) = 2d[x¥(t,) + R{[—2.78¢, + 6.95¢7 — 1] cos x5
4 [—1.85¢, - 0.32] sin x3(¢,)}]

—pi(t,) = —2d[Rx¥(t ){[-2.78¢, + 6.95t7 — 1]sin xi(¢,)
+ [1.85¢, — 0.32] cos x5(1 )}]

-pi) =0

—pie) = 0.

In addition, the specified constraint
[x%(z,) cos x3(¢,) — 2.78Rz, + 6.95Rt} — RP?

4 [x¥(,) sin x5(e,) — 1.85Re, -+ 032R] — C2 =0,  (5.1-99) :

must be satisfied and, from Table 5-1,

(5.1-98)
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HON,), PHE)) = 2 dR{[—2.78 + 13.9¢,1[xK(z,) cos x3(+;)
— 2.78Rt, + 6.95Re% — R] —1.85[x¥(z,) sin x3(z)
— 1.85Rt, + 0.32R]}. (5.1-100)

With the specified initial conditions, we have ten equations in ten unknowns.

5.2 LINEAR REGULATOR PROBLEMS

In this section we shall consider an important class of optimal control
problems—linear regulator systems. We shall show that for linear regulator
problems the optimal control law can be found as a linear time-varying func-
tion of the system states. Under certain conditions, which we shall discuss,
the optimal control Iaw becomes time-invariant. The results presented here
are primarily due to R. E. Kalman.t

The plant is described by the linear state equations

X(2) = A@)x() + B(r)u(o), (5.2-1)

which may have time-varying coefficients. The performance measure tfo be
minimized is

T = gHG) + + | RO + wORGuO] dis (5.22)

the final time ¢, is fixed, M and Q are real symmetric positive semi-definite
matrices, and R is a real symmetric positive definite matrix. It is assumed
that the states and controls are not bounded, and x(#,) is free. We attach the
following physical interpretation to this performance measure: It is desired
to maintain the state vector close to the origin without an excessive
expenditure of control effort.

The Hamiitonian is

(), w(z), p(2), 1) = FXTOQOX() + FW(OR@e()

+PT(DA@DX() + P OB,  (5.2-3)

and necessary conditions for optimality are
150 = A(OXH(E) + BOwH(2) (5.2-4)
) = — %L = — Q) — AT () (5:2:5)

1 See references [K-3], [K-61, and [K-T].
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I

= RO + BT()p*(1).

(5.2-6)

Equation (5.2-6) can be solved for u*(z} to give
wi(E) = —RHOBOPp™(0); (5.2°7)

the existence of R™! is assured, since R is a positive definite matrix. Substitut-
ing (5.2-7) into (5.2-4) yields

XH(7) = A()x*() — BOR™HOB(p*();

thus, we have the set of 2 linear homogeneous differential equations

(5.2-8)

X*1) Al | —BORY(OB() | xFO)
—— = e ————— —— 1 (5.2-9)
P —Q@) i ~—AT() p*(t)
The solution to these equations has the form
x*(z,) X*{(t)
— e |, £} e — 2 (5.2-}0)
S I A L)

where ¢ is the transition matrix of the system (5.2-9). Partitioning the tran-
sition matrix, we have

@, {ts 1) § @ty 0] X¥(0)

— e s Py

X*(ts)

PT(;;) B @y, (1 1) i P22(ts n E(I—S

(5.2-10a)

where @,,, @2, @21, and @,, are n X n matrices.

From the boundary-condition equations—entry 2 of Table 5-1—we find

that
p*(ts) = Hx*(,). (5.2-11)
Substituting this for p*(¢,) in (5.2-10a) gives
X¥(t,) = @yt X5 + Pyl OPFQ) (5.2:12)
Hx*(t;) = @q, (15 X8 + @2ty OPH0)-

Substituting the upper equation into the lower, we obtain

He, (¢, DX*(t) + He, (1), Dp¥(t) = @y, {2, OXN(1)

+ @4t D), (5.2-13)

Sec. 5.2 Variational Approach to Optimal Controf Problems 211

which, when solved for p*(¢), yields
PO = [@2a(ts ©) — Ho () D] [He, {2y, £) — Paslty Dx*@). (5.2-14)

Kalman [K-7] has shown that the required inverse exists for all 7 € {t,, #7.
Equation (5.2-14) can also be written as

pX() & K(@O)x*(), (5.2-15)
which means that p*(z) is a linear function of the states of the system; K is

an # X n matrix. Actually, K depends on ¢, also, but ¢, is specified.
Substituting in (5.2-7), we obtain

u*(t) = —RT OB

2 FOx(Ost (5.2-16)

which indicates that the optimal control law is a linear, albeit time-varying,
combination of the system states. Notice that even if the plant is fixed, the
feedback gain matrix F is time-varying.} In addition, measurements of all of
the state variables must be available to implement the optimal control law.
Figure 5-6 shows the plant and its optimal controller.

To determine the feedback gain matrix F, we need the transition matrix
for the system given in (5.2-9). If all of the matrices involved (A, B, R, Q)
are time-invariant, the required transition matrix can be found by evaluating
the inverse Laplace trapnsform of the matrix

PLANT
s
CONTROLLER!
u*(e) + 10
F(r) 4 B@)
I +
[
I
I
|
|
e e e it it i i 4 e e e e e i e e e e

Figure 5-6 Plant and optimal feedback controller for linear
regulator problems

" ¥ Here we drop the * notation because the optimal control law applies for all x(r).
% In certain cases it may be possible to implement a nonlinear, but time-invariant, optimal
control law—see [J-1L
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A | —BRBF
qg— —— | ———— ’
___Q E — AT

and substituting (¢, — 7) for ¢. Unfortunately, when the order of the system
is large this becomes a tedious and time-consuming task. If any of the
matrices in (5.2-9) is time-varying, we must generaily resort to a numerical
procedure for evaluating @(z;, £).

There is an alternative approach, however; it can be shown (see Problem - -

5-9) that the matrix K satisfies the matrix differential equation

K() = ~K(DA(£) — AT — Q) + K@OBOR™ (OB OK(@),
(5.2-17)

with the boundary condition K(#,) = H.

This matrix differential equation is of the Riccati type; in fact, we shall
call (5.2-17) the Riccati equation.t Since K is an n X n matrix, Eq. (5.2-17)
is a system of n? first-order differential equations. Actually, it can be shown
(see Problem 5-9), that K is symmetric; hence, not #?, but n(n - DJ2
first-order differential equations must be solved. These equations can be
integrated numerically by using a digital computer. The integration is started
at ¢ == 1, and proceeds backward in time to 7 = #,; K(z) Is stored, and the
feedback gain matrix is determined from Eq. (5.2-16).

Let us illustrate these concepts with the following examples.

Example 5.2-1. Find the optimal control law for the system
) = ax(t) 4+ w() (5.2-18)

to minimize the performance measure

Fi) = LEXAT) + j Z 12(0) dr. (5.2-19)

The admissible state and control values are unconstrained, the final time
T is specified, H > 0, and x(T) is free.
Equation (5.2-9) gives

[J'c* (t)] n [a —2] [x* (t)ji

() 0 —alip*(®)

+ 'The Riccati equation is also derived in Section 3.12, where the Hamilton-Jacobi-Bellman
equation is used.

(5.2-20)

A
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which has the i{ransition mafrix

‘thus, from Egs. (5.2-14) and (5.2-15) we have
K@) = I:E—a{T—-r) — _ggf«»a{rm _ faqr-r)}]"lfgea(rar)}, (5.2:21)

and from Eq. (5.2-16) the optimal control law is

u*() = —2K(t)x(?) (5.2-22)

Figure 5-7(a) shows K(z) as a function of time for a = —0.2 and
T = 15, with & == 5.0, 0.5, and 0.05. The corresponding control histories
and state trajectories for x(0) = 5.0 are shown in Fig. 5-7(b), (¢). Notice
that the siate trajectories are almost identical and that the control signals
are small in all three cases, These qualitative observations can be ex-
plained physically by noting that with a = --0.2 the plant is stable
and tends toward zero--the desired state—even if no control is applied.
Observe in Fig. 5-7(b) that the larger the value of H, the larger the con-
trol signa! required. This occurs because a larger H indicates that it is

Kt}

5.

T
16.
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B If @ = 0.2 the results are as shown in Fig. 5-8. Notice that the control
signals (which are essentially identical with one another) are much larger
than when a = —0.2. This is expected, because the plant with ¢ = 0.2
is unstable.

-0.02

—0.04

Kt}
5.
—0.06 E
3 H=3,
ar
~0.08
t i
—0.10 :
*
u ()

-0.12
(b)

Figure 5-7 (a) Solution of the Riccati equation for a = —0.2, =
5, 0.5, 0.05. (b) The optimal control histories for g = —0.2, H =
5,0.5, 0.05. (c) The optimal trajectories for a = —0.2, H = 5, 0.5,
and 0.05.

desired to be closer to x(15) = 0 than with a smaller H—even if more
control effort is required.

(b}
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5.

&, 2, 4. 6. 8. 10 12. 14. 16.

(©
Figure 5-8 (a) Solution of the Riccati equation for a = 0.2, H =
3, 0.5, 0.05. {b) The optimal control histories for g = 0.2, H =35,
0.5, 0.05. () The optimal trajectories for ¢ = 0.2, H = 5, 0.5, 0.05.

Another point of interest is the period of time in the interval [0, 15]
during which the control signals are largest in magnitude. For the stable
plant (g = —0.2) the largest controls are applied as ¢ — 15. This is the
case because the controller “waits” for the system to approach zero on
its own before applying control effort. On the other hand, if the con-
troller were to wait for the unstable plant to move toward zero, the
instability would cause the value of x to grow larger; hence, the largest
control magnitudes are applied in the initial stages of the interval of
operation.

Example 5.2-2. Consider the second-order system

F10) = x(6)

(5.2-23)
22(0) == 2x,{£) — x,0{8) + ul2),

which is to be controlled to minimize
Ke) = j: [%30) + 3x3Q) + Lu2()] dt. (5.2-24)

Find the optimal conirol law.
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By expanding the Riccati equation with

ot oy 20 i
A—[z _1:]’ Bml:l], QW[O 1:]: and was

we obtain

kgt = Z[kf'z,(f) — 2k — 1]
Eip(t) == 2ky(00ka3() — ki) + kia(t) — 2k25(0)
Koalt) = 2k 3(6) — 2ke15(0) + 2kp0(8) — 1.

(5.2-25)

In arriving at (5.2-25) the symmeiry of K bas been used. The boundary
conditions are & ((T) = k,(T) = k,,{(T) = 0, and the optimal control
law is

ut(e) = —2[k12() K (0)x(0). {5.2-26)

The solution of the Riccati equation and the optimal control and its
trajectory are shown in Fig. 5-9 for x(0) =[—4 4F.

The situation wherein the process is to be controlled for an interval of
infinite duration merits special attention. Kalman [K-7] has shown that if
(1) the plant is completely controllable, (2) H =0, and (3) A,B, R, and Q
are constant matrices, K() — K (a constant matrix) as ¢, — oo. The engineer-
ing implications of this result are very important. If the above hypotheses
are satisfied, then the optimal control law for an infinite-duration process
is stationary. This means that the implementation of the optimal controller is
as shown in Fig. 5-6, except that F(¢) is constant; thus, the controller consists
of m fixed summing amplifiers, each having » inputs. From a practical view-
point, it may be feasible to use the fixed control law even for processes of
finite duration. For instance, in Example 5.2-2 k, ;, k| ,, and k,, are essentially
constants for 0 < r <C 12. Looking at the state trajectory in Fig. 5-9(b), we
see that the states have both essentially reached zero when ¢ = 5. This means
that perhaps the constant values k,, = 6.03, k,, = 2.41, k,, == 1.28 can be
used without significant performance degradation—the designer should
compare system performance using the steady-state gains with performance
using the time-varying optimal gains to decide which should be implemented.

To determine the K matrix for an infinite-time process, we either integrate
the Riccati equation backward in time until a steady-state solution is obtained
[see Fig.5-9(a)] or solve the nonlinear algebraic equations

= —KA — AK — Q +-KBR'BK, (3.2-27)

obtained by setting K(¢) = 0 in Eq. (5.2-17).
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Figure 5-9 (a) The solution of the Riccati equation. (b) The optimal
control and its trajectory
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Linear Tracking Froblems

Next, let us generalize the resulis obtained for the linear regulator problem
to the tracking problem; that is, the desired value of the state vector is not
the origin.

The state equations are

() = A@X() + B@u(), (5.2-28)

and the performance measure to be minimized is

J = #[x(e) — x ) HIx(e) — xe )] + 1 [ {[x0) — xOF QX ~ 1]
+ v (OR(@)} dr

£y
A FIxC) —xllh + %fh (1@ — xDe + WOllRe} dt (5.2-29)
where (¢} is the desired or reference value of the state vector. The final time
t, is fixed, x(z) is free, and the states and controls are not bounded. H and
Q are real symmetric positive semi-definite matrices, and R is real symme-

tric and positive definite.
The Hamiltonian is given by

HX@), W), pe), 1) = £11x() — 1@ b + Flu@ ke

(5.2-30)
+ PDAX() + PHOBOUE).

The costate equations are
¥ 3% s *, T L
PO = — - = —QU)x*(@) — AT Op*() + QUr@),  5-23D)

and the algebraic relations that must be satisfied are given by

0= Qgg = RO -+ BHOp*Q); (5.2-32)
therefore,
wHE) = —R-HOBH)PH). (5.2-33)

Substituting (5.2-33} in the state equations yields the state and costate equa-
tions

**(1) A | —BOROBT) || x*)

0
— =1 (5.2-34)
) —~Q(t) | —A™(1) p*() Q(r(2)



220 The Calculus of Variations and Pontryagin's Minimum Frinciple Sec. 5.2

Notice that the term Q(£r(z) is a forcing function; these differential equatior%s
are linear and time-varying, but not homogeneous. The solution of (5.2-34) is

)] [xo
i = @t )| ——
ey | 2P

o — 1 dT,

(5.2-35)
Q(z)x(z)

+ J.:f P15 7)

where ¢ is the transition matrix of the system (5.2-34). If @ is partitioned,
and the integral replaced by the 2n x 1 vector ,

£,(6)

—_—is

L

these equations can be written

X*(2) = @y .ty DX + @1ty OPFO + (D (5.2-36a)

PH(1,) = @y, (ts, OXMD) + @altys OPH(E) + 100 (5.2-36b)

The boundary conditions are

pr(t,) = Hx*(t;) — Hr(,). (5.2-37)

Replacing p*(¢;) in (5.2—36%) by the right-hand side of (5.2-37) and then
substituting x*(¢,) from Eq. (5.2-36a) into (5.2-36b}, we obtain
H[‘P; i{tps DXF1) + @y, 0p*(ty + f1(f)] — Hr(z;) = @, 1x*(e)
+ @ity Hp*(0) + L(8). (5.2-38)

Solving for p*(r) yields

p*(t) = [@a:ltp &) — Hep (2 t)}—l [Hop, (1, 1) — @2, f)} x*()
+ {@zz(ff: 1y — Hop,,(t,, 3‘)}-—1 [Hfl(t) — Hr(s,) — fz(f)]

2 KaOx®() 4 s(1)- (5.2-3%)

The definitions of K(¢) and s(7) are apparent by inspection of Eq. (5.2-39);
therefore, the optimal control law is
u*(t) = —R™(OB(OK(X() — RTHOBI(1)s(2)

A FOx(e) + ¥(0), (5.2-40)
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where F(r) is the feedback gain matrix and v{¢) is the command signal.t
Notice that v(r) depends on the system parameters and on the reference signal
r(#). In fact, v(¢) depends on future values of the reference signal, so we might
say that the optimal control has an anticipatory quality. This is reinforced
by physical reasoning, which tells us that we must determine our present
strategy on the basis of where we are now and where we intend to go. (Actu-
ally, this same sort of situation was present, though in a more subtle way,
in regulator problems, where we utilized our desire to be at the origin.) A
diagram of the plant and controller is shown in Fig, 5-10. Notice that, as

in the regulator problem, we must be able to measure all of the statesin order
to synthesize the optimal control law.

c 1(f) PLANT

t
o {_—i}_ﬁV(: e
N i i + X(1) x|
T, , B(1) f |
Ry m——=—1 7Fu*( +
o) | F&o LI §
L Y i H {
L | i | Al K [
E b e b e e s e ot o l
R

Figure 5-10 Plant and optimal feedback controlier for linear track-
ing problems

Again we are confronted with the need to determine the transition
matrix, but, as before, there is an easier computational route to travel. We
begin with the equation

) = K{Ox*(t) -+ s(p). (5.2-41)
Differentiating both sides with respect to ¢, we obtain
PHE) = Iﬁ(t)x*{z) -4 KX - 8(2). (5.2-42)

Substituting from (5.2-34) for p*(¢) and x*(7), and using (5.2-41) to eliminate
(), we obtain
[K(®) + Q) + K(DA() + AT(DK() — KOBOR (OB (OKOX*(1)
+ [8(5) + AT()s(e) — K()B(OR)BT(Ds(r) — Qex(n)] = 0.
(5.2-43)

1 Strictly speaking, we have not shown that this extremal control does minimize J. It turns
out, however, that this extremal confrol is indeed the optimal conirol.
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Because this must be satisfied for all x*(¢) and r(¢), we conclude that

K() = —K(DA() — ATOK() — Q) + K@OB(OR™ (OB ()K(7)
(5.2-44)

and
§(f) = —[AT(z) e K(OBOR™H()B7(2)] 5(2) + Q(x(2). (5.2-45)

Since K is symmetric and s is an n X 1 vector, (5.2-44) and (5.2-45) are a set
of [r[n + 1]/2] + n fist-order differential equations. Notice that (5.2-44)
is the same Riccati equation that we obtained for linear regulator problems.
To obtain the boundary conditions we have, from (5.2-37) and (5.2-39),

p¥(t) = Hx*(t,) — Hr(z,)
= K(t,)x*(t,) + s(tp). (5.2-46)

Since these equations must be satisfied for all x*(¢,) and 1(7), the boundary
conditions are

Kiy=H (5.2-47)
and
s(t;) = —Hr(Z,). {5.2-48)

To determine F(z) and v(¢), we then integrate (5.2-44) and (5.2-45) Jfrom
t; to t, using the boundary conditions (5.2-47) and (5.2-48), and store
the values for K(z) and s(¢). F(z) and v(¢) can then be determined by using
(5.2-40). The procedure is illustrated by the following examples.

Example 5.2-3, The system

210 = x30)

(5.2-49)
() = 2x,(0) — x,() + u(t)

is to be controlled to minimize the performance measure
v
Ju) =[x, (T) — 12 + jo {[xz(’) — 1+ 0.0025&:2(3‘)} dr. (5.2-50)

The final time 7 is specified, x(T) is free, and the admissible states and
controls are not bounded. The optimal control law is to be found.

The performance measure indicates that the state x, is to be maintained
close to 1.0 without excessive expenditure of control effort. In the nomen-
clature of linear tracking problems, we have
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sofi 2] el Yen

R = 0005 and f(r) = [1(')0]' T

The Riccati equation and the differential equations for s are found from
Egs. (5.2-44) and (5.2-43) with the result

B0 = 2[100k () — 2k15(0) — 1]

Koft) == 200k 1 (0e32(0) — K o(0) + Feale) — 2ha0()  (3.2-51)

Fya{t) = 200k 540 — 2k2(0) + 2Kk22(0)
$10) = 2[100ky5(8) — 1]52() + 2

5.2-52
60 = —s10) + [1 + 200k2,0l520, (5.2:52)

and, from Egs, (5.2-47) and (5.2-48) the boundary conditions are

K(T) = [g g], S(T) = D;Z].

The optimal control law, obtained from (5.2-40), is
w*(f) = —200[k 1, (0%, () + Koy (02240 + 52(0] (5.233)

Figure 5-11{a) shows the optimal control and its {rajectory for T = 15,
and x(0) == 0. The “tail” on the x¥ curve as f — ¢, results because the
controller anticipates that the final time is near and reduces the control
to values near zero at the expense of deviations in x¥. When the control
is made small, x¥{f) begins to increase; this occurs because the plant
{5.2-49) is unstable. The solutions of the Riccati equation and of (5.2-52)
are shown in Fig. 5-11{b}, (c).

Example 5.2-4. The plant to be controlled is the same as in Example 3.2-3,
but the performance measure is

@) = [ {fn ~ 026 + 0025w} dr. (5.2:59)

T is specified, x(T) is free, and the admissible controls are not bounded.
The optimal control law is to be determined.

In this problem the objective is to maintain the state x, close to the
ramp function r (f) == 027, without excessive expenditure of control
effort. By substifuting

't For the matrices H and Q given in this example, r2{t) does not affect the solution and
hence can be selected arbitrarily.
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into (5.2-44) and (5.2-45), we obtain the differential equations

ki) = 20k 2,(6) — 4k pp(0) — 2
Rya(t) = 20k 1500 k20() — kpilt) + k() — 20200 (5.2-55)
Fpz() = 2082500 — 2k15(t) + k(D)

51(0) = 210k, () — s -+ 042 .

5.2-56
520 = —510) + [0k + 1520, ©.2-36)

The boundary conditions for these five differential equations are K(T') == 0,
s(T) = 0. Figures 5-12(b} and (¢} show the solution of Egs. (5.2-535) and
(5.2-56} for T = 15. The optimal control law, obtained from Eq. (5.2-40),
is

w*(t) = —20[k12(Ox1(8) + kaz(3x2(8) + 50} (5.2-57)
The optimal control and its trajectory for x(0) = [—~4 OF are shown

in Fig. 5-12(a). There is an initial transient period that is over at approxi-
mately ¢ = 2. Thereafter, the difference between x¥ and ry is small,
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. 5.2-4
10+ although the deviation does grow larger with increasing time. This is
attributed to the penalty in the performance measure on control-effort
expenditure; as time increases, the magnitude of the control signal required
0.8 for tracking grows larger, so the contribution of control effort to the
performance measure becomes more significant. The *tail” present as
t — 15 occurs because the control law anticipates the end of the control
0.6 interval and, as a result, conserves conirol effort, allowing x¥ to deviate
from its desired values,
ky =ky
0.4 +
5.2 PONTRYAGIN'S MINIMUM PRINCIPLE AND
0.2 1~ STATE INEQUALITY CONSTRAINTS
kx \
L ! L A A : 1 L - So far, we have assumed that the admissible controls and states are not
0 2 4. 6 8 10. i2 14 16

constrained by any boundaries; however, in realistic systerns such constraints
do commonly occur. Physically realizable controls generally have magnitude
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limitations: the thrust of a rocket engine cannot exceed a certain value;
motors, which provide torque, saturate; attitude control mass expulsion
systems are capable of providing a limited torque. State constraints often
arise because of safety, or structural restrictions: the current in an electric
motor cannot exceed a certain value without damaging the windings; the
turning radius of a maneuvering aircraft cannot be less than a specified
minimum value; a spacecraft reentering the earth’s atmosphere must satisfy
certain attitude and velocity constraints to avoid burning up.

Let us first consider the effect of control constraints on the fundamental
theorem derived in Section 4.1, and then show how the necessary conditions
are modified.t This generalization of the fundamental theorem leads to
Pontryagin’s minimum principle.

Pontryagin's Minimum Principle

By definition, the control u* causes the functional J to have a relative
minimum if
Ju) — Ju¥) = AJ =0 (5.3-1)
for all admissible controls sufficiently close to u*. If we let u==u* -+ Ju,
the increment in J can be expressed as

AJ(u*, Su) = 0J(u*, du) + higher-order terms; (5.3-2)
87 is linear in du and the higher-order terms approach zero as the norm of
Su approaches zero. If we were 1o 1e-prove the fundamental theorem for un-
bounded controls using control system notation, the reasoning would be
exactly as given in Section 4.1. That is, if the control were unbounded, we
could use the linearity of 8 with respect to du, and the fact that du can vary
arbitrarily to show that a necessary condition for u* to be an extremal control
is that the variation §J(u*, du) must be zero for all admissible du having 2
sufficiently small norm. Since we are 00 longer assuming that the admissible
controls are not bounded, u is arbitrary only if the extremal control is strictly
within the boundary for all time in the interval[z,, £;]. In this case, the bound-
ary has no effect on the problem solution. If, however, an extremal control
lies on a boundary during at least one subinterval [£,, ;] of the interval
[to, 7], as shown in Fig. 5-13(a), then admissible conirol variations @ exist
whose negatives (—d&il) are not admissible. One such control variationis shown
in Fig. 5-13(b). If only these variations are considered, a necessary condition
for u* to minimize J is that §/(u*, &) = 0. On the other hand, for variations

+ The derivation given here is heuristic; for rigorous proofs see [P-1], [R-11, and fA-2]
1 In Pontryagin's original work, [P-1}, this result is referred to as the maximum principle
because of a sign difference in the definition of the Hamiltonian.
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fiii, vyhich are Nonzero only for ¢ not in the interval [, t,], as, for example
in Fi'g. 5-13(c), it is necessary that dJ(a*, §ii) == 0; the reasoning used ir;
proving the fundamental theorem applies. Considering all admissible varia-

tions with || du| small enough so that the sign of AJ is determined by 8/, we
see that a necessary condition for o* to minimize J is ’

SJ(u*, du) > 0. (5.3-3)

It seemns reasgnable to ask if this result has an analog in calculus. To
answer this question, refer to Fig. 4-4, where a function f, defined on a closed
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interval [£,, ¢/}, is shown. The differential df is the linear part of the increment
Af. Consider the end points ¢, and ¢, of the interval, and admissible values
of the time increment A¢, which are small enough so that the sign of Afis
determined by the sign of df. If £, is a point where / has a relative minimum,
then df(t,, Af) must be greater than or equal to zero. The same requirement
applies for f(¢,) to be a relative minimum. Thus, necessary conditions for
the function f to have relative minima at the end points of the interval are

admissible At > 0
admissible Ar < 0,

dj.(r(}’ At} 2 Os
df(rf) AE) 2 09

(5.3-4)

and a necessary condition for £ to have a relative minimum at an interior
point ¢, 7y < ¢ << Ly, is

df(t, At) = 0. (5.3-5)
For the control problem the analogous necessary conditions are
dJ(u*, du) > 0 (5.3-6a)
if u* lies on the boundary during any portion of the time interval [t,, t/], and

SJ(u*, Su) = 0

if u* lies within the boundary during the entire time interval [1y, t].

Next, let us see how this modification affects the necessary conditions,
Egs. (5.1-17) and (5.1-18), which were derived by using the assumption that
the admissible control values were unconstrained. The increment of J is

[if we use Eqgs. (5.1-9), (5.1-13), and the definition of the Hamiltonian]
* — 6}1 % ¥, T
AJ(u*, du) = | S (x¥(2p), 1) — D0 | 9%,

[0, ), 1), 1) + G 1) 9

+ [0 {10 + S, wo, o, nl'exy 637

+ [%(X*(I): l.l*(f), p*(t), f}]r au(l‘)

+ [B e, w0, 0 — 2| on(o) de

-+ higher-order terms.

If the state equations are satisfied, and p*(z) is selected so that the coefficient :
of 8x(¢) in the integral is identically zero, and the boundary condition equa- ;

tion (5.1-18) is satisfied, we have

(5.3-6b)
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AJut, o) = | ” [%(x*(t), wHE), pH(E), z)]r Su(s) dr

-+ higher-order terms.

(5.3-8)

The integrand is the first~-order approximation to the change in 3% caused
by a change in u alone; that is,

|5 ), w@), 970, D) Su) = A, 0 + SuCO), (), 0
— G0, w), BHO, O (5.3-9)
therefore,
Arat, u) = [ [#K@), w50 + (o), (), 1)

- %(X*(t}s u*(t): p*(t), t)] dt
-+ higher-order terms.

(5.3-10)

If u* - du is in a sufficiently small neighborhood of u* {(||du]] < £)
then the higher-order terms are small, and the integral in Eq. (5.3-10) domi-
nates the expression for AJ. Thus, for u* 10 be a minimizing control it is
necessary that

[[ 100, w@) + due), ), 1) — 0@, WD, 970, D] dt =0
' (5.3-11)

for all admissible du, such that ||dul] < §. We assert that in order for(5.3-11)

to be satisfied for all admissible du in the specified neighborhood, it is neces-
sary that

H(X*(), w*(e) + du(®), p*(0), 1) = H(X*(2), u*(2), p*(2), 1)

for all admissible du(r) and for all t € [¢,, t,}. To show this, consider the
control

(5.3-12)

W) =u*s; ¢, 1]

u(s) = u*(t) + du(e); ¢t € [ty 4], (5.3-13)

-where [z,, £,] is an arbitrarily small, but nonzero, time interval, and du(f) is
-an admissible control variation that satisfles i{du]| < f.T Suppose that

T Let
neull = [ 16uco] a.

Since u(z) is in a bounded region, cach component of fu(z) is bounded and || Su]| can be
made less than f for _a[l admissible du(r) by making the interval [#;, 72] small enough.
Thus the control u(¢) in Eq. (5.3-13) can be any admissible control in the interval {r1, 221



232 The Calculus of Variations and Pontryagin's Minimum Principle Sec. 5.3 Sec. 5.3 Variational Approach to Optimai Control Problems 233
inequality (5.3-12) is not satisfied for the conirol described in Bq. (5.3-13);
then in the interval [£, £,] . i
HEEHD), w(D), pH(e), 1) <H(XK¥(), w*(t), p*(2), 1) (5.3-149) = _5?(}:*@ - W0, p*0, 1) (5.3-21a)
and, therefore, ) = — %‘;fi(x*(t), wi(z), p*(®, 1) >§Oer[?ﬁt ! (5.3-21b)
el
[ e, wo, @), 0 — # &, w0, 170, ] rEmOre.n= jz(:al(lt)adl::l)ssiﬁg)u(g e

P

= [" PO, ue), 2@, ) — D, w0, 20, 9] dr <O and
(5.3-15)
dh T
o . . [Phxve, 19 — 02| 0%,
Since the interval [7,, f,] can be anywhere in the interval {to, £/], it 15 clear

that if + [“%"(X*(rf), u(z.), Pt £) + gg(x*(zf), rf)] dt, = 0. (5.3-22)

D), u(D), pH(E), 1) < D), wi(e), p(), 1) (5.3-16)

for any ¢ & [t,, ¢/}, then it is always possible to construct an admissible con-
trol, asin Eq. (5.3-13), which makes AJ < 0, thus contradicting the optimality
of the control u*. Our conclusion is, therefore, that a necessary condition
for u* to minimize the functiopal Jis

It should be emphasized that

1. u¥(#) is a control that causes JF(x*(r), u(t), p*(¥), 1} to assume its
global, or absolute, minimum.
2. Equations (5.3-21) and (5.3-22) constitute a set of necessary conditions

XD, WD), PR, £) < H(H(E), us), pH(e), 1) {3.3-17) . "
for optimality; these conditions are not, in general, sufficient.

for all 7 & [fq, ¢;] and for all admissible controls. Fquation (5.3-17), which
indicates that an optimal control must minimize the Hamiltonian, is called
Pontryagin’s minimum principle. Notice that we have established a neces-
sary, but not (in general) sufficient, condition for optimality. An optimal
control must satisfy Pontryagin’s minimum principle; however, there may
be controls that satisfy the minimum principle that are not optimal.

Let us now summarize the principal results of this section. A control
u* ¢ U, which causes the system

In addition, the minimum principle, although derived for controls with
values in a closed and bounded region, can also be applied to problems in
which the admissible controls are not bounded. This can be done by viewing
the unbounded control region as having arbitrarily large bounds, thus
ensuring that the optimal control will not be constrained by the boundaries.
In this case, for u*(z) to minimize the Hamiltonian it is necessary (but not
. sufficient) that

#(2) = a(x(®), u(®), ) (5.3-18) %(X*(O, u¥(z), p¥(), 1) = 0. (5.3-23)

to follow an admissible trajectory that minimizes the performance measure f - If Eq. (5.3-23) is satisfied, and the matrix

T2 (@), wH(0), ), D)

Ju) = h(x(z,), t,) + j 2(x(D), u(t), 1) dt, (5.3-19)

g is positi‘ve definite, this is sufficient to guarantee that u*{¢) causes #° to be a
_: local minimum; if the Hamiltonian can be expressed in the form

-%ﬂ(x(t)a Il(t), p(‘)s t) -—-f(X(I), P(I): t)
+ [e(x(@), p(®), OF u(@® + W OROUE), (5.3-24)

is sought. In terms of the Hamiltonian
200, w(D), p), 1) £ g(x(), (@), 1) + POEE, u@), 0}, (5.3-20),

necessary conditions for u* to be an optimal control are
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where ¢ is an m x 1 array that does not have any terms containing u(z), then
satisfaction of (5.3-23) and 9%5#°/du? > Ot are necessary and sufficient for

H(x*(1), w(2), p(), 1) to be a global minimum.
For 2 of the form of (5.3-24),

6;55’ ¥ (0, wH(e), pH(), 1) = R(D); (5.3-25)
thus, if R{(z} is positive definite,
u*(f) = —R™(De(x*(1), p*(1), 1) (5.3-26)

minimizes (globally) the Hamiltonian.

Example 5.3-1. Let us now iltustrate the effect on the necessary conditions
of constraining the admissible control values. Consider the system having

the state equations

x1(t) = x208)

X3(0) = —x2() + u(0), (5.3-27)

with initial conditions x(¢4) = x¢. The performance measure {o be mini-
mized is

Ju) = f:l% X3 + w2 (@)} dr; (5.3-28)

ts is specified, and the final state x(¢;) is free.

a. Find necessary conditions for an unconstrained control to minimize J.
‘The Hamiltonian is

A&, w(e), p) = 1x10) + 462 + pr(Oxa(0)

= pa()x5(8) + paA)ult), (5.3-29)

from which the costate equations are
i
¥(f) = — m— = - XF(
oyt ) &xi )
. dat
o3y = - ;P —~p¥() + p3(O)- (5.3-30)

Since the contro! values are unconstrained, it is necessary that

9 ) + @) = 0.

+ The notation §2£/du? > 0 means that the mXm matrix 825 /du? is positive definite,

(5.3-31) -
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Notice that the Hamiltonian is of the form (5.3-24), and

Fro
T 1; {5.3-32)

therefore,
ut(e) = —p¥(e) (5.3-33)

does minimize the Hamiltonian. The boundary conditions are (sce
Table 5-1, entry 2) '

p*( =0, (5.3-34)
. Find necessary conditions for optimal control if
—1 < a(t) << +1 for all ¢ € {tq, #/]. (5.3-35)

The s}ate and costate equations and the boundary condition for p*(z;)
remains unchanged; however, now u must be selected to minimize

M), ul(®), pHE) = IxFUD) + ja2() + prEOXED)

“””Pf(!)xf(z) +pi‘(f)u(1‘) (5-3"36)

subject to the constraining relation in Eq. (5.3-35).
To determine the control that minimizes 5, we first separate ali of
the terms containing #(z),

Fue) + pEemd), (5.3-37)

from the Hamiltonian. For times when the optimal control is unsatit-
rated, we have

w*(t) = —p¥(D) (5.3-38)

as in part.a; clearly, this will occur when |p#(?)] < 1. If, however,
thfarfz are times when | p¥(f}| > 1, then from (5.3-37) the control that
minimizes ¢ is

-1, for p¥(r) > 1

wHg) = {
+1, for p¥) < ~1.

(5.3-39)

Thus, #*(t} is the saturation function of p#{) pictured in Fig. 5-14.
In summary, then, we have for the unconstrained control—part a,
w*(t) = —pf(0), (5.3-33)

and, for the constrained control--part b,
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State Variable Inequality Constraints

Let us now consider problems in which there may be inequality con-
straints that involve the state variables as well as the controls. It will be
asstimed that the state constraints are of the form

P2 ()

£(x(0), 1) = 0, (5.3-42)

where f is an l-vector function (/ <C m) of the states and possibly time, which
has continuous first and second partial derivatives with respect to x(¢). It
will also be assumed that the admissible control values lie in a closed and
bounded region. Our approach will be to transform the ! inequality con-
straints of (5.3-42) into a single equality constraint, and then to augment the
performance measure with this equality constraint, as we have done pre-
viously with the state equations.
Let us define a new variable x,,,(¢) by

() 2 L@, O 1) + [0, OP1(—12)
+ o+ L@, O LA (5.3-43)

Constrained

Unconstrained

Figure 5-14 Constrained and unconstrained optimal controls for
Example 5.3-1

—1, for 1 < p¥(®)
W) = { —p¥@), for —1 < p¥O <1 (5.3-39a)
+1,  for p¥(n) < —L.

To determine #*(¢) explicitly, the state and costate equations must be
solved. Because of the differences in Egs. (5.3-33) and (5.3-39a)_, the
state-costate trajectories in the two cases will be the same only if the
initial state values are such that the bounded control does not satur‘ate.
If this situation occurs, the control constraints do not affect the solution.
It must be emphasized that the optimal control history for part b cannot
be determined, in general, by calculating the optimal control histo_ry for
part a and allowing it to saturate whenever the stipulated boundaries are

violated.

where [{—/7) is a unit Heaviside step function defined by

{0, for (), 020 _
U671y = {1, for £i(x(1), ) <0, (5.3-49)

for i==1,2,..., [ Notice that %, (¢) = 0 for all 1+, and that %,, () =0
only for times when afl of the constraints (5.3-42) are satisfied. Now let us
require that the variable x_, (¢}, siven by

Additional Necessary Conditions Xpe (1) = J' ‘0 Eny i (O dt 4 oy (20, (5.3-45)

Pontryagin and his co-workers have also derived other necessary condi-
tions for optimality that we will find useful. We now state, without proof,
two of these necessary conditions:

1. If the final time is fixed and the Hamiltonian does not depend explicitly

on time, then the Hamiltonian must be a constant when evaluated on
an extremal trajectory; that is,

satisfy the two boundary conditions x,,,(#,) =0 and x,,,(¢,) =0. Since
*..:() = 0 for all 1, satisfaction of these boundary conditions implies that
*,.:(t) must be zero throughout the interval [z, 7;], but this occurs only if
the constraints are satisfied for all ¢ € {1,, #/].

Thus, to minimize the functional

HEO O PO = ortelpt] (5340 ) = hsC) 1)+ | 800, 00, 0 (6349

3. If the final time is free, and the Hamiltonian does not explicitly depend -
on time, then the Hamiltonian must be identically zero when evaluated
on an extremal trajectory; that is,

subject to the state equation constraints

%(2) = a(x(z), u(z), 1), (5.3-47)
% The notation f(x(1), 1= 0 means that each component of the vector f is =0.

A, v, ) =0 fort €t t]) (5.3-41) .
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admissibility constraints on the control variables, and state inequality con-
straints of the form

f(x(1), N =0, (5.3-48)

first form the Hamiltonian
H (D), (), p(e), O = g(x(r), u(2), 1) + p(Ha,(x(1), W), 1)
A + p,,(t)a,,(X(t), ll([), t)

~}~p,,+1(t){[f1(X(I), f)]z]l(""fz) 4 -
2 g(x(2), W), 1) -+ Pr(O)a(x(®), u(®), 1),

-+ [A&@, D112}
(5.3-49)
where x_,,{¢) is given by (5.3-45), and

. (X0, D & [F1x(0), DF1(=Ff) + - + [Fx@), OP1(— ).
(5.3-50)

Using the notation of (5.3-49) meaas that p(z) and x(¢) are n 4- [ vectors.
Notice that the Hamiltonian does not contain x,, (¢) explicitly. We can now
apply Eqgs. (5.3-21) to obtain necessary conditions for optimality:

) = a,(&50), v¥(D), 1)

xfﬂ(f) = an+1(X*(t)s f);

510 = — $Z (), w0, 10, 0
for all
€ [tes ty]

DE () = gj% x*(6), u¥(2), p¥(), 1) = 0;

and
XD, w* (), pr{), 1) < A ), u(®), p*(e), 7)

for all admissible u(z).

P, is zero because x,, () does not appear explicitly in . The boundary '

conditions x*(#,) are specified [x% ((¢,) = 0 and x},,(f;} = 0]; the remain

ing boundary conditions at ¢ = f, can be determined by using the results

obtained in Section 5.1.

Example 5.3-2. Let us now return to the problem discussed earlier in
Example 5.3-1. The system

(5.3-51)
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X7} == x2(0)

£2(0) = —x,(6) + ult) (5.3-52)
is to be controlled to minimize the performance measure
1r
Jw) = _[“ x4 + wr()] d. (5.3-53)

*({tq) is specified, the final state x(¢,) is free, and 7y is given. The admissible
control values are constrained by

~1=<ut)<1 for ¢ & [tq, £5] (5.3-54)
In addition, it is required that
—2 a1y <<2 for t & [to, t/]. (5.3-55)

We maust first express (5.3-55) in the form of (5.3-48). To do this, observe
that (5.3-55) implies

[x(6) + 2] = 0, (5.3-56a)
and
[2 —x@®]=0. (5.3-56b)
Writing (5.3-35) as these two inequalities gives
Six(@) = [x,(0) + 2] =0
Folx() = [2 — x(0] = 0.F (5.3-57)

The Hamiltonian is given by

(), ), P = 1xH) + Ja¥(0) + pi(x(0)
— Pa{0)x2(t) + p2 () + py(0){[x(0) + 2P E(~x() — D)
+[2 = xOP 160 — 2} (5.3-58)

The necessary conditions for optimality, found from Egs, (5.3-51), are
() = x3(),
) = —xJ O + a¥e),  x5@) = xg,
) =[x + 2P == - D

+[2 = OP1GED — 2),

xfro) = x4,

x¥(tg) = 0 (5.3-59)

pH0) = - 5 = —x10)

T We could also combine the inequalities (5.3-56) by writing [x2{¢) -+ 2] 2 — x> =0
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5% 98 *, *, % * i %
PO = — 3o- = —pt0) + 750 — 2500 + AL-50 — )

+ 20502 — xFO]L G — Dt

D = _ 9 = (0 = p§{¢) = a constant {5.3-60)

0x,
-1, for 1 < p(t)

w () = —p5(), for —1 <pi(n) <1
+1, for p¥(t) < —1L.

(5.3-61}

The boundary conditions at the final time are x$(r,) = 0 (specified), and

pE(ty) = p2(t;) = 0—from Table 5-1, or Eq. (5.1-18).

Comparing these necessary conditions with the results obtained in Exam-
ple 5.3-1b, we see that the expressions for the optimal controls in terms of
the extremal costates are the same; however, the equations for pf(7) are
different because of the presence of the state inequality constraints; hence,
the optimal trajectories and control histories will generally not be the same.

In our discussion of state and control inequality constraints we have not
considered constraints that include both the states and controls, that is,
constraints of the form

f(x(2), u(®), 1= 0.

For an explanation of how to handle constraints of this form, as well as an -
alternative derivation of the minimum principle, the interested reader can

refer to Chapter 4 of [S-3].

In the remainder of this chapter we shall consider several examples of the
application of Pontryagin’s minimum principle. These examples will illustrate

both the utility and the limitations of the variational approach to optimal
control problems.

54 MINIMUM-TIME PROBLEMS

In this section we shall consider problems in which the objective is to |
transfer a system from an arbitrary initial state to a specified target set in
minimum time. The target set (which may be moving) will be denoted by

+ Performing the differentiation d.4 /dx, formally also results in the presence of two unit

impulse functions, which occur at x%(r) = +2; however, these terms are such that either
the impulse functions or their coefficients are zero for all ¢ € [to, #7], 50 the impulses -

do not affect the solution,

" Sec. 5.4

(5.3-62)
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S(1), and the minimum time required to reach the target set by +*. Mathe-
matically, then, our problem is to transfer a system

() = a(x(), u(2), (5.4-1)
from an arbitrary Initial state x, to the target set S(¢) and minimize
Iy = ["dt =1, — 1. (5.4-2)

Typically, the control variables may be constrained by requirements such as

lunl<1l, i=12,...,m, telt,*. (5.4-3)

Qur approach will be to use the minimum principle to determine the optimal
controf law.T

To introduce several important aspects of minimum-time problems, let us
consider the following simplified intercept problem.

Example 5.4-1. Figure 5-15 shows an aircraft that is initially at the point
x =10, y =0 pursuing a ballistic missile that is initially at the point
x = g > 0, y == (. The missile flies the trajectory

¥y
4

%ﬁf‘/\ =

Figure 5-15 An intercept problem

xp(8) = a + 018

yu(t) =0 (5.4-4)

for ¢ = 0; thus, in this example the target set S(#) is the position of the
missile given by (5.4-4).

Neglecting gravitational and aerodynamic forces, let us ‘model the
aircraft as a point mass. Normalizing the mass to unity, we find that the
motion of the aircraft in the x direction is described by

() = u(t), (3.4-5)

+ For additional reading on time-optimal systerns see [P-1] and [A-2].
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or, in state form,

X9(8) = x20) (5.4-6)
iZ(‘) = a(f))

where x,{t) £ x(¢) and x,(t) & *(7). The thrust (1) 1s constrained by the
relationship

()] < 1.0, (5.4-7)

By inspection of the geometry of the problem, it is clear that the
optimal strategy for the pursuing aircraft is to accelerate with the maxi-

murn thrust possible in the positive x direction; therefore, «*(r) should -

be +1.0 for £ = [0, #*]. To find r*, we must determine the value(s) of ¢
for which the x coordinate of the aircraft coincides with the target set
5(); hence, assuming £(0) = 0, we solve the equation

PR = a 4+ 0[] (5.4-8)

for +*. Common sense indicates that there may not be a positive real value
of #* > 0 for which Eq. (5.4-8) is satisfled—if the missile is far enough
away initially he can escape. It can be shown that interception is impos-
sible if a is greater than 1.85. If @ = 1.85, interception occurs at 7* = 3.33;
for a < 1.85 the minimum interception times are less than 3.33,

Although greatly simplified, the preceding example illustrates two impor-
tant characteristics that are typical of minimum-time problems:

1. For certain values of the initial condition g, a time-optimal control
does not exist.

2. The optimal control, if it exists, is maximum effort during the entire
time interval of operation.

In the subsequent development we shall generalize these concepts; let us
first consider the question of existence of an optimal control,

The Set of Reachable States

If a system can be transferred from some initial state to a target set by
applying admissible control histories, then an optimal control exists and may
be found by determining the admissible control that causes the system to
reach the target set most quickly. A description of the target set is assumed
to be known; thus, to investigate the existence of an optimal control it is
useful to introduce the concept of reachable states.
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DEFINITION 5-1

If a system with initial state x{f;) == X, is subjected to all admissible
control histories for a time interval [#,, t], the collection of state
values x(¢) is called the set of states that are reachable (from x,) at
time £, or simply the set of reachable states.

Although the set of reachable states depends on x,, #,, and on f, we
shall denote this set by R(z). The following example illustrates the concept
of reachable states.

Example 5.4-2, Find the set of reachable states for the system
2(t) = ult), (5.4-9)
where the admissible controls satisfy
-3 << u(t) <L, (5.4-10)
The solution of Eq. (5.4-9) is
2(t) = xq + J u(t) dt. (5.4-11)

If only admissible control values are used, Eq. (5.4-11) implies that

xe — [t — L] K x() K xo -+ [t — %) (5.4-12)
Figure 5-16 shows the reachable sets for ¢ ==1{,,1;, and ¢;, where
f <ty < Iy
R{ty) =N
- L I o
*—R(t;}
AR BN x
X

— -R([I}

S\\\\\\\\\Q‘: R(t43

cmmnn R(23)
Figure 5-16 The reachable states for Example 5.4-2

The concept and properties of reachable sets are inextricably intertwined
with the question of existence of time-optimal controls; if there is no value
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of ¢ for which the target set S(z) has at least one point in common with the
set R(?), then a time-optimal control does not exist. Conversely, it is helpful
to visualize the minimum-time problem as a matter of finding the earliest
time 7* when S(¢) and R(7) meet, as shown in Fig. 5-17 for a second-order
system. The target set is 2 moving point, and the boundary of the set of reach-

able states at time #, is denoted by dR(f,). The target set and the set of reach--

able states first infersect at point p, where ¥ = £,.

Unfortunately, although it is conceptually satisfying to think of minimum-
time problems in this fashion, it is generally not feasible to determine solutions
by finding the intersections of reachable sets with the target set except in
very simple problems (like Example 5.4-1). General theorems concerning the
existence of time-optimal controls are unavailable at this time; however,
later in this section we shall state an existence theorern that applies to an
important class of minimum-time problems.

X (€3]

Sy N -

—
o (25}
Sttg)

Xy (!) -t

Figure 5-17 The minimum-time problem viewed as the intersection
of a target set, S(¢), and the set of reachable states, R(}
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The Form of the Optimal Controf for a Class of
Minimum-Time Problems

Now let us determine the form of the optimal control for a particular |

. class of systems by using the mimimum principle. We shall assume that the

state equations of the system are of the form

*(1) = a(x(2), ) -+ B(x(), Nulz), (5.4-13)

where B is an n X m array that may be explicitly dependent on the states
and time. It is specified that the admissible controls must satisfy the inequal-
ity constraints

M, <ult) < M, P=12,...,m, t e [, "] (5.4-14)

M,, and M,  are known upper and lower bounds for the ith control com-
ponent,
The Hamiltonian is

&, u(D), p(o), 1) = 1 + p"(O[ax(2), N + BE@), Hu(r)]. (5.4-15)
From the minimum principle, it is necessary that

1+ p7O[a(x*(), 1) + B, ()]
< 1+ PO, 0 + B, D] GA-16)

for all admissible u(¢), and for all ¢ € [f,, t*1. Equation (5.4-16) implies that
P* (OBX*(1), Hu*(r) < p*(OBXM2), Hu(n); (5.4-17)

hence, w*(¢) is the conirol that causes p*(1)B(x*(z), Hu(?) to assume its
minimum value, If the array B is expressed as

BO(), 1) = | B0, Db, 9] -+ (Ba0@, 0]> (5418)

where b (x*(r}, 0, i=1,..., m, is the ith column of the array, then the
coefficient of the ith control component u,(7) in (5.4-17) is p*"(1)b,(x*(2), 1), and

POBXN(), Hulz) = ;fll p*(bx*(2), Djulo). (5.4-19)

Assuming that the control components are independent of one another,
we then must minimize

PTO[bAX(2), D]ulr)
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with respect to #(f) for i = 1,2, ..., m. If the coefficient of u(7) is positive,
u*(¢) must be the smallest admissible control value M,_. If the coefficient
of u(z) is negative, ¥j*(f) must be the largest admissible control value M, ;
thus, the form of the optimal control is

My, for p*T(0)b(x*(¢), 1) < 0
ui(t) = {M;., for p* ()b (x*(6), ) >0 (5.4-20)
Undetermined, for p*™(Hb{x*(#), 1) = 0.

P=1,2,...,m

If the extremal state and costate trajectories are such that the coefficient of
uff) is as shown in Fig. 5-18(a), then the history of wf(¢) will be as shown n
Fig. 5-18(b).

p Db (" (1), 0]

uz (3] ! — le—Singular
| i i
| i |
i | |
i pa— 7+
T E— | —
l I | -
{b)

Figure 5-18 The relationship between a time-optimal control and
its coefficient in the Hamiitonian

Notice that if p*T(1)b{x*(¢), £) passes through zero, a switching of the
control u*(¢) is indicated. If p*T()b(x*(?), 1) is zero for some finite time
interval, then the coefficient of u,(¢) in the Hamiltonian is zero, so the neces-
sary condition that «#(¢) minimize 5 provides no information about how to
select u(7); this signals the so-called singular condition, to be discussed in
Section 5.6. Here we shall consider only problems in which the singular
condition does not arise; such problems will be called normal.

Equation (5.4-20) is the mathematical statement of the well-known
bang-bang principle, that is, if the state equations are of the form (5.4-13)
and the admissible controls must satisfy constraints of the form (5.4-14),

Sec. 5.4 Variational Approach to Optimal Control Froblems 247

then the aptimal control to obtain minimum-time response is maximum effort
throughout the interval of operation. The bang-bang concept is intuitively
appealing as well, Certainly, the men who race automobiles come very close
to bang-bang operation— they use the accelerator and brakes often; thus,
their fuel consumption is large, tires and brakes do not last very long, and the
cars are subjected to severe mechanical stresses, but barring accidents and
mechanical failures, the drivers reach their destination quickly.

Before we move on to some problems that can be completely solved by
using analytical methods, let us consider a nonlinear problem of the fore-
going type.

Example 5.4-3.7 Figure 5-19 shows a lunar rocket in the terminal phase
of a minimum-time, soft landing on the surface of the moon. We shall
make the following assumptions:

T .m spacecraft mass
—M<m<0 spacecraft mass rate

g . pgravitational constant in
the near field of the moon

k = constant:relative exhaust
velocity of gases

L T = —km:thrust
mg
iy
MOON

Figure 5-19 Lunar soft landing

a. Aerodynamic forces and gravitational forces of bodies other than the
moon are negligible.

b. Lateral motion is ignored; thus, the descent trajectory is vertical and
the thrust vector Is tangent to the trajectory.

¢. The acceleration of gravity is a constant, because of the nearness of
the spacecraft to the moon.

d. The relative velocity of the exhaust gases with respect to the spacecraft
is constant.

1 See [M-2] and [M-3L
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e. The mass rate is constrained by
—M<m=<0 (5.4-21)
The equation of motion is

m(n)(t) = —gml(t) + 1)

] (5.4-22)
= —gm(t) — krir(f).

Defining the states of the system as x; &%, 5, &£ % x3 & m and the
control as u 2 m leads to the state equations
x,(8) = x3{1)
2{t) = —g — ;B%}M(r) (5.4-23)
x5t} = u(t)
The Hamiltonian is
A, w0, KD = 1+ 2000 - g0200) — LD o e,
(5.4-24)
and the optimal control must satisty
HEH(E), wH(t), pH(O)) = (1), u(r), pH()
for all admissible u(r), and for all t € [#, #71; therefore,

kp3)
Q, for p¥(t) — =10) <0

for p¥(r) — %%? >0 (5.425)

kpE(ey
50 >

u*(t) = —M,
Undetermined, for p¥() —

To obtain an explicit solution for «*(t) we would have to solve a
nonlinear two-point boundary-value problem (see Problem 5-31).

Minimum-Time Controf of Time-Invariant Linear Systems

Armed with our knowledge about the form of time-optimal controls,
for the remainder of this section we shall consider the following important
class of problems: A linear, stationary system of order n having m controls
is described by the state equation

() = Ax(?) + Bu(®), (5.4-26)

Sec. 5.4 Variational Approach to Optirnal Control Problems 243

where A and B are constant # X n and n X m matrices, respectively. The
components of the control vector are constrained by

lulnl= 1, i=1,2,...,m (5.4-27)
Assuming that the system is completely controllable and normal (no singular
intervals exist), find a control, if one exists, which transfers the system from
an arbitrary initial state x, at time ¢ = 0 to the final state x(#;) = 0 in mini-
mum time. We shall refer to this problem as the stationary, linear regulator,
minimum-time problem.

From Egq. (5.4-20) we know that the optimal control, if it exists, is bang-
bang. Let us now state without proof some important theorems due to
Pontryagin et al. [P-1] which apply to stationary, linear regulator, minimum-
time problems.

THEQREM 5.4-1 {EXISTENCE)

If all of the cigenvalues of A have nonpositive real parts, then an
optimal control exists that transfers any initial state x, to the origin.

THEOREM 65.4-2 (UNIQUENESS)
If an extremal control exists, then it is unique.t

Since an optimal control, if one exists, must be an extremal control,
this theorem indicates that a control which satisfies the minimum principle
and the required boundary conditions must be the optimal control. Thus, if
an optimal control exists, satisfaction of the minimum principle is both
necessary and sufficient for time-optimal control of stationary, linear regula-
tor systems.

THEOREM 5.4-3 (NUMBER OF SWITCHINGS)

If the eigenvalues of A are all real, and a (unique) time-optimal
control exists, then each control component can switch at most
(n — 1) times.

Thus, an #th-order system having all real, nonpositive eigenvalues has a
unique time-optimal control with components that each switch at most
{(n ~ 1) times.

Example 5.4-4. Find the optimal control satisfying'
je)| < 1 (5.4-28)
which transfers the system

4 Recall that a control which satisfies the necessary conditions in Eqs. (5.3-21) and the
required boundary conditions is cailed an extremal control.
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x1(1) = x,(0)

. (5.4-29)
Z (1) = ul(t)
from any initial state X, fo the origin in minimum time. Here
0 1 0
A= d Bm[ } 5.4-30
[o 0} an i (.4-30)

Since the eigenvalues of A are both zero, we know from Theorems 5.4-1
through 5.4-3 that an optimal control exists, is unique, and has at most
one switching.

The Hamiltonian is

W, u@), pEY) = 1 + p1(x(0) + pa(Dul?); (5.4-31)

thus, the minimum principle indicates that the optimal control w*(£)
must satisfy

PEOu) < pi(2)ul) (5.4-32) -

for all admissible u(t) and for all ¢ € [t,, #7]. It can be shown that a sin-
gular interval cannot exist (see Section 5.6); therefore, the optimal control
found from (5.4-32} is

—1, for p¥) > 0}

L1, for pr) <of = T (3.  (54-33)
*1, ;

wo = |{
From the Hamiltonian the costate equations are

pH =0
e = —p¥@).

The costate solution is of the form

(5.4-34)

pE(E) = c;

(5.4-35)
PE) = —cit + oy,

where ¢, and ¢, are constants of integration. Equation (5.4-35) indicates
that p¥, and therefore 4*, can change sign at most once (this result also
follows from Theorem 5.4-3).

Since there can be af most one switching, the optimal control for a
specified initial state must be one of the forms:

o

-3

, forallt e [t t*], o

, foralls e [ty t*], or

+1, fort & [te, £)f and ~1, fort e 1, ¥, 0r
—1, fort e [te, fy), and +1, forr e [#, "]}

[y

wNp) = (5.4-36)

t The notation ¢ & [fg, £1) means fo 5 ¢ << .
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Thus, segments of optimal trajectories can be found by integrating the
state equations with # = L1 to obtain

x00) = 2t + ¢ (5.4-3)
x: (&) = £412 + o3t + ¢y, (5.4-38)

where ¢; and ¢, are constants of integration, and the upper sign corresponds
to u == -1, Time can be eliminated from these equations by squaring the
first equation, multiplying the result by 4 and comparing with Eq. (5.4-38)
to obtain

x(&) = Ex3() + s, for u == -1 (5.4-39)
and
xi(f) = — $xi(t) + cg for 4 == -1, (5.4-40)

¢s and ¢ are constants. Equations (5.4-39) and (5.4-40) each define a
family of parabolas that are shown in Fig. 5-20(a) and (b)}--the arrows
indicate the direction of increasing time. )

Now, let us consider each of the alternatives for the optimal control.
From Fig. 5-20 we see that the controls given by Eq. (5.4-36} correspond
to the following situations:

1. %) = +1 for ¢ € [tg, #*]. The initial state x, must lic on segment
A-0 in Fig. 5-20(a).

2. w*(t) = —1 for t & [t,, t*]. The initial state x, must lie on segment
B-0 in Fig. 5-20(b).
3. wMt) = +1 for ¢t € [#o, £1), and &™) = —1 for ¢ € ¢y, t*]. Since the

optimal control is —1 for t € [#, t*], at time ¢, the system state must
lie on segment B-0. This transfer has been accomplished by a control
of u* = -1, thus, the optimal trajectory consists of an initial segment
tike one of the trajectories in Fig, 5-20(a) followed by a switching of
the control to —1 upon reaching B-0, and then on to the origin along
B-0 with u* = 1. Notice that B-0, in addition to being the terminal
segment of the optimal trajectory, is the locus of state values where
the control switches from -+1 to —1; therefore, B-0 is referred to
as a switching curve. Now, which initial states will have optimal
trajectories as described above? Again referring to Fig. 5-20, we see
that only the parabolic curves that have ¢y < 0 intersect B-0. In addi-
tion, only trajectories that begin below B-0 with &* = 41 will ever
intersect B-0. We conclude that for initial states lying below both
A-0 and B-0 the optimal control will be #* == 41 until B-0 is reached,
followed by u* == —1 thereafter.

4, y¥(ty = —1 for t € [tg, t1), and u*() = +1 for £ € [£y, £*]. The same
reasoning used in 3 leads to the conclusion that for states initially lying
above 4-0 and B-0 the optimal control will be #* = —1 followed by
u* == --1; the switching occurs when the trajectory intersects 4-0.
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Figure 5-20 (a) Trajectories for u == -1, (b) Trajectories foru = —1
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Thus, we see that 4-0 and B-0, in addition to being terminal segments
of optimal trajectories, together compose the switching curve A4-0-B
shown in Fig. 5-21(a). By putting ¢s == ¢ = 0in Egs. (5.4-39) and (5.4-40),
we find the equation of this switching curve to be

x3(f) = — $x, () | x2(01 (3.4-41)

To sunumarize, for states above 4-0-B the optimal control is u* = —1
until the trajectory intersects 4-0, where the optimal control switches to

x4 (1)
&

- xl({)

&)

Figure 5-21 (a) The switching curve. (b) Optimal trajectories for
several initial state values.
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u* == -+1. The optimal control &* = <1 is applied to transfer states below
A-0-B to segment B-0, where the optimal control switches to #* == —1.
Once the system has reached the origin, it can be kept there by applying
w*(f) = 0 for ¢ > r*. Optimal trajectories for several initial state values

are shown in Fig. 5-21(b).

It must be emphasized that we have succeeded in obtaining the optimal
control Jgw: that is, the optimal control at any time £ is known as a func-
tion of the state value x(z). To express the optimal conirol Jaw in a con-
venient form, let us define the switching function s(x(t)), obtained from
Eq. (5.4-41) as

sx@) £ (0 + a0 {x(D)]- (5.4-42)

Notice that
s(x(e)) > 0 implies x(7) lies above the switching curve A-Q-B.
s(x{1)) << 0 implies x(¢) lies below the switching curve A4-0-5.
s(x(1)) = O implies x(¢)} lies on the switching curve 4-0-5.

Thus, in terms of this switching function the optimal control law is

—1, for x(z) such that s(x(f)) > 0
41, for x(z) such that s(x()) <0
u¥(r) = { —1, for x(¢) such that s(x(z)) = 0 and x;(/} > 0
41, for x(7) such that s(x(¢)) = 0 and x,(f) <0
0, forx{#) =0,

(5.4-43)

An implementation of this optimal control law is shown in Fig. 5-22;
the required hardware conmsists of a summing device, a sign changer,
a nonlinear function generator, and an idezl relay,

The procedure used in solving the preceding example can be general-

ized to include nth-order, stationary, linear regulator systems controiled
by one input. Let us assume that all of the eigenvalues of A are real and non-
positive; thus, for all initial states a unique time-optimal control exists and
has at most (n — 1) switchings. To obtain the optimal control law:

1. (a) We first determine the set of points from which the origin can be

reached with u = <-1 (call this set 0,), and the set of points from
which the origin can be reached with w = —1 (call this set 0_).
Let O, denote the set of points from which the origin can be

reached with no control switchings; then
0, =0,U0_ {5.4-44)

where U denotes “the union of.”1

¥ O, is the union of O, and O_; this means that every element of @ is an element of either
0,,0_, or both O, and O..

j'-i- /} in
+
FUNCTION
GENERATOR

Sec. 5.4 Variational Approach to Optimal Controf Problems 255
r i e _RLANT
| IDEAL RELAY | [T T T T T T T T T
i | |
| +} out bu®n g X4 (8) x; (0
il in £ ] f f 1
| -1 ; | H
I ! | t
i —s(x{) i |
! CHANGER | e -
AN L
; ““““““““ 1
é S{X(f)} out V

2{¢t)
%SUMMER C ¢ bt
i
i
H
i
i
H
H
[

2(1) = 33, () L, (1)
CONTROLLER

Figure 522 Implementation of the time-optimal control law for
Example 5.4-4

(b) Next, we determine the set of points O_, from which O, can be
reached by applying u = —1; the origin can be reached from
O_, by applying # = —1 until reaching O, followed by & = +1.
Similarly, we find the set of points O, _ from which O_ can be
reached by applying v = -+1. To reach the origin from 0._, we
apply w == -}-1 until reaching O_, followed by u = —1. The set of
points from which the origin can be reached with at most one
switching {two control values) is given by

0,=0,0U0_.U0, UO_,

=0, U0, Wo_t (5.4-43)

(c) We continue until the set of points O,_, from which the origin can
be reached with at most (7 — 2) switchings is determined. All
points not in the set @,_, require (# — I} switchings to reach the
origin. By eliminating time from the trajectory equations, express
0,_, in the form

s(x(r)) = O. (5.4-46)

t 01 U 042 U O_, means the set of points which are in at least one of the sets O;,
" Osey Oy,
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Next, we determine the optimal control to be applied at any point
in the state space. The switching function s(x(¢}) defines a switching
hypersurface that divides the state space into two half-spaces.
From one half-space the control u* == +1 is applied to drive the
system to O,_,, where the control switches to —1, until the system
reaches O,_,, where the control again switches to -1, etc., until
the origin is reached. From the other half-space the control se-
quence is reversed; u* = 1 is applied to transfer the system to
O, _,, where the control switches to -1, and so on, until reaching
the origin.

Finally, we determine a combination of physical devices to imple-
ment the time-optimal control law,

Before concluding our consideration of time-optimal problems, let us
solve another second-order example that illustrates the procedure we have
just summarized,

Example 5.4-5. Find the control law for transferring the system

x:(6) = x,(8)

. (5.4-47)
%5{(2) == —axy(f) -+ ul(t)
from an arbitraty initial state X, to the origin in mipimum time. The
admissible controls are constrained by

fulf)i << 1, (5.4-48)
and a is a positive real number.

Theeigenvalues of this system are 0 and —a; thus, since both eigenvalues
are real and nonpositive, the hypotheses of Theorems 5.4-1 through 5.4-3
are satisfied and we know that an optimal control exists that is unique
and has at most {# ~ 1) switchings.

We are again dealing with a second-order system; Ehus, we know that
the optimal control law is determined by a switching curve-~in higher-
dimensional problems switchings occur on hypersurfaces in the state
space.

From the minimum principle and Theorem 5.4-3, we find that the
possible forms for the optimal control are the same as given for Example
5.44 in Eq. (5.4-36).
~ MNext, let us proceed to find the sets O, and O. (from which the origin
can be reached by applying only & = +1, ot &4 = —1) by solving the
differential equations (5.4-47) with u = 4 1. The solutions are

xy(t) = ¢ €~ -k %—[E - (5.4-49)

xy{ty = — %E"" + —“f + 5_"' + € (5.4-50)
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These equations define two families of curves; to determine the curves
which pass through the origin, set x{(f) == x,{¢} = 0 and ¢ = 0 {since the
system Is time invariant, ¢ == ( is an arbitrary reference time), solve for
¢; and ¢;, and substitute in (5.4-49) and (5.4-50) to obtain
i .}:..[1 i E—ar]

a

x(1) = (5.4-51)

X{1) = —t ;!; e-“:F — {5.4-52)
To determine 0., use the upper sign (which corresponds to u = +1),

solve (5.4-51) for 7, and substitute in (5.4-52) to obtain the relationship

x1(6) = — 25In (—-a[xz(r} - mf;n]) - %xz(r),? (5.4-53)

The set of points in the x,- x, plane for which this equation is satisfied is
O.. Similar reasoning yields as the expression for O_

0- = {r0 10 %) = gxln (a5 + L) - Lmo} +
(5.4-34)
Since Eq. (5.4-53) applies for x,{) < 0 and (5.4-54) applies for x,(f) > 0,

the expression for O, {the set of all points that are in either O, 0r @) is
given by

01 = {10, 10 2100 = 228 L (e[ 101 + L) — L)

’ (5.4-55)
The switching function is then
s = 51() = 22 L (dln@ 1+ £]) + 2. (5456)

The switching curves for a = 0.5, 1.0, and 2.0 are shown in Fig. 5-23,
and some typical trajectories for @ = 0.5 are shown in Fig. 5-24. It is
left as an exercise for the reader to verify that for points above the switch-
ing curve the optimal control is #* = —1 until reaching the switching
curve, where #* switches to -1, and remains at +1 until the origin is
reached, at which time #* = 0 is applied to keep the system at the origin.
Similar reasoning gives the optimal control law for points below the
switching curve. In summary, the optimal control law is

4 In denotes the natural logarithm, or log,.
I This notation means that O. is the set of points that satisfy the eguation

x1(t) = - ln (a[xg(t) R -‘11—]) — %—xz(t).
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for x(?) such that s(x(#}) > 0
+1, for x(f) such that s(x(¢)) <0
w*(f) == { —1, for x(¢) such that s(x(#)) = 0 and >0
+1, for %() such that s(x(r)) = 0 and x,()} <0
0, forx(t) =0,

X5 {t)
{
a=0.5 a=1.0 a=20
B
b ®
B ~
0
- X3 (f)
q*
*7
A
a®20 a=10 a=0.35
Figure 5-23 Time-optimal switching curves for Example 5.4-5 with
a=0510,20
X4(8}
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Figure 5-24 Several optimal trajectories for ¥xample 5.4-5 with

a=~4{35
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Summary

In this section we have found that time-optimal controls for a rather
general class of systems are “bang-bang”; that is, the optimal control switches
between its maximum and minimum admissible values.

A procedure for finding time-optimal control laws for time-invariant,
linear regulator systems was discussed and demonstrated for two second-
order systems. Although this procedure is conceptually straightforward, it
does have serious limitations:

1. For higher-order systems (7 = 3) it is generally difficult, if not impos-
sible, to obtain an analytical expression for the switching hypersur-
face.

2. Even in cases where an expression for the switching hypersurface
can be found, physical implementation of the optimal control law may
be quite complicated, indicating that a suboptimal, but easier-to-
implement, control Jaw may be preferable.

3. The procedure is generally not applicable to nonlinear systems, because
of the difficulty of analytically integrating the differcntial equations.

55 MINIMUM CONTROL-EFFORT PROBLEMS

in the preceding section we considered problems in which the objective
was to transfer a system from an arbitrary initial state to a specific target
set as quickly as possible. Let us now consider problems in which control
effort required, rather than elapsed time; is the criterion of optimality. Such
problems arise frequently in aerospace applications, where often there are
limited control resources available for achieving desired objectives.

The class of problems we wiil discuss is the following: Find a control
w*(r) satisfying constraints of the form

Mo Sul) S My,  i=12,....m, (5.5-1)
which transfers a system described by
*(2) = a(x(), u(z), ) (5.5-2)

from an arbitrary initial state x; to a specified target set S(¢) with a minimum
-expenditure of control effort.

As measures of control effort we shall consider the two performance
indices

1w =[5 Bluol] ¢ (559
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and where B is an # % m array that may be explicitly dependent on the states
e . and time. The performance measure to be minimized is
Ty = | [z riu?(.t)] dr, (5.54)
fo Li=1 m

Jw = | [zi [ f) 1] a, (5.5-6)

where B, and r,, i = 1, ..., m, are nonnegative weighting factors. As dis-
cussed in Chapter 2, the fuel consumed by a mass-expulsion thrusting system
is often expressed by an integral of the form (5.5-3); thus, if a performance
measure to be minimized has the form given by J,, we shall refer to the prob-
lem as a minimum-fuel problem. The total electrical energy supplied to a
network of resistors by several voltage and current sources Is given by an
integral of the form (5.5-4); hence, if a performance measure of this form
is to be minimized, we shall say that we wish to solve a minimum-energy
problem. The reader must be cautioned that in a particular problem (5.5-3)
may not represent fuel expenditure, or control energy required may not be
given by (5.5-4); therefore, the results obtained in this section will apply to
the performance measure Jy or J;, not necessarily to the problems of mini-
mizing fuel or energy consumption.

~ Our discussion will be primarily devoted to solving several example
problems that are rather elementary, but nonetheless indicative of the charac-
teristics of fuel and energy-optimal systems.t

and the admissible controls are to satisfy the constraints

—l<u<+1, i=1,2...,m tel[,tlt (557

The Hamiltonian is

(), (), p(1), 1) = f; [ ()| + p'(@Dalx(), )
+ p(OB(x(), Hu(r), (5.5-8)
and the minimum principle requires that
3 1w (0] + P08, 1) + PTOB(), )
_ (5.5-9)
< 2 |w0)] + PHT0a*(0), H + pTOBHD), (), |
Minimum-Fuel Problems

10| + PTOBE, Hut() < 3 1) + PHOBE), u(o)
(5.5-10)

In our discussion of minimum-time problems in Section 5.4 the concept
of reachable states was introduced. Recall that R(f) was used to denote the
set of states that can be reached at time ¢ by starting from an initial state
X, at time #,. Minimum-fuel problems may also be visualized in terms of
reachable states; that is, the minimum-fuel solution is given by the intersec-
tion of the target set S{z) with the set of reachable states R(#), which requires
the smallest amount of consumed fuel. To represent this idea geometrically we
could use a state-time-consumed-fuel coordinate system and determine the
intersections (if any) of S(¢) and R(#). Unfortunately, although such a geomet-
ric representation is helpful as a conceptual device, it is of limited value in
actually obtaining solutions. Instead of pursuing this avenue further, we
shall approach minimum control-effort problems by starting with the neces-
sary conditions provided by Pontryagin’s minimum principle.

for all admissible u(¢), and for all ¢ € [t;, 7,/]. As in Section 5.4 let us express
B in the form

B(x*(1), 1) = [b,(x*(2), t)g b, (x*(), t}é e ::bm(x*(t), 9]

‘where ‘b,.(x*(t), 7) is the ith column of the » X m-dimensional B array.
Assuming that the components of u are independent of one another, we have
from (5.5-10) that

ur@)| + pHObx*(), u(2)

The Form of the Optimal Control for a Class of Minimum-Fuel Problems. L&t < |uf)] + PTOBLED), Hukd) P12 m {5.5-11)
us assume that the state equations of a system are of the form ’ rerr e
‘The definition of |u(#}] is
%(2) = a(x(®), 1) + Bx(2), Hu(), (5.5-3)
' 1 For simplicity we have assumed that M- = —}, M. = +l,and fi=Ifori=1, 2,

+ For additional reading on fuel- and energy-optimal systers see [A-2], [L-3}, and [L-4]. «.., m. The derivation is easily modified if these assumptions are not made.
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wl(e), foruft)y =0
luOH] & { % @ (5.5-12)
—uft), foru(t)<{O;
therefore,
lu{e)| -+ p* (b (x*(0), Nul2)
[1 -+ p*7(ObxM0), D}ule), for uf) =0 (5.5-13a)

{{——1 4 pFObX(E), Nulr), for ut) < 0. (5.5-13b)

If pT(Obx*({), 1) > 1.0, the minimum value of expression (5.5-13a) is
0, because u,(z) = 0; the minimum value of (5.5-13b) is attained for uff)
= -1 and is equal to [+1 — p*T(Ob(x*(2), )] < 0.

If pT(b(x*(2), 1) = 1.0, (5.5-13a) can be made equal to (0 by selecting
u(t) = 0; on the other hand, (5.5-13b) will be 0 for all w(¢) < 0; therefore,
any nonpositive #{¢) will minimize (5.5-13).1

If 0 < p*T(N)bx*(), 1) < 1.0, the minimum values of both (5.5-13a)
and (5.5-13b) are zero and are attained for u{#) = 0.

The same reasoning is used for p*7(Hb(x*(®), ) < 0. In summary, the _'

form of the optimal control is

1.0, for p*T(Ob(X*(1), 1) < —1.0
0,  for —1.0 < p(Obx*(), ) < 1.0

ub(r) = {—1.0, for L0 < p*T(Nb{x*(1),1) (5.5-14)
an undetermined nonnegative value if p*7(0)b{x*(), £) = —1.0
an undetermined nonpositive value if p** ()b x*(), £) = +1.0.

Figure 5-25 illustrates the dependence of the optimal control on its coef-
ficient in the Hamiltonian. Notice that whereas in minimum-time problems
the optimal control is “bang-bang” (see Fig. 5-18) the minimum-fuel control

may be described as “bang-off-bang” (if we assume no singular intervals).

In the remainder of this section we shall consider problems in which the
plant dynamics are linear.

Free Final Time. Let us now consider some examples of linear minimum-
fuel problems in which the final time ¢, is not specified.
Example 5.5-1. The system

X1y = ult) (5.5-15)

is to be transferred from an arbitrary initial state x, o the origin. The
performance measure to be minimized is

+ If p*Th; = 41 for a nonwzero time interval, a singular solution exists; otherwise, a
control switching is indicated.
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Figure 5-25 The relationship between a fuel-optimal control and
its coefficient in the Hamiltonian

ey = [ 1) (5.5-16)
where ¢, is free, and the admissible confrols satisfy
[u()] < 1.0, (5.5-17)
It is desired to determine the optimal control law.
From (5.5-15) and (5.5-16) the Hamiltonian is
S (u(e), w(), p(e)) = |u@) | + p(O)uls). (5.5-18)
The costate equation |
) = — %"'“f =0 (5.5-19)
has a solution of the form
E) = ey, (5.5-20)

where ¢, is a constant.
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From Eq. (5.5-14) with b; = B = |, we have

1.0, for p*(t) =¢; < —1.0
0, for —1.0 < ¢y < 1.0
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Example 5.5-2. It is desired to transfer the system
) = —ax(t) -+ ult) (5.5-27)

from an arbitrary initial state x, to the origin with admissible controls

wH) = {—1.0, for 10 <¢ (5.5-21) satisfying
an undetermined nonnegative value if ¢; = —1.0
an undetermined nonpositive value if ¢; = 1.0 lui)] < 1, (5.5-28)
The solution of the state equation is and a > 0.
The performance measure to be minimized is
*(@) = o + [ ey d; (5.5-22) .
i 76 = [T\ de, (5.529)

thus, for x(¢) =0

where ¢, is free.

0 =xy + r’ ult) dt, (5.5-23) Using the state equation and the performance measure, we find that
° the Hamiftonian is
ot
H(x(t), ult), p(0)) = | u(2)| — pO)ax(t) + pl)ule);  (5.5-30)
i
*o = WI 9 ule) dr. (5.5-24) thus, the costate equation is
Clearly, from (5.5-24) the control u(f) =0, ¢ & [0, ¢,] can be optimal ) G
only if xo == 0—a trivial case. Suppose that x, = 5.0; then each of the O == ap*(), (5.5-31)
controls .
which implies that
ut) = —1, t10,5]
u(r) = ~0.5 t € [0, 10 PHE) = €%, (5.5-32)
) = —0.2, te{0,25 ] ) )
“) 0, 231 (5.5-25) where ¢, is a constant of integration.
u(ty = —0.1, t & [0,50] From Eq. (5.5-14) with b, = B ="1, the form of the optimal control is
—1, re€[0,2] ‘
ue) = {—0.5 e (2,8 +1.0, for p*r) < —1.0

satisfies (5.5-24) and each makes J == 5.0. Now suppose we calculate 2
Jower limit on the fuel required to force this system from x, to the origin.
From (5.5-24)

ixc.;:!_[;’u(:)d:|gf;’gu(z)id:=f. (5.5-26)

But each of the controls of (5.5-25) satisfies J = | x,1; therefore, each of .

these controls is optimal. In this example, the optimal controls are non-

unique. Notice, however, that the optimal controls of Eq. (5.5-25) each -
require a different amount of time to transfer the system to the origin, :

u¥ ) = 0, for
—1.6, for

—10<p*t) < 10
LO < p*(@).

(5.5-33)

Notice that when | p*(f)} passes through the value 1.0, a switching of the
control is indicated. Another possibility is that |p*(¢)] might remain
egual to 1.0 for a finite time interval; however, since

pr(t) = c e
and a > 0, it is clear that this situation cannot occur. It should be em-

phasized that the foregoing development tacitly assumes that an optimal
control exists; we shall test the validity of this assumption shortly.

In the preceding example there were many optimal controls (an infinite :
number); let us now consider an exampie in which an optimal control does -
not exist,

() will be one of the five forms shown in Fig. 5-26, depending on the
value of ¢;. The optimal confrols, given by Eq. (5.5-33), which corre-
spond to Fig. 5-26 are
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Figure 5-26 Possible forms for the costate and the corresponding
fuel-optimal controls
wt(t) = —1, te o] forl<c,
0, re il
u*(t)={ 8 foce <1
"““1: e [r[,tf}’
0, te [0,
w0 = | O5) e 1< <0 5539
+1, te [t
u*(t) = +1, te 8 t] fore << —I
Wy = 0, tefltl] forc, =0.
We shall denote these five forms by «* = [—13}, {0, —1}, {0, 1}, {4},

and {0}, respectively.
The solution of the state equation is
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x(f) = €-9xy + € f ; €% u(T) d. (5.5-35)

Notice that if the control is identically zero, then at ¢ = ¢
x(t5) = €% xg, (5.5-36)

Since the system is stable, it naturally moves toward zerc when no control
is applied. If we are willing to wait long enough, the system will come
arbitrarily close to (but never precisely reach) zero—and without the
expenditure of any control effort at all. However, the problem statement
stipulated that x{#;) =0, not [x{¢;}] < 7}, where # is some arbitrarily small
positive number, If x, > 0, then clearly o* = {—1}, {0, —1} are the only
possible choices for the optimal conirol (why?). X u() = —1 for
t € 10, 7/}, it can be shown from (5.5-35) that x{z,) = @ implies

= In(ax + 1); (5.5-37)

thus, the fuel consumption using this control would be [In (ax, + D}/a.
Now, suppose u(f) = 0 is applied for 0 < ¢ < f; and u(f) = —1 for
£y < <<ty From (5.5-35)

X(t;) = €=y, €= j : e [—1]dr; (5.5-38)
setting x{f;) = 0 and performing the indicated integration, we obtain
0 = e-asrxy — {1 2 e-alrsd], (5.5-39)
Solving for £, — f; gives
tp—ty = — {—m (1 — axye-r), (5.5-40)

but since ¢, is free, axy,¢~2~ can be made arbitrarily small by letting
ty —» cO, 80

[ty — t]—>0 as 1ty > co. (5.5-41)

But ¢; - t; is the interval during which # = —1 is applied, and by
making #; very large the consumed fuel can be made arbitrarily small
¢(but not zero}. Our conclusion is that if ¢, is free an optimal control does
not exist—given any candidate for an optitsal control, it is always pos-
sible to find a control that transfers the system fo the zero state with
less fuel.

Tt 1s left as an exercise for the reader to verify that the same conclusions
hold when x; < 0.
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In the preceding example we have simply verified mathematically what
common sense tells us; if elapsed time is not penalized, and the system moves
toward the desired final state without consuming any fuel, the optimal strat-
egy is to let the system drift as long as possible before any control is applied.
At this point the reader might wonder: what did the minimum principle do
for us? Could we not have deduced the same conclusions without using it
at all? The answer to these questions is that quite likely the same conclusions
could have been reached by intuitive reasoning alone, but the minimum
principle, by specifying the possible forms of the optimal control, greatly
reduced the number of control histories that had to be examined. In addition,
we must remember that our interest is in solving problems that generally
require more than physical reasoning and comon sense.

Let us next discuss minimum-fuel problems with fixed final times.

Fixed Final Time. First, let us reconsider the preceding examples with the
final time specified; that is, 7, = T. The value of T must be at least as large
as t*, the minimum time required to reach the specified target set from the
initial state x,.

Tn Ezample 5.5-1 we found that the optimal control was nonunique—there
were an infinite number of controls that would transfer the system {o x(t,)
— 0 with the minimum possible amount of fuel. The situation with ¢, =T
is much the same unless 7 = ¢*. In this case, the minimum-fuel and mini-
mum-time controls are the same and unique. If, however, T > t*, there are
again an infinite number of controls that are optimal; it is left as an exercise
for the reader to verify that this is the case. Fixing the final time does not
alter the nonunigueness of the optimal controls for the system of Example
5.5-1.

Let us now see if fixing the final time has any effect on the existence of
fuel-optimal controls for the system of Example 5.5-2.

Example 5.5-3. The possible forms for optimal controls and the solution

of the state equation are given in (5.5-34) and (5.5-35). If the fixed final
time T is equal to the minimum fime £* required to reach the origin from
the initial state x,, then w*(f) is either 41 or —1 throughout the entire

interval [0, 77, and
T
X(T) =0 = €7xo + € [ e L1 dr,
or

Xo = Folew — 1]

This expression defines the largest and smallest values of xo from whic

the origin can be reached in a (specified) time T. Initial states that satisfy

(5.542) -

(5.5-428) :
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1
—[e7 — 1] < {xo (5.5-43)

‘cannot be transferred to the origin in time T; therefore, we shall assume
in what follows that

xol <L fer — 11 (5.5-44)

If (5.5-44) is an equality, this means that T == r*; otherwise, 7 > *
and the form of the optimal control must be as shown in Fig. 5-26(53
qr {¢). The optimal control must be nonzero during some part of the
time interval, because we have previously shown that the system will not
reach the origin in the absence of control.

If x;>> 0, the optimal control must have the form u* = {0, —1}
shown in Fig. 5-26(b). Substituting u(@) =0, ¢ < [0, £;}, () = —1,
t € [t;, T, in (5.5-35) and performing the integration, we obtain

X(T) = 0 = €-Txy — %e*ﬂ‘[ea? — €], (5.5-45)

Solving this equation for f,, the time when the control switches from 0
to —1, gives

1

to=—In (67 — axy). (5.5-46)

Simi.larly, if x5 << 0, the optimal control has the form u* = {0, +1}
shown in Fig. 5-26(¢), and

A(T) = 0= €-Txy + —e-s[eeT — ear), (5.5-47)
Solving for the switching time ¢ yields
t) = L In (¢
= + ax,). (5.5-48)
From (5.5-46) and (5.5-48) the optimal control is
0, forxp>0and r < 711— In (6T — axy)
—1, forxg> 0and mé—in(f"f' —axg) =t T
& —
u*r) = (5.5-49)

0, forxg <Oandz < —31- In{eT + axy)

+1, for x < 0 and TI{In (€T + axg) <t <T.
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Notice that the optimal control expressed by (5.5-49) is in open-loop
form, because #*(f} has been expressed in terms of xy and ¢; that is,

w¥{(t) = elxg, 1) {5.5-50}

From an engineering point of view we would prefer to have the optimal
conirol in feedback form; that is,

w*(f) = fx(¢}, 1) (5.5-51)

To obtain the optimal control law, we observe that
T
X(T) = €-sT-1x(t) + €T j eou(t) dt (5.5-52)
t

for all r. We know that during the last part of the time interval the control
is either +1 or —1, depending on whether x{f) is less than zero or greafer
than zero; thus, assuming x(¢) > 0, we have

T
X(T) = 0 = e-atT=dx(r) eﬂaf'[ esdr, t>f. (5553
r
Performing the indicated integration and solving for x(t) gives
X(t) = %{ealf—ﬂ —1], =t (5.5-54)

During the initial part of the time interval, the optimal contro! is zero;
consequently,

x(1) = € %x,, <[y (5.5-55)

The switching of the control from ¢ to —1 occurs when the solution
(5.5-55) for the coasting interval (u = 0) intersects the solution (5.3-54)
for the on-negative interval (u = —1). Figure 5-27 shows these solutions.
Defining

AT —1) & %[e" rea — 13, (5.5-56)

we observe that the control should switch from 0 to —1 when the state
x(t) is equal to z(T — ). It is left as an exercise for the reader to verify
that if — [e°F" — 1}a < x, < 0 the optimal conirol switches from 0 to
-+1 when

x(t) = —z(T — 1) (5.5-57)

To summarize, the optimal control law is
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¥ty =0 u* (1) = -1

Figure 5-27 The two segments of a fuel-optimal trajectory
O < xp < [eoT — 1)/a

~1, for x(0) > 2T — ©)
wty=4 0, forix(Ml <z(T — (5.5-58)
+1, forx(t) < —z(T ~ )

or, more compactly,

0, for|x()j<z(T—1)

u*(r) =
{—Sgn @), for|xWl = 2T~ 0.t  (5.5-582)

An imp_]ementation of this optimal control law is shown in Fig. 5-28.
The ']og:c element shown controls the switch. Notice that the controller
requires a clock to tell it the current value of the time—the control law

is tm}ewarying. Naturally, this complicates the implementation; a time-
mvariant control law would be preferable.

Seiec?z'ng the Ez’nai Time. In the preceding example fixing the final time led
toa time-vary.mg control law. We next ask: “How is the final time specified 7”
To answer this question, let us see how the minimum fuel required depends

on the value of the final time 7. Equations (5.5-46) and (5 indi
: - .5-48
that the control switches from 0 at ) ( ) indicate

1 Here we define sgn (0) & 0.
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Figure 5-28 Implementation of a time-varying fuel-optimal control
law.
£, = % I (e — a| %, ) (5.5-59)

and remains at 41 until the final time is reached; thus, the fuel consumed 8

T —1, ﬂTm%in(e"""—a!xeD.

(5.5-60)
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Using Eq. (5.5-60), the designer can obtain a plot of consumed fuel
versus final time for several values of x, selected from the range of expected
initial conditions; one such curve is shown in Fig. 5-29 for |x,|= 10.0
and ¢ = 1.0. The selection of T is ther made by subjectively evaluating the
information contained in these curves. Figure 5-29 indicates that in this
particular example the value chosen for T will reflect the relative importance
of consumed fuel and elapsed time.

The reader may have noticed that in Examples 5.5-1 through 5.5-3 a
“trade-off” existed between fuel expenditure and elapsed time. The reason
for this is that in each case the target set was the origin, and with no control
applied the state of these systems either moved closer to the origin (Examples
5.5-2 and 5.5-3) or remained constant (Example 5.5-1). If the plants were of
such a form that the states moved away from the target set with no control
applied, the solutions obtained could have been quite different—see Problem

‘5-28.

Fuel consumed
6.1

Il i 1 H T . h 4 i J

it L. 2. 3. 4. S. 6. 7. 3. 9. 10.

Final time, T

Figure 5-29 Dependence of consumed fuel on specified final time
T ixel=10

A Weighted Combination of Elapsed Time and
Consumed Fuel as the Performance Measure

The preceding examples in this section illustrated a trade-off between
elapsed response time and consumed fuel; that is, the fuel expended to
accomplish a specified state transfer was inversely proportional to the time
required for the transfer. One technique for handling problems in which this
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trade-off is present is to include both elapsed time and consumed fuel in the
performance measure. For a system with one control, such a performance
measure would have the form
i

Xu) = j A+ u@ ] de. (5.5-61)
The final time 7, is free, and 4 > O is chosen to weight the relative importance
of elapsed time and fuel expended. For 4 — 0 the optimal system will re-
semble a free-final-time, fuel-optimal system, whereas for A ~ oo the optimal

solution will resemble a time-optimal solution. Let us now reconsider Exam-
ple 5.5-2 with (5.5-61) as the performance measure.

Example 5.5-4. The state equation and control constraint are given in
Egs. (5.5-27) and (5.5-28). The Hamiltonian is

H#(x(t), ult), p)) = A + |u()| — p()ax(r) + p(t)u(r), (5.5-62)
and the costate equation is (again)
() = ap*(t); (5.5-63)

thus,

Py == €%, (5.5-64)

where ¢, is a constant of integration. The requirement that «*(#) minimize
the Hamiltonian on an extremal trajectory is unaffected by the presence
of A in the performance measure; therefore,

1.0, forp*() < —1.0
0, for 10 <p*) <10
W) = ¢ 1.0, for p*(t) > 1.0
undetermined, but nonnegative for p*(¢} = —1.07
undetermined, but nonpositive for p*(f) = +1.0.1

(5.5-65)

If we recall that a > 0, Eq. (5.5-64) ensures that p*(f) cannot equal 1.0
for a nonzero time interval; hence, there are no intervals of singular
control.

Equations (5.5-64) and (5.5-63) indicate that the optimal control must
again be one of the forms shown in Fig. 5-26. Let us now examine the
various alternatives.

Suppose that £, = 0 and u*(f) = 0, ¢ « [0, ¢7]; this implies that

H(H), 0, p*()) = A — p*(fax*(t) forall ¢t [0, 441 (5.5-66)

t If p*(t} = 1.0 for a nonzero time interval, this signals the singular condition,
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In this problem the final time is free and # does not appear explicitly in
the Hamiltonian; therefore, from Eq. {5.3-41),

(5.5-67)

(L), u*(t), pHe) == 0 forallz € [0, £,].
If Eq. (5.5-67) is to be satisfied, then Eq. (5.5-66) implies that
xX*¥() = —}'— ’ 5.5-68
@) ©.3:6%)
or
¥ = —A— forallz e [0 5.5.6
== ac, €% s ff}. ( 3 83)

Since x*(t;) = 0, Eq. (5.5-68a) can be satisfied for A > 0 at ¢, only if
t; —» co, but this implies that the minimum cost approaches co. From
our earlier discussion of this example, however, we know that controls
can be found for which J < co; therefore, we conclude that #(r) =0,
t € [0, t7], cannot be an optimal control.

If &* == {0, ~1} is the form of the optimal control, p*(r) must pass
through the value +1.0 at the time ¢;, when the control switches [see
Eq. (5.5-65)}. In addition, we know from Eq. (5.5-65) that u*{¢,} is some
nonpositive value, so ja*(#;)! == —u*(t,;). The Hamiltonian must be zero
for all £; thus, at time ¢,

), wE), P = A — w(t) — ax*(t) + wr(t) =0, (5.5-69)

which implies that

x*@) = (5.5-70)

A
=
This equation is an important result, for it indicates that if there is a
switching of control from 0 to —1 it occurs when x*(f) passes through
the value A/a. From Eq, (5.5-35)—the solution of the state equations—
and Eq. (5.5-70) we obtain the family of optimal trajectories

() = xs6~ for x{t) > %— (5.5-71a)
x(;) - _‘.z'._g—a&-nz — _I_[l — gmal-nl for O A

= " 1 or 0 < x() < = (5.5-71b)

A contro] of the form [0, —1} cannot transfer the system #(f) = —ax{r)

+ u(?) from a negative initial state value to the origin; hence, Eq. (5.5-71)
applies for x, > 0.

Optimal trajectories for several different values of x; are shown in
Fig. 5-30. Notice that if 0 < xp < A/a, the optimal strategy is to apply
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x{(£)
}

LS

&
Figure 5-30 Several optimal trajectorics for a weighted-time-fuel
performance measure,
w*(f) = —1 until the system reaches x{f) == 0. This is an intuitively

reasonable result, because if A —» oo, all trajectories begin with x, << Afa
and will thus be minimum-time solutions. On the other hand, if L — 0
the line Afa moves very close to zero, and the optimal strategy approaches
that indicated by Example 5.5-2 with free final time; let the system coast
to as near the origin as possible before applying control.

The reader can show that for x, < —A/a, the optimal strategy is to
allow the system to coast [with w*(¢) == 0] until it reaches x(f) = —4/a,
where the optimal control switches to u*(f) = +1.

The optimal control law—which is fime-invariant—is summarized by

-

0, for %— << x{(t)

—1.0, for0 <x(t} < %

WO =3 10, for — % < x() <0 (5.3-72)

0, forx(¢) < — %

0, forx{t)=20.
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Figure 5-31 illustrates this optimal control law and its implementation.
In solving this example the reader should note that we were able to
determine the optimal control law using only the form of the costate
solution—there was no need to solve for the constant of integration ¢,.
We also exploited the necessary condition that

HEHD, w0, M) =0, te[0,] (5.5-73)

for t; free and 5% not explicitly dependent on £, to determine the optimal
control law and to show that the singular condition could not arise.

Let us now consider a somewhat less elementary example, which further
illustrates the use of a weighted-time-fuel performance measure.

Example 5.5-5. Find the optimal control law for transferring the system

X, (1) = x,5(1)

5.5-74
200 = ) 6379

from an arbitrary initial state x(0) = x, = 0 to the final state x(t;) == ¢
with a minimum value of the performance measure

T() = f’ [A -+ u(z) ] dr. (5.5-75)

The admissible controls are constrained by
()| < 1.0; (5.5-76)

the final time ¢, is free, and 4 > 0.
The reader can easily verify that the presence of 4 in the Hamiltonian

(), w(t), PO} = A + )] + PO, (1) + pa(0u())  (5.5-77)

does not alter the form of the optimal control given by Eq. (5.5-14);
therefore, we have

1.0, for p¥(r) < —1.0
0, for —1.0 <pit) < 1.0
w*(r) = { —1.0, for 1.0 < p¥() (5.5-78)
undetermined, but >0 for p¥(#) = ~1.0
undetermined, but <0 for p¥(r) = +1.0.

The costate equations

sxiry — . 9 _
) = Tx; = 0 5579
5O = — g—ff = —p0)
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have solutions of the form

e = ¢

{5.5-80)

PE@) = —eqt + ¢y,
Cleatly, p¥ can change sign at most once, so the optimal control must
have one of the forms (exciuding singular solutions)

u¥ e {0}1 {"i'l}: {"'1}: {0: +1}’ {@, _i}:{‘i'h 9}:

5.5-81
{—1,0} {+1,0, -1}, {—1,0, +1}. ( )

First let us see whether or not there can be any singular solutions.
For p¥{#) to be equal to -1-1.0 during a finite time interval, it is necessary
that ¢; =0 and ¢, == 4-1.0. Substituting p¥(#} = +1 In (5.5-77), and
using (5.5-78) and the definition of the absclute value function, we obtain

), e @), PP = A >0 (5.5-82)

if the singular condition is to occur, but we know (since 2% is explicitly
independent of time and !, is free} that the Hamiltonian must be zero
on an optimal trajectory. We conclude, then, that the singular condition
cannot arise in this problem.

Let us now investigate the control alternatives given by Eq. (5.5-81).
First, observe that none of the alternatives that ends with an interval of
# == { can be optimal because the system (5.5-74) does not move to the
origin with no control applicd. Next, consider the optimal control
candidates

u* = {_1}9 {05 _1}; {+1a 0, —I] {5.5-83)

To be optimal, the trajectories resulting from these three conirol forms
must terminate at the origin with an interval of u* = -1 control.
The system differential equations are the same in this problem as in the
minimum-time problem discussed in Example 5.4-4, so the terminal seg-
ments of these trajectories all lie on the curve B-0 in Fig, 5-20(b). Now,
for any interval during which #(f) = 0 the state equations are

2,00 = x,(8)

0 =0, (5.5-84)

which implies that

x,(£) == ¢4 == & constant

(5.5.35)
x1(8) = 3t + eq.

Thus, as time increases, x,{z) increases or decreases, depending on whether
x,(t) is greater or less than zero when the control switches to u = 0.
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Several trajectories for u = 0 are shown in Fig. 5-32; the direction of
increasing time is indicated by the arrows. Notice that if x,(t) = 0 when
the control switches to zero, the value of x, does not change until the
control becomes nonzero.

xy ()= )Eg(f)

X3 (2}

Figure 5-32 Trajectories for u = 0

Trajectory segments generated by = +1 are the same as trajec-
tories shown in Fig. 5-20(a).

To draw the candidates for an optimal frajectory we simply piece
together segments of the trajectories shown in Figs. 5-20 and 5-32. The
trajectories C-D-E-0, C-F-G-0, and C-H-I-0 shown in Fig. 5-33 are
three candidates for an optimal trajectory which has the initial state Xo.
Our task now is to determine the point on segment C-K, where the
optimal control switches from --I to 0. Once this point is known,
we can easily determine the entire optimal trajectory.

Let ¢, be the time when the optimal control switches from +1 to 0,
and let £, be the time when the optimal control switches from 0 to —1.
Clearly, #; occurs somewhere on segment C-K and 7, on segment K-0.
We know from Eq. (5.4-40) that on K-0

xF() = —§xFAD), (5.5-86)
5C
xf(ty) = —$xF2(1). (5.5-87)
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.Fi.gftre 5-33 Three candidates for the optimal trajectory with
initial state x,

In addition, integrating Eq. (5.5-84) gives

xf(t) = xF(t1) + xF @Dl — 111, (5.5-88)
and from Egs. (5.5-80) and (5.5-78) we obtain
) = —city oy = —10 (5.5-89)
pHt) = —city + ¢ = +1.0. (5.5-90)
Bccaus? p’*,jgzl) == —1 and p¥(s,) = -+1, the necessary condition that
7 be identically zero requires that
A+ oy x¥(t,) =0 (5.5-91)
and
A+ e x¥(t) =0, (5.5-92)

Let us now solve Egs. (5.5-87) through (5.5-92) for x%(¢;).
First we observe that Egs. (5.5-91) and (5.5-92) im
. . 5 ply that
x¥(t)) = x¥{#,) and that g
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—3 : x3(0)
¢y == m’ (5.5‘93) i

Subtracting (5.5-90) from (5.5-89) gives

fp—t]l=— 2, {5.5-94)

C;

which, if we use (5.5-93), becomes

[t — ] = w_—z"a(")l (5.5-95)
Putting this in (5.5-88) yields
xH(ey) = x¥(ry) + A0, (5.5-96)
i )

Substituting the right side of Eq. (5.5-87) for x§(z;) and using the fact
that x§(f;) = x3(z,), yields

-.ix*zg,) = Xty + m&-{—) (5.597)

Collecting terms, we obtain

) = — ;i 4er2(1,), (5.5-98a)

This is the soughi-after result. The values of x, and x, that satisfy Eq.
(5.5-98a) are the locus of points where the control switches from +1 to
0. It is left to the reader to show that for #* = {—1,0, -1} the locus

of points which defines the switching from u* = -1 to #* = 0 is given by
X)) = +}" + 4x*2(t’) (5.5-98b) *
puy ) == R . =+
(b} A

Figure 5-34 (a) Switching curves for weighted-time-fuel optirnal
pe'rformaﬂce. (b} Weighted-time-fuel optimal trajectories for three
initial conditions (A = 1.0)

Notice particularly that Eq. (5.5-98) together with Eq. (5.5-87) and its
counterpart for #*(f) = -1 define the optimal control Jaw. Furthermore,
this optimal control law is time-invariant. The switching curves for
A =0.1, 1.0, and 10.0 and several optimal trajectories for 4 = 1.0 are
shown in Fig. 5-34. Observe that if A — oo the switching curves merge
together—the interval of &* = 0 approaches zero, and trajectories
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approach the time-optimal trajectories of Example 5.4-4. On the other
hand, if A — 0, the interval of «* =0 approaches infinity, and the
trajectories approach fuel-optimal trajectories.

The numerical value of A must be decided upon subjectively by the
designer. To help in making this decision, curves showing the dependence
of elapsed time and consumed fuel on A—such as Fig. 5-35—<could be
plotted for several initial conditions.

1 T
Fuel | Time

2.5 50. =

2.0 40.

Time to
reach x =0

1.0 20.
0.5 10 4
0 8. ] ] i L

0.001 0.01 6.1 1. 10. 1G0.
A

Figure 5-35 The dependence of elapsed time and consumed fuel on
the weighting parameter 4, x(0) = ["‘ (1;(5)]

Minimum-Energy Problems

The characteristics of fuel-optimal problems and energy-optimal problems
are similar; therefore, the following discussion will be limited to one exam-
ple, which illustrates some of the differences between these two types of

systems.
Example 5.5-6, The plant of Examples 5.5-2 and 5.5+4
) = —ax(t) + () (5.5-99)

is to be transferred from an arbitrary initial state, x(0) = x,, to the
origin by a control that minimizes the performance measure

J () = L’ [A + w¥)}de; (5.5-100)

the admissible controls are constrained by

lu()[ < 1. (5.5-101)
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The plant parameter a and the weighting factor A are greater than zero,
and the final time ¢, Is free. The objective is to find the optimal control
law,

The first step, as usual, is to form the Hamiltonian,

H((t), ut), pt)y = A + w?(t) — p(Dax(t) + p(ut).  (5.5-102)
The costate eguation and its solution are
PO = ap() {5.5-103)
and
Pt} = o €™, (5.5-104)

For |u(r}| < 1, the control that minimizes 4 is the solution of the
equation

E
= 2u™(t) + p*e) = 0. (5.5-105)
Notice that o2 is quadratic in «(f) and
g
o= 20, (3.5-106)
$0
w (i} = —4p*(t) (5.5-107)

does globally minimize the Hamiltonian for |#*(2)] < 1, or, equivalently,
for

1p*)| < 2. 5.5-108)

I | p*(1)] 2= 2, then the control that minimizes & is

+1.0, for p*() < —2.0

u¥i) = {
—1.0, for 2.0 < p*(z).

(5.5-109)

Putting Bgs. (5.5-107) and (5.5-109) together, we obtain

1.0, for p*(r) << —2.0
u*(t) = { —Lp*(), for —2.0 < p*(r} < 2.0
- 1.0, for 2.0 < p*(#).

(5.5-110)

This relationship between an extremal control and an exiremal costate
is Hllustrated in Fig. 5-36, There is no possibility of singular solutions
in this example, since there are no values of p*(r) for which the Hamil-
tonian is unaffected by u(¢).
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Figure 5-36 The relationship between an extremal control and
costate

We rule out the possibility that p*() =0 for 1 € [0, 17} {since this
implies w*{f) = 0 for ¢ € [0, t;] and the system would never reach the
origin}; the possible forms for p*(¢) are shown in Fig. 5-37. Corresponding
to the costate curves labeled 1,2, 3, and 4 are the optimal control pos-
sibilities:

L% = {—4p*}, or {—4p* —1.0} (5-5-111)

depending on whether or not the system reaches the origin before p*
attains the value 2.0,

2. u* = {—1.0L (5.5-111b)

3. u* = {—}p*}, or [p%, +1.0L (.5-11i<)

depending on whether or not the system reaches the origin before p*

aftains the value —2.0.

4, u* ={+1.0). (5.5-111d)

The controls given by (5.5-11l1a) and (5.5-111b) are nonpositive for all
t & [0, £,] and correspond to positive state values. This can be seen from
the solution of the state eguation

x(ty) = 0 = el ix(t) 4- €7 j” et ul(T) d, {5.5-112)
£
which implies that

—ex() = j 7 eonu(z) d. (5.5-113)
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Figure 5-37 Possible forms for an extremal costate trajectory

For u(t) nonpositive when 7 « [z, #/], the integral is negative; therefore,
x(r) must be positive, Similarly, the nonnegative controls specified by
Eqgs. (5.5-111c) and (5.5-111d) correspond to negative values of x{¢).
Since ¢ is free, and the Hamiltonian does not contain ¢ explicitly, it is
also necessary that
(R, h*(r), P = 0, t € [ry, £f]. (5.5-114)
If the control saturates at the value —1 when ¢ == £, then from (5.5-110},
p*(t,) = 2.0; substituting u*(#,) = —1 and p*(#;) = 2 in 7, we obtain

), W), pHe)) = A + 1 — 2ax*(t) — 2 =0, (5.5-115)
which implies
A1
X)) = S (5.5-116)
1f the control saturates at -1 when ¢ = 7, then from (5.5-111} 2*(¢) = 1
for t « [#1, £/, and x*{) < x*(t;) for t > ,; thus,
wHr) = —1 for 0 < x*(t) < %ﬁ. (5.5-117a)

Using similar reasoning, we can show that if the control saturates
at the value +1 when ¢ = ¢}, then



u*(t)
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: i.0
A—1 :
X)) = —~7 (5.5-118) F +0.8
; 106
and 3 +04
% ﬁ- s 1 sk, f T0.2
W)=+l for Zope <) <0 (51T | — 3 : R SR : : — X0
. -5 -4 -3 - oLl L 2 3 5.
Notice that if 4 < 1, x*(r,) < 0 in (5.5-116), and x*(#,) > O in (5.5-118), | 0'4__
but (5.5-116) applies for positive state values and (5.5-118) applies for e
negative state values; hence the optimal control does not saturate for | (@) 061
A1 | -0.8+
Let us now examine the unsaturated region where u*(t) = —ip*(r). | —1.0
Again using the necessary condition of Eq. (5.5-114), by substituting i
u*(t) = —1p*(t), we obtain
R e e o e e et e e e e e e e o i i ot o e e -
HHE), w0, p*@) = A + 1p*HE) — pH(Oax*(P) !
- 3 E*2() = Q. (5.5-119) 2 () D) x(f) E
Solving for p*(¢) yields + f ;
P = 2[—ax*t) £ Vax*(OF + i), (3.5-120) i
which implies . |
l
#*@) = [ax*(t) + [ax*OF + 4]. (5.5-121) ANt |
If x*@)> 0, w*(zr) must be negative, so the minus sign apples; for T T T T T T T T T T T T e e e
x*() < 0 the positive sign applies. The optimal control law, if we put Ideal relay |
together Eqs. (5.5-121) and (5.5-117), is ont ]
N o) i1 ’ ’
[ax(t) — &/[ax(®]F + A, for0 < S <) e !
_ A—1 R D E
10, for0 <x(i) < = E
* — —
“ =1410, for — &%l < x(@) <0 (5.5-122)% ] }
[ax() + ~Tax(OF + &}, for x(t) < — A{ L Function generator |
a out |
\0, for x(t) = 0. A=l e
=23 " in pe l
Figure 5-38 illustrates this optimal control law and its implementation. / Al ) ;
Comparing Figs. 5-31(a} and 5-38(a), the reader will note that the s B E
weighted-time-fuel-optimal controls are either “on” (1) or “off” (0), (b) |
whereas the weighted-time-energy-optimal controls can assume all values I ‘
from —1 to +1. CONTROLLER !
_________________________ —

1 The optimal coatrol faw is valid for all state values, so we write x(t) instead of x*(). Figure 5-38 (a) The weighted-time-energy optimal contro} law for
Example 5.5-6: 4 ==20,a==1.0. (b} Implementation of the

weighted-time-energy optimal control law for Example 5.5-6
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To provide an additional basis for comparing this energy-optimal
system with the fuel-optimal system of Example 5.5-4, several optimal
trajectories for each system are shown in Fig. 5-39, For the weighted-
time-energy-optimal system 4 was 2; the value of 4 for the weighted-
time-fuel-optimal system was adjusted for each initial condition to make
the two systems require the same amount of time to reach the origin.
The fuel and energy reguirements for the two systems are summarized
in Table 5-2.

Table 5-2 FUEL AND ENERGY REQUIREMENTS FOR THE SYSTEMS OF
EXAMPLES 5.5-4 AND 5.5-6

Initial Time required Fuel for time- Fuel for  Energyfor time- Energy for

condition to reach fuel-gptimal  time-energy-  energy-opti- time-fuel-
x(0) xt) =0 system optimal system mal spstem  aptimal system
L5 0.982 0.8252 0.8434 0.7473 0.8252
2.0 1.205 0.9138 0.9559 0.8043 0.9138
23 1.393 0.9688 1.0326 0.8356 0.9638
30 1.555 1.0038 1.0883 0.8548 1.0038
5.0 2.034 1.0612 1.2090 0.8858 1.0612
1.0 2.361 1.0788 1.2636 0.8950 1.0788
Summary

In this section we have considered the optimization of systems whose
control effort is to be conserved. Although our discussion was primarily
concerned with the solution of several example problems, it was shown that
the form of fuel-optimal controls for a class of nonlinear systems is “bang-
off-bang”; it was left as an exercise for the reader (Problem 5-30) to show
that the form of energy-optimal controls for the same class of nonlinear
systems is & continuous, saturating function.

In ali of the examples considered a trade-off existed between conservation
of control effort and rapid action. It was found that such problems may be
characterized by nonunique or nonexistent optimal controls when the final
time is free, and that fixing the final time may still result in nonunique optimal
controls or in a time-varying optimal control law. To circumvent these dif-
ficulties, a performance measure consisting of a weighted combination of
elapsed-time and control-effort expended was introduced. In the problems
solved, this form of performance measure resulted in time-invariant optimal
control laws, and, in addition, reflected the trade-off between conservation of
control effort and rapid action. It should be emphasized that there are alter-
native formulations of minimum-control-effort problems (see Problem 5-33)
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Figure 5-3% Weighted-time-fuel and weighted-time-energy optimal
trajectories

and that conserving control effort and obtaining rapid action may not always
be conflicting objectives (see Problems 5-28 and 3-31).

No attempt was made to generalize the results of the examples to a “design
procedure.” The reason for this omission is that unless the system is of low
order, time-invariant, and linear, we have little hope of analytically determin-
ing the optimal control law. The difficulties mentioned at the end of Section
5.4 for time-optimal systems also apply to the energy- and fuel-optimal sys-
tems considered here—only more so. The primary virtue of the discussion in
this section is that it provides insight into the form of the optimal control
and furnishes a starting point for numerical determination of the optimal
control law.

5.6 SINGULAR INTERVALS IN OPTIMAL CONTROL PROBLEMS

In discussing minimum-time and minimum-control-effort problems we
have used Pontryagin’s necessary condition,
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HECX(E), wH(T), P, O < ), u(t), pD, O (5.6-1}

for all ¢ € [, t;] and for all admissible u(¢), to determine u*(f) in terms of
the extremal states and costates. If, however, there is a time interval [£,, £}
of finite duration during which the necessary condition (5.6-1) provides no
information about the relationship between u*(z), x*(¢), and p*(¢), then we
say that the problem is singular. The interval [1,, #,] is called an interval of
singularity, or simply a singular interval.

We shall now investigate the conditions that allow singular intervals to
occur, and the effects of singular intervals on optimal controls and trajec-
tories. To begin our investigation, let us returnto a minimum-time problem
discussed in Section 5.4.

Example 5.6-1. In Example 5.4-4 we considered the problem of trans-
ferring the system

RO R 16]
() = ult) (5.6-2}

from an arbitrary initial state to the origin in minimum time. The admis-
sible controls were required to satisfy the inequality

lu(r)] < 1.0. (5.6-3)

In solving this problem we assumed that a singular interval did not
exist; let us now verify that this assumption was correct.
The Hamiltonian is

(), w(e), B = 1 -+ pr(0) X208} + pa(O)u(0), (5.6-4)
and application of the minimum principle gives
1+ pEOxEO + pFOWr () < 1+ pHOXE®) + pIOu().  (5.6-5)
If there exists a time interval [¢, £,] during which
PO =0, (5.6-6)

then (5.6-5) provides no information about the relationship between #*(7),
x*(f), and p*(r}. Therefore, if

PEO =0  forf e [ty, 1, (5.6-7)

then [#,, #,] is & singular interval.t Let us investigate further to see if this
condition ¢an occur. The costate equations

+ Isolated times when p$(r) passes through zero indicate a switching of the control, not
a singular interval.
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=20

SO = —pH0) ©68)

have solutions of the form

i) =¢, (5,69
p%(f) et —-Clt + Ca. e )
But for p¥(t) = 0 for ¢t € [£,, ;] it is necessary that
¢y =0 (5.6-10a)
and
¢, =0, (5.6-10b)

Substituting these values in the Hamiltonian gives
), @), PN =1 foraltr e {0, t/], (5.6-11)

but since the final time is free and o is explicitly independent of time,
Eq. (5.6-11) violates the necessary condition that
XM, ur (), pre) =0 for all t [0, #7]. (5.6-12)

We conclude that pi(r) cannot be zero during a finite tirne interval, and,
thus, that a singular interval cannot exist.

Let us now discuss in more generality the possibility of singular intervals
occurring in linear minimum-time problems.

Singular Intervals in Linear Time-Qptimal Problems
Consider the minimum-time transfer of the linear, stationary system
x(2) = Ax{(r) + bu(s) {5.6-13)

from an arbitrary initial state x, at ¢ = 0 to some target set S(¢). For simplicity
we shall assume that the control is a scalar. The admissible controls satisfy
the inequality

lu(r)] < 1.0, (5.6-14)

Let us attempt to find conditions that are necessary for the existence of a

singular interval.
The Hamiltonian is

HX(1), u(r), p(6)) == 1 -+ pT(O)AX(?) -+ pT()bult), (5.6-15)
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and from the minimum principle we know that if an optimal control u*
exists it must satisfy

1 + pP*T(OAXE() + p*(Obu(r) < 1 -+ PT(DAXNE) -+ pP*T(Obu(t)  (5.6-16)

for all ¢ € [0, ¢,} and for all admissible u(#). Since the final time is free and
o does not contain 7 explicitly, we also know that

A, w3 (2), pHO) = 1 + pT() Ax*@) + p*T ) b)) =0 (5.6-17)
forall ¢ € [0, ¢,]. From (5.6-16) we observe that [£,, t,]is a singular interval if
pT()b=0 forallz e [f, 1] (5.6-18)

Clearly, this condition occurs if p*() = 0 for ¢ & [z,, 7,]. But this cannot
happen, because substituting p*(f) = 0 in Eq. (5.6-17) leads to the contradic-
tion 1 = Q; therefore,

p¥e) %= 0  foramy t € [0,¢,] (5.6-19)
Equation (5.6-18) is also satisfied (for all #) if
b=10, (5.6-20)

but this indicates that the control does not affect the system at all; we might
say that the system is “completely uncontrollable.” This is our first hint that
perhaps controllability has something to do with the existence of singular
intervals.

Having ruled out p*(#) = 0, or b = 0 as possibilities, let us consider the
remaining alternative, namely that the product p*(1) b= 0 for r  [t,, 1}
If p*7(¢) b is to be zero for a finite time interval, this implies that derivatives
of all orders of p**(¢) b are zero during this interval; that is.

p* ()b =0

%[p*ﬁ"(t)b] =0, k=12,... {5.6-21)

Since b is an 7 x 1 matrix of constants,
a* ¢ . d*
W[P'T(f)h] = W[p”(z)]b
) _
& p (b, (5.622)

From the Hamiltonian the costate equation is

p*(0) = —ATP*(); (5.6-23)
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hence the costate solution is
pH(e) = €72, (5.6-24)

where c is the vector of initial costate values.
Let us write out a few of the derivatives in Eq. (5.6-21); we have

P =0
PT(Ob =0
(b =0
b =0  forr e, 1,L (5.6-25)

Now, using Eqgs. (5.6-23) and (5.6-24), we have
POb = —[ATe"4"¢]"b = 0. (5.6-26)
By applying the matrix identity
M M, ] = MEMTY (5.6-27)
Eq. (5.6-26) becomes
[e-A%c[FAb = 0. (5.6-28)
Similarly, diﬁ"ereﬁtiating Eq. (5.6-23) gives
) = —ATp*(), (5.6-29)
50
PO = [[—AT[—AT]e-*"c|™D = 0. (5.6-30)
Using (5.6-27) twice on the term in brackets gives
fe~4Tc]"A%h = 0. (5.6-31)

The pattern is now clear; continuing to write out the terms of Eq. (5.6-21},
using Egs. (5.6-23), (5.6-24), and (5.6-27), we obtain for the kth derivative
PO == [—1]He A CFA*D == 0, £k =0,1,2,.... (5.6-32)

Cancelling the minus signs, we find that the first # equations arel

1 See Appendix L.
1 Recall that i is the order of the system.



296 The Caleulus of Variations and Pontryagin's Minimum Frinciple Sec. 5.6

[e*"c]'h =0
[e~*"cFAb = 0
feA"e]"A%b = 0

[eA7c A" 1b == O, (5:6-33)

or, written together,
{e-mc}f[b | ADIAZD - .. iA"“*b] — 0, (5.6-33a)

Taking the transpose of both sides and again using Eq. (5.6-27), we find that
this becomes

[b {Abi A% .- EA"”‘b]TE“AT‘c = 0. (5.6-34)

But
£7ATee = p*(1), (5.6-24)

and we have already shown [see Eq. (5.6-19)] that p*(#) 20 for any
t € [0, t,]; therefore, if Eq. (5.6-34) is to be satisfied, the matrix

E.2 [b]Ab|A®] ---iA"“b}

must be singular. From Section 1.2 we know that the matrix E is nonsingular
if and only if the system (5.6-13) is completely controllable.

To summarize, we have found that in linear, stationary, minimum-time
problems:

1. For a singular interval to exist, it is necessary that the system be
uncontroliable.

2. Conversely, if the system is completely controllable, a singular interval
cannot exist.

It can also be shown that if E is singular, a singular interval must exist.
In conclusion, the problem of transferring the system

() = AX(t) -+ bu(f) (5.6-13)

from an arbitrary initial state x, to a specified target set in minimum time
has a singular interval if and only if the system (5.6-13) is not completely
controllable. This necessary and sufficient condition for the existence of an
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interval of singularity can also be extended to the situation where the system
has several inputs {see Problem 5-39).

Singular Intervals in Linear Fuel-Optimal Problems

Let us now investigate minimum-fuel systems to see whether or not sin-
gular intervals can exist. We begin by considering the fuel-optimal control
of the system in Example 5.6-1,

Example 5.6-2. Determine whether the problem of transferring the system

x2,(0) = x,(t)
x,(8) = ul(t) (5.6-35)
from an arbitrary initial state x, to a specified target set S(¢) with mini-

mum fuel expenditure has any singular intervals. The final time is free.
The Hamiltonian is given by

(), ut), p(0)) = | ()| + p1()xo(8) + p(Jult)  (5.6-36)

and from the minimum principle,

L)} -+ pr@OxF@) + pEOe*() < w0
+ pF@xE@ + pFul). (5.6-37)

It is also necessary that on an extremal 5 = §, so

|a£*(#}| -+ pFExFE) + pFu™(e) = 0. (5.6-38)
If [z,, ¢,] is a singular interval, Eq. (5.6-37) indicates that either

P = -+10 foralls e 1, 8] {5.6-39a)
or

o) = 1.0  forallr e[, 1,] {5.6-39b)
In either case, if {5.6-37) is satisfied, Eq. (5.6-38) reduces to

PEHOxE() = 0 forallf € [, 1,1 (5.6-40)
The costate solution, found earlier, is

PH = ¢
DEE) = —cyt + ;. (5.6-9)

In order that p¥(f) = 41 for a finite time interval, ¢; must equal zero,
and ¢, must equal +1.0, If ¢, = 0, p¥(@) = 0 for all £ and Eq. (5.6-40)
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will be satisfied. Erom this analysis, we have determined that a singular
interval can exist, even though this system is completely controllable.
Motice that if a singular interval occurs it will persist for all ¢ € 0, £7;
thus, if the optimal control is singular at all, it is singular throughout
the interval of operation of the system.

Tt is left as an exercise for the reader (Problemn 5-36) to show that
in this problem the existence of a singular interval signals the non-
uniqueness of optimal controls for certain initial states and the non-
existence of optimal controls for the rest of the initial states.

Let us now consider linear fuel-optimal systems in more generality. We
shall assume that the system has one control input and is described by state
equations of the form

%(2) == Ax(f) - bu(r). (5.6-41)
The admissible controls must satisfy
|u()| < 1.0. (5.6-42)

The system is to be transferred from an arbitrary initial state x, to a specified
target set S(r) by a control that minimizes the performance measure

W = | a lu(e)| dt (5.6-43)

with ¢, free. The Hamiltonian is
HX(2), u(0), pO) = ()] + PFOAX() + P (Dbu(r).  (5.6-44)
From the minimum principle

|¥(D) |+ pPTOAXH() -+ p*7 () bu(e) < [u(t)|
+ PT(AXN(1) -+ p(e) bulz). (5.6-45)

From Eq. (5.6-45), we see that for a singular interval to exist it is necessary
that either

Pt b= +1.0 forallt € [t,, £} (5.6-46a)

or

PO b =—10 foralze [, L] (5.6-46b)

If «*(s) minimizes the Hamiltonian, and either (5.6-46a) or (5.6-46b) is
satisfied, then since 3# must be identically zero,
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P} Ax*() = 0. (5.6-47)

If p*7(¢) b is to be either -1 or —1 during the entire time interval [¢,, £;},
then this implies that
F (bl =0, k=1,2
F[p (Ob] = 0, = 1,2, ..., tE[t,t]  {(56-48)
Again using the necessary condition that ##(x*(), u*(z), p*(r)) = 0, and
following the same procedure as for minimum-time problems, we eventually
obtain

[E“AT’CJT[Ab‘EAzbE o lab] =0 (5.649)

[compare this with Eq. (5.6-33a)]. This equation can also be written as

[biab} . iarm [ Arere =0, (5.6-50)
But

€A =p*(@) £ 0 fort € £, £,] (5.6-51)

because if p*(z) = 0, this would imply that p*7(¢) b == 0, which contradicts
Eq. (5.6-46). Thus, if Eq. (5.6-50) is to be satisfied the matrix

[biab)-.-arib|'ar

must be singular. For this matrix to be singular either A or [bi Ab: - - - 14>,
or both must be singular.t Notice that even if the system is completely con-
trollable, in which case [bjAb: --- A" !b] is nonsingular, an interval of
singularity can still occur if the matrix A is singular. Thus a nrecessary con-
dition for a singular interval to exist is that either the system (5.6-41) is not
completely controllable, or A is singular.

Necessary Conditions for Singular Intervals

So far, we have concentrated on one aspect of singular solutions—neces-
sary conditions for their existence. We have censidered only linear, fixed,
single-input systems, but the procedure followed applies as well to systems

T Because determinant [M;M,] = determinant M, - determinant M, if M, and M; are
square matrices; hence, determinant [M;M;] = 0 implies determinant My == O, or deter-
minant M, == 0, or both.
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that have several inputs or are nonlinear. The idea is quite straightforward:
examine the Hamiltonian to determine whether there are situations in which
the minimum principle does not yield sufficient information to determine the
relationship between u*(z), x*(¢), and p*(¢). If this situation occurs, use the

fact that the Hamiltonian must be zero! (and that S, #, ... equal zero)
to determine other necessary conditions for the existence of singular intervals.

Effects of Singular Intervals on Problem Solution

Let us now consider an example that illustrates another facet of singular
problems—the effects of singular intervals on problem solution.

Example 5.6-3. Find the control law that causes the response of the system

Fo{8) = x3(0) (5.6-52a)
2,(t) = ul(t) (5.6-52b)
to minimize the performance measure
(73
J=13 fo [x3(e) + x3(n)] 4t (5.6-53)

The final time ¢, and the final states are free, and the controls are con-
strained by the inequality

ju(i < 1O, (5.6-34)
‘The Hamiltonian is given by
(x{2), u(e), p(O) = 1xH) + §x30) + pr(Bxa(e) + palt)u(o). (5.6-55)
¥rom the minimum principle and (5.6-55)
PEOH() < pF(eur) (5.6-56)

for all admissible a(z) and for all ¢ € [0, £,]. For p#(1) # 0, Eq. (5.6-36)
indicates that

—1.0, forpf() >0

5.6-57
+1.0, for pF() < 0. ( )

w0 = {
Switchings of the optimal control occur at isolated instants when p¥(r) = 0.
On the other hand, if there is a time interval [#,, £,] during which '

ey =0 forall t € [t;, 2L {5.6-58)

+ We assume free final time and  explicitly independent of time.
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then I¢,, ;] is a singular interval; let us investigate this possibility.
Since the final time is free, and time does not appear explicitly in the
Hamiltonian, it is necessary that

XU + $x37() + pHOXFO + pFOuH(n =0 (5.6-59)
forr & [0, ¢/) If pF(ty = O for £ € [#y, £,), then
PE@) = p) = p@) = -+ = 0, ¢ € 14, 1) (5.6-60)
In addition, from Eq. (5.6-59) we have
M & PO $x32() + pRex3) =0 (5.6-61)
for t € [¢, t,], and hence
M=M=M= =0, €[t, 5], {5.6-62)
if a singular interval is to exist.
The costate equations are
DE() = —x(1) (5.6-63)
PO = —x3(@) — pF@). (5.6-64)

During a singular interval, using Egs. (5.6-60) and (5.6-64), we obtain

i) = —x3(@). (5.6-65)
Substituting this in (5.6-61) yiclds
) xFHD — xFH D =0 (5.6-66)
or
{x¥) + O[> — xHD)] =0, fort et 6]l (5.6-66a)
Equation (5.6-66) is satisfied if
XHe) + 2} ) =0 (5.6-67a)
or if
x}e) — x¥ ) =0, forr e [, £,1 (5.6-67h)

By differentiating Eq. (5.6-67a) and substituting in the state equation
(5.6-52a) we find that i

R = —XF1) = x5, (5.6-68)
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which with (5.6-52b) implies
uH) = —xE(), fort e, ) (5.6-69a)

Similarly, differentiating Eq. (5.6-67b) and substituting in the state equa-
tions, we obtain

w¥ () = +xHr), for t & [#, t2}. {5.6-69b)

Equations (5.6-67) define a locus of points in the state plane where
singular controls may exist, and Eq. (5.6-69) gives an explicit expression
for the singular control law. The singular lines, truncated at |x,()| = 1,
because luff)| << 1, are shown in Fig. 5-40. The arrows indicate the
direction of increasing time.

x9(8)
iy

—14

Figure 5-40¢ The singular lines for Example 5.6-3

We have determined two lines in the state plane where the control,
states, and costates all satisfy the mecessary conditions given by the
minimum principle and the requirement that # =0 on an extremal
trajectory. Clearly, since the system moves away from the origin on the
line x, = x,, this segment canoot be part of an optimal trajectory. ‘We
still must determine the optimal control law for states not on the singular
fine, and also if the singular control law is optimal. Let us investigate
some of the possibilities.

Suppose that at £ = 0 the system is af state X, shown in Fig. 5-41.
The optimal control must be -1, because the system is not on the singular
line. By examining the trajectories for this system with u = =1, shown
in Fig. 5-20, Section 5.4, it is clear that the optimal control should initially
be u* = —1. With this control the system trajectory is as shown in Fig.
5-41. We next ask the question: what happens when the trajectory inter-
sects the singular line? Is the optimal control the one that keeps the
systern on the singular line, or should the control continue to beu=—1
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x4y (1)

. Xl(f)

Figure 5-41 Optimal trajectory candidates for Example 5.6-3

until intersecting the curve from which the origin is reached by applying
# == 17 To answer this question, consider what happens when a control
switching is indicated. If »* switches from +1 to —1 at some time ¢,
then it follows that

pEE) =0

P} >0, {(3.6-70)

or, if u* switches from —1to -1 at time ¢;, then this implies

Pt =0 5.6-71
pH) <. G611
Now, since ## = 0, pf(#,) = 0 implies that

o *Zt e 1 yk2
Py = 22X (x‘%(t;)’xz o, (5.6-72)

Substituting this expression into the costate equation (5.6-64) gives

) = $x¥() + 3l — x50,

G
o x3 )

(5.6-73)
By determining the sign of p¥(z,) indicated by Eq. (5.6-73) for various
regions in the state plane, we then know the allowable switchings that
may occur. Table 5-3 shows how the sign of p#(z,) is determined for the
regions of the state plane, and Fig. 5-42 illustrates these regions and the
allowable switchings.
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Table 5-3 DETERMINATION OF ALLOWABLE SWITCHINGS FOR REGIONS OF
THE STATE PLANE
Signof Sign of Sign of Sign of Sign of
Region xi{t1) xQ) x{) Fx2r) xl) —x0) Balts)
R + + + - -
Ry + - -+ + 4
R + - + + -
Rs + - - + +
R - - - + +
Rs - - — - -
Rq - + - — +
Ry — + + - —
x,(1}
4
—* x; (1)

+1 to —1

R

Fipure 5-42 Allowable switchings in various regions of the state

plane

\“\-—-4—/
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Referring to Fig. 5-42, we see that if the trajectory in Fig. 5-41 s
allowed to cross the singular line it is then in a region where switching
from u == -1 to u == -+1 violates the necessary condition that 4 = 0.
We conclude then that the optimal trajectory beginning at this value of
X, must have its terminal segment on the singular line.

‘When an initial trajectory segment with #* = +£1 does not intersect
the singular line with {x;{f)| = 1, then the optimal control will switch
to u* == F1 and the optimal trajectory will eventually reach either the
origin or the singular line. To determine where the switching occurs,
let 1, be the time when the trajectory reaches the singular line or the
origin. WNotice that the origin lies on the singular line, and from (5.6-60)

pa(ts) = 0. (5.6-74)

Solving for the value of p,(¢;) on the line x,(#,} = —x,(f,}, which
satisfies Bq. (5.6-59), gives

i) = —x3(t,). (5.6-75)

Using the values of the costates given by (5.6-74) and (5.6-75) as
initial conditions, and integrating the state and costate equations back-
ward in time with ¥ = -1, we can determine the locations in the state
plane where p,(1) again passes through zero. Doing this for several values
of x,(t,) (including zero) on the singular line, we obtain a locus of points
that defines the switching curve C-D-Q-E-F shown in Fig. 5-43. The
optimal control law is given by

x40}
¥

> x (£}

Figure 543 The optimal switching curve for Example 5.6-3
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—1, for x(?) to the right of C-0-F
+1, for x(f) to the left of C-0-F
u*(t) = ¢ —1, for x(t) on segment C-D (5.6-76)
1, for x{#) on segment E-F
—x,{t), for x(s) on segment D-0-E,

Several optimal trajectories are pictured in Fig. 5-44; notice that the
switching curve is not a trajectory except on the singular line D-0-E.
As further illustration of this point, Fig, 5-45 shows the optimal switching
curve, the curve x; = }x%, which is the switching curve for bang-bang
operation, the curve x, = ix% -+ %, which is the x4 = 41 trajectory that
intersects the singular line at the point {I, —1), and the line x; = —X,.
QObserve that the optimal switching curve is above the line x; = —x;
for all positive values of x; ; therefore, the switchings that occur on segment
E-F do not violate the allowable switchings indicated in Fig. 5-42. Simi-
larly, it can be verified that segment C-D of the switching curve lies
entirely in region R, of the state plane, and so does not cause the allow-
able switching conditions to be violated.

x2{f)
b

Figure 544 Some optimal trajectories for Example 5.6-3

Summary

The existence of singular intervals, although complicating the solution
of optimal control problems, may turn out to be helpful in other respecis.

Xz(f)

Figure 5-45 The optimal switching curye and three suboptimal

alternatives
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For example, a singular interval may indicate that an optimal control is non-
unique; in this case we can select the optimal control which is easiest to
implement, or which has other desirable features.

QOur discussion has emphasized the following aspects of singular problems:

1. The determination of necessary conditions for the existence of singular
intervals.

2. The use of these necessary conditions to find the regions in the state
space where a singular control law exists.

3. The investigation of the singular control law to ascertain whether or
not it is optimal.

The reader interested in additional material on singular intervals should
refer to [A-2], [A-3], [J-1], [J-2], [R-2], [R-3], and [S-4].

5.7 SUMMARY AND CONCLUSIONS

In this chapter we have discussed the application of variational techniques
to optimal control problems. The calculus of variations was used to derive
a set of necessary conditions that must be satisfied by an optimal control and
its associated state-costate trajectory. These necessary conditions for opti-
mality lead to a (generally nonlinear) two-point boundary-value problem
that must be solved to determine an explicit expression for the optimal con-
trol. In linear regulator problems, the resulting two-point boundary-value
problem is linear and can be solved to obtain a linear, time-varying optimal
control law.

Motivated by an interest in problems with bounded control or state
variables, we then gave a heuristic derivation of Pontryagin’s minimum
principle and discussed a technique for dealing with state inequality con-
straints. The remainder of the chapter was concerned with applications of
Pontryagin’s minimum principle to problems with bounded admissible
controls. Several examples of minimum-time and minimum-control-effort
systems were discussed. These examples were elementary, but nonetheless
indicative of procedures that are useful in obtaining optimal control laws.
Finally, we investigated the occurrence of singular intervals during which
the minimum principle fails to yield a relationship for the extremal control
in terms of the extremal state-costate trajectory.

This chapter was not intended to be a handbook of solutions to optimal
control problems. Indeed, the difficulties encountered should make the reader
aware that no such handbook exists. We may regard the linear regulator
problem as being solved; however, in the sections on minimum-time and
minimum-control-effort problems we found that analytical solutions are
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generally impossible for higher-order systems (# = 3} even if the systems are

" linear and time-invariant. For nonlinear systems it is even more difficult to

obtain closed-form expressions for the optimal control laws.

Realistically, then, we must view the minimum principle as a starting
point for obtaining numerical solutions to optimal contro! problems. From
the minimum principle we obtain knowledge of the form of the optimal
control (if it exists) and a statement of the two-point boundary-value prob-
lern, which, when solved, yields an explicit relationship for the optimal
control.
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