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Introduction to Optimization Theory
/

8.1 INTRODUCTION

The Second World War provided a great impetus to the development
of the feedback control systems area. After a somewhat dormant period
in the 1950s, the area again received a strong stimulus. This was caused
by the interest in industrial automation and, even more, by the advent of
the space age. Modern control system design has become exceedingly
complex because of the desire to control large-scale, inherently nonlinear
processes which sometimes operate in widely changing environments, and
because of extremely stringent specifications on the performance of such
systems. Optimization theory appears to offer the control system engineer
a means of combating the complexities of modern control system design.
It is an excellent example of the usage of linear vector space concepts.
Although much research is presently being performed in the optimization
area, this chapter is limited to attempting to provide the reader with the
basics of optimization theory, and to indicating the nature of some of the
difficulties involved with its application.

The philosophy of optimization theory is to design the *best” system.
This, of course, implies some criterion or performance index for judging
what is “best.” The determination of a suitable performance index is often
a problem in itself. Performance indices are discussed in later sections.

In comparison with more conventional methods for feedback control
system design, the advantages of optimization theory include:

1. The design procedure is more direct, because of the inclusion of all
the important aspects of performance in a single design index.

2. The best the designer can hope to achieve with respect to the perform-
ance index is apparent. Thus the ultimate performance limitations, and
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the extent to which these limitations affect a given design problem, are
indicated.

3. Inconsistent sets of performance specifications are revealed.

4. Prediction is naturally included in the procedure, because the design
index evaluates performance over the future interval of control.

5. The resulting control system is adaptive, if the design index is refor-
mulated and the controller parameters recomputed on-line.

6. Time-varying processes do not cause any added difficulty, assuming
that a computer is used to determine the optimum.

7. Nonlinear processes can be treated directly, however, at the expense
of increased computational complexity.

The difficulties of optimization theory include:

1. The conversion of prescribed design specifications into a meaningful
mathematical performance index is not a straightforward process, and it
may involve trial and error.

2. Existing algorithms for the computation of the optimum control
signals in nonlinear cases require complex computer programs and, in some
cases, a large amount of computer time.

3. Proven techniques for the design of controllers for large regions of
state space, rather than merely for small regions about nominal trajectories,
are presently unavailable for nonlinear cases.

4. The resulting control system performance is highly sensitive to erro-
neous assumptions about and/or changes in the values of the parameters
of the controlied elements,

Considerable research is presently being devoted to these limitations.

The subject of system optimization had its birth in the optimum linear
filter theory of Wiener.! This theory was extended to the time-varying
case by Booton.? Neither of these is directly applicable to control system
optimization, however, since the limitations of physical components are
not considered. On the basis of Wiener’s optimum filter theory, Newton
considered the limitations of physical components by introducing con-
straints on functions of signals in the system.* With reference to Fig.
8.1-1a, Newton’s method can be viewed as determining the transfer func-
tion of the optimum compensation for the system. As such, it is necessarily
restricted to linear systems. Furthermore, this method neglects the effect
of the configuration of the system on its performance.

A departure from the preceding procedure is indicated with respect to
Fig. 8.1-1b, by seeking the optimum control signals for the controlled
elements. The optimum control law, i.e., the dependence of these optimum
conirol signals on the state variables of the conirolled elements and the
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desired system behavior, must also be determined in order to realize the
system. The optimum control law indicates the optimum system configura-
tion.

The latter approach to system optimization is utilized in the modern
procedures developed around the dynamic programing concepts of Bell-
man, and the extended variational calculus methods of Pontryagin.
Numerous others, some of whom are mentioned later in this chapter, have
also made many important contributions to optimization theory. Notable
among these is Merriam, who has been particularly concerned with mak-
ing optimization theory of practical value to the control engineer. Much
of the material of this chapter has been taken from his writings and those
of Ellert, one of his associates.

8.2 DESIGN REQUIREMENTS AND PERFORMANCE INDICES

The primary task of the control engineer is to design practical control
systems for physical processes. The application of optimization theory to
this problem, as considered here, consists of three fundamental steps. They
are:

I. Formulation of mathematical models for both the behavior of the
physical process to be controlled and the performance requirements. The
mathematical model of the performance requirements is the performance
index.

2. Computation of the optimum control signals.

3. Synthesis of a controller to generate the optimum control signals.

This section considers various performance indices and their relationship
to the performance requirements.
Control systems must satisfy numerous requirements relating to the
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performance of the system and its implernentation. For example, system
performance requirements may include:

1. Desired system response.

2. Desired control effort.

3. Limits on the control effort.

4, Limits on the system response, dictated either by the nature of the
system mission or by saturation limits.

5. Desired system response at some future terminal time.

6. Minimization or maximization of some function of a process variable
or time.

7. Disturbances, initial conditions, parameter variations, etc., which
must be tolerated.

8. Damping ratio.

9. Undamped natural frequency.

Requirements 1 through 7 are objective requirements, since they can be
mathematically described for any system. The last two requirements are
subjective, however, because they have a precise meaning for linear, second
order, time-invariant systems only. Nevertheless, they are useful for
approximately characterizing the relative

stability and the speed of response of more ﬁ(t)ﬂﬁisturbance

general feedback systems. signats
The system implementation require- m{z) | Controlled | ¥(t)
ments may include the specification of Control | lements o ¢
. ignal i
1. Available sensors. Henas x(8) | State signals
2. Awvailable controller components. signals
3. Systemn size, weight, cost, and reli- Fig. 8.2:1

ability.
Implementation requirements are exceedingly difficult to include directly
in any design procedure.

The performance index is a mathematical model of the performance
requirements. It is expressed in terms of the inputs, outputs, and state
signals of the conirolled elements. These are indicated in Fig. 8.2-1.
Many performance indices have been proposed in the literature.™¢ A
substantial portion of these are special cases of the performance index

[ = f ® f)gle(d)] de

where f(#) is a factor which weights g[e(f)] as a function of time. gle(f)]isa
function of the error e(f). f(¢) is usually one of the functions 1,7, #%, ...,
or t™, and gle(?)] is usually €*(z) or |e(f}]. In particular, the integral square
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error index

I= f “es) dt (8.2-1)

leads to responses which tend not to be sufficiently damped, because large
errors are counted more heavily than small errors. Thus minimization of
the index requires that large errors be removed rapidly. However, this
performance index is often used because of its analytical tractability.
Performance indices of the form of Eq. 8.2-1 are not suitable when
multiple design specifications are encountered, since the error may be only
one of these specifications. For this reason, performance indices of more
general forms have been proposed. For example, Ellert uses the form*

= ‘T‘E ( ¢ii(t)[y?(t) - .%—(t)T D yf(t)l; 20, r‘)

to li=1 ly,
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where 3,2 and m,* are the desired output and control effort, respectively;
L, and [, are related to limits on y, and m,, respectively; ¢,(6), £,.(0),
¥;(t) and B,(f) are time-dependent weighting factors; and v, and g, are
integers. The performance index considers the system behavior during the
future time interval 4, < ¢ < ¢, where t, may be a constant, a variable, or
infinity.

The weighting factors permit the various terms of the performance
index to be emphasized or weighted in time, depending upon the relative
importance of these terms. The terms raised to the powers y; and u,; are
penalty functions, which tend to maintain output and control signals
within prescribed limits. This is accomplished by heavily weighting these
signals, if they exceed their limits,

A wunique set of weighting factors and penalty functions to satisfy
prescribed design specifications generally does not exist. Furthermore, the
selection of these quantities is unfortunately not a straightforward matter.
However, the lack of uniqueness of the weighting factors and penalty
functions does introduce a flexibility which makes their selection simpler.
From an engineering viewpoint, an efficient procedure for selecting weight-
ing factors and penalty functions is needed. As discussed in later sections,
Ellert has partially answered this need.

The performance indices above, and many of the specialized indices
found in the literature, can be put in the form_ '

i
I=£qmam@nwr (8.2:3)

”i)] it (8.22)
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For example, in the flight of a vehicle from one point to another with least
fuel consumption, minimization of Eq. 8.2-3 is desirable, if ¢(y, m, t) is
chosen as the fuel consumption per unit time. In chemical process control,
one might seek a maximum of Eq. 8.2-3. In the latter case, however,
qly, m, ¢] typically would represent the instantaneous yield of the Process.
As a final illustration, minimization of the time required for a system to go
from one state to another can be accomplished by minimizing Eq. 8.2-3,
with g[y, m, ¢] chosen to be a constant, In such & case, constraints would
exist on the maximum velocities and accelerations which can be tolerated.

Many more examples of optimization problems could be listed. How-
ever, the important aspect of this discussion is that, even though these
problems are different, they are all closely related mathematically by the
objective of finding a maximum or a minimum of Eq. 8.2-3, Problems
of this type can be solved by Pontryagin’s method, or by the dynamic
programming techniques of Bellman.

8.3 NECESSARY CONDITIONS FOR AN EXTREMUM—-
VARIATIONAL CALCULUS APPRCACH

The problem to be considered is one of determining the control signals
m(z) which minimize (or maximize) the performance index of Eq. 8.2-3.
The controlled elements are described by the equations

% == f(x, m, 1)

y = g(X, £
The elements of f are assumed to be continuous with respect to the ele-
ments of X and m, and continuously differentiable with respect to the ele-
ments of X. The controlled elements are assumed to be observable and
controllable, i.e., all state variables are measureable, and it is possible to
excite every state of the controlled elements. The presentation here is
further limited to the special case for which there are no restrictions on the
amplitudes of the control signals or state variables. A more general pres-
entation is given by Pontryagin et al.??

Before considering minimization (maximization) of a functional, as
Eq. 8.2-3, it is worthwhile to consider the more familiar case of minimiza-
tion (maximization) of a function. All engineers have encountered prob-
lems of trying to minimize (maximize) a function of a finite number of
independent variables, say 6(x). Points at which all the first partial deriva-
tives of the function are zero are known as stationary points. If the function

is a minimum (maximum} at a stationary point, then that point is called an
extremum.

(8.3-1)
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If the variables of the function are not independent but are subject to
equality constraints, e.g., w(x} = 0, necessary conditions for an extremum
can be determined by Lagrange’s method of multipliers. This method cop-
sists in introducing as many new parameters (Lagrange multipliers)
P1s Pas - - - (which may be regarded as the components of a vector p) as
there are constraint equations, forming the function 8, == 6(x) 4+ (p, w)
and determining necessary conditions for an extremum from

grad, 0, =0 and grad 8, = 0.

Thus these conditions are

e Yo ... =0
dx, Oz,
o6 a8
Sl e 2o —f ==
o wi(X) o, Wa(X)

Lagrange’s method avoids having to solve the constraint equations for the
#'s and substituting the results into 8(x). This is accomplished by intro-
ducing the above additional resirictions.

The caleulus of variations is also concerned with the determination of
extrema.? Rather than extrema of functions, however, the object of the
calculus of variations is to determine extrema of functionals. Section 1.4
indicates that, if = has a unique value corresponding to each value of ¢
lying in some domain, then «(r) is said to be a function of ¢ for that domain;
to each value of ¢, there corresponds a value of . In essence, a functional
is a function of a function, rather than of a variable. For example, f[2(2)}
is a functional if, to each function x(t), there corresponds a value of f.
The performance index 7 of Eq. 8.2-3 is also a functional.

If the second of Eqgs. 8.3-1 is substituted into Eq. 8.2-3, the result can be
written as]

H
=1 fix m, 0 dt (8.3-2)
$o

Then the problem of determining an extremum of Eq. 8.3-2 for the con-
trolled elements of Eqs. 8.3-1, is one of determining the function m(z)
which makes [ .an extremum, subject to the n equality constraints
f(x, m, 1) — % = 0. The method of Lagrange multipliers is also useful for

t Reference 18 is a particularly readable presentation of the calculus of variations.
Reference 19 provides a higher degree of rigot.

1 In order to exclude degenerate problems, it is assumed that all state variables contri-
bute to the value of the performance index. This may be due to the state variables
appearing explicitly in fo, or through their effect on other state variables which appear

in fy.
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minimizing (maximizing) functionals, subject to functional equality
constraints, which is the problem of interest.
Thus the functional

i
I, ;J; (fo+ p.f— %)) drt (8.3-3)

is formed. The components of p are Lagrange multipliers. If the optimum
values (i.e., those furnishing the extremum of I) of x, m, and p are denoted
by x% m% and p®, respectively, then perturbations in these variables from
their optimun: values are indicated by

x = x% + Ax®
m = m® + Bm® (8.3-4)
p=7p"+1Ip’

where A, B, and I' are diagonal matrices with elements «;, §; and y,,

respectively. «;, §;, and y, are parameters which adjust the amount of

perturbation that the quantities 2,% m.%, and p,® introduce into z,, m; and

7:» respectively. It is assumed that these perturbations are unrestricted.
From the first of Eqs. 8.3-4, it is apparent that

X =X"+ AX® (8.3-5)

If Eqs. 8.3-4 and 8.3-5 are substituted into Eq. 8.3-3, I, has its optimum
value I for a == Al =0, = Bl = 0, v = I'l = §, since x, m, and p
then have their optimum values x° m® and p° respectively. Thus Eq.
8.3-3 has a stationary point at o == § = y == 0, and necessary conditions
for the optimum are

graé“ Ic !u:ﬁmymﬂ =0

ampmy=0 = O (8.3-6)
grad'v Ic lu:f&uyxo =0

Application of Eq. 8.3-6 to Eq. 8.3-3, after substitution of Eqgs. 8.3-4 and
8.3-3, yields

gradg 7, |

i P
f (X grad o Hco -+ X7 gradge Hcﬁ) dit =0
{,

0
1
f "(M® gradyo HS) di = 0 (8.3-7)
#
0 .
f (P, grads H dr =0
#p

where X°, M¢ and P® are diagonal matrices whose elements are the ele-
ments of X%, m®, and p% respectively, and H® is the optimum value of the
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integrand of Eq. 8.3-3, i.e., H,° = fi? 4 (p° £° — X%). Integration by parts
of the second term in the first of Eqs. 8.3-7 allows that equation to be
written as

¢ fmat
f "xo [gradxe HY — 4 (gradye HCG)J dt + X" gradgp H ' ~o
™ dt et
x* is an arbitrary perturbation, except at ¢ = 2, and possibly at 7 = 7,.
At 1 = 1, x* == 0, s0 that x%(zy) = x(7,) in order for the optimum solution
to apply to the problem of interest. For a problem with specified terminal
conditions x(#,), x%(¢,) = x(¢;) and x°(¢,) = 0. If the terminal conditions
on X are not specified, x°(¢,) is arbitrary. Thus the preceding equation
requires that

grado g ' — %(gradie HY =0 {8.3-8)

and either X%} = x(¢,) or
grado H L, =0 (8.3-9)
The Iast two of Eqs. 8.3-7 are satisfied if
grad o H.' = 0
grad o H' =0
Equations 8.3-8 and 8.3-10, together with the boundary conditions x°(z,) =
x(f,), and either x°(¢;) = x(¢,) or Eq. 8.3-9, constitute the first necessary
condition for an optimum.
Pontryagin’s equations are usually written in a form analogous to

Hamilton’s equations of analytical mechanics. This can be accomplished
by defining #, analogous to the Hamiltonian, as

H(x,m,p, t) = {p, (8.3-11)
The vector p in Eq. 8.3-11 differs from the one of Eq. 8.3-3 in that it has a
zeroth component equal to unity. Likewise, f in Eq. 8.3-11 differs from
the one of Eq. 8.3-1 in that it has a zeroth component equal to fo(x, m, ¢)
of Eq. 8.3-2. Thus p and f are now vectors with n - 1 components.
In terms of the optimum H, the first necessary condition for an optimum
for the case of unspecified terminal conditions on the state variables can
be written as

(8.3-10)

grad o H' = —p°
grad . H° = 0 (8.3-12)
grad,o H® = x°

subject to the boundary conditions x°(,) = x(#,) and p%#,) = 0. For
specified terminal conditions on x° the latter boundary condition is

t Thelatter boundary conditions are a special case of the so-called transversality condition.
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replaced by x°(#,) = x(#,).1 The X° equation above is equivalent to Eq.
8.3-2 and the first of Eqs. 8.3-1, and hence is always part of the problem
statement. Equations 8.3-12 are called the Euler or Hamilton equations in
canonic form. Their simultaneous solution yields the control signal
m%(z) which makes 7 stationary.

In the calculus of variations, a distinction is made between weak and
strong maxima and minima. In addition to the Euler equations, two other
necessary conditions for 2 weak maximum or minimum must be satisfied.
They are the Legendre condition and the Jacobi condition.®® The Legen-
dre condition for a weak minimum. requires that the matrix (see Eq.
4.11-11) grad,, > <grad,,, H° be positive definite. This is analogous to
the requirement that the second derivative be positive in the minimization
of a function by the usual techniques of calculus, As indicated in the next
section, proper formulation of f; guaraniees satisfaction of the Legendre
condition, if the controlled elements are linear.

The Jacobi condition requires that no conjugate points exist for #; <
t £ £ A conjugate point is one at which x,%(ty) is restricted, where 1, <
I < {1 Hence, at such a point, the perturbation in x,(¢) is restricted.
If a conjugate point existed, the controller parameters could become un-
bounded. Thus, to ensure bounded controller parameters, the Jacobi
condition must be satisfied. If the controlled elements are linear, proper
formulation of f; also guarantees satisfaction of the Jacobi condition.
This is indicated in Section 8.4.

Coordinate Optimization Interpretation

Pontryagin’s formulation of the optimization problem restates the prob-
lem as one of optimization of a coordinate. In essence, a zeroth coordinate
of x is introduced as

i
xﬂ(t} mJ; fﬂ(x= m, T) dT

5o that #(f) = fy(x, m, #}. Optimization of #,(z) at ¢ = 2, is optimization
of the performance index, since

¢
I = 1)) = f "%, m, 1) dt (8.3-13)

which is Bq. 8.32. °
For first order controlled elements described by &, = fi(zy, my, £) the
optimization problem with a specified terminal condition #,%(¢,) == = (2,
can be interpreted in the zgx,-plane of Fig. 8.3-1. (The generalization to
t Problems in which some, but not all, of the state variables have specified terminal

conditions are also considered in the Hterature ™

f Conjugate points have very interesting geometrical interpretations.’®** However,
these are beyond the scope intended here.
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higher order controlled elements is straightforward, but difficult to picture.)
The desired terminal condition is the line »; = 2,%(¢,). For various my(2),
corresponding values of I = wyft,) can be determined from Eq. 8.3-13,
Assuming that minimum 7 is desired, the optimum control signal #2,%(¢)
is the one for which «,(7,) = I has the smallest coordinate z%(t,) = I°.
If I does not depend upon my(?), a desirable m;°(z) is an impulse. Then
z,(#) would be transferred from z;(#,) to #,%(,) in zero time, and hence with
zero I However, impulses in m,(¢) could not be realized physically.
m,*(#) must be chosen from a set of admissible control signals, which are
defined to be bounded, and also continuous for all 7, < ¢ < t,, except
possibly at a finite number of £

In the case of unspecified terminal conditions on x°(¢,), all components of
p* are zero at ¢ = ¢, except for the py®(#,) component, which is unity. Thus
the problem of minimizing (maximizing) I == a°(t,) can be viewed as
minimizing (maximizing) {p, x) at t = #,, In other words, starting from the
initial conditions x%(¢,}, m%(f) is to be chosen to move the state of the system
(including the z, component) as little (much) as possible in the direction of
the vector p. But the first and last of Eqs. 8.3-12 are the same as Hamil-
ton’s equations of analytical mechanics. H is analogous to the Hamil-
tonian, or total energy, and p and x are analogous to the momenta and
generalized coordinates, respectively. Since H is the total emergy for
moving the state, x, m(¢) should be chosen at each instant of time to mini-
mize (maximize) H. This is indicated by the second of Eqs. 8.3-12.

8.4 LINEAR OPTIMIZATION PROBLEMS

In this section, it is assumed that the controiled elements are described
by
% = A(t)x + B(f)m 8.4-1)
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and the performance index is given by substituting
Jolx m, 1) = $[{(x* — x), Qx* — x)) + (m, Zm)]

into Eq. 8.3-2. x%is the desired state behavior, and & and Z are symmetric

matrices which are possibly time-varying.t The dimensions of & are less

than (# x ), unless all components of (x? — x) are included in f;} The

objective is to determine x°, m® and the dependence of m® on x° and x*.
From Eq. 8.3-10,

HY = }[(x* — x% Qx* — x%) -+ (m°, Zm")] + (p°, Ax® + Bm")

From the second of Egs. 8.3-12, Zm® + BTp® == 0 since Z is symmetric,
Then

m® = —Z1B7p° (8.4-2)

This is an expression for the optimum control signal, but it is in terms of
p®. The control law requires m%(t) in terms of x*(z).

From the first of Eqs. 8.3-12, j° = —A%p? + Q(x* — x). From Eq.
8.4-1, after substituting Eq. 8.4-2, ® = Ax® — BZ'B7p®, The last two
equations can be written as

P Il R W
P |-  —aA” p°+ x* (8.43)

Equation 8.4-3 represents 2# linear, first order differential equations in the
2n unknowns % %% ..., 2.0 pf el ..., p% They are subject to n
boundary conditions at ¢ = #,, i.e., x°(2y) = x(f,), and n boundary condi-
tions at ¢ = ¢, i.e.. either p°(¢;) = @ or x%(¢,) = x(z,), depending upon the
nature of the problem. Equation 8.4-3, subject to the preceding boundary
conditions, is a two-point boundary value problem. Its solution yields the
optimun. control signal m°(z) and the corresponding behavior of the con-
trolled elements x°(¢) for 7, < £ < 7.

Conversion of the Two-Point Boundary Value Problem

For the case under consideration, the two-point boundary value problem
can be converted into two one-point boundary value problems. Equation
8.4-3 consists of a set of interrelated linear differential equations for x° and

T The Euler equations together with a positive semidefinite & and a positive definite Z
constitute necessary and sufficient conditions for a minimum of the performance index,
for the class of problems considered here. Furthermore, the corresponding linear
optimum control system is stable (asymptotically stable if & is positive definite).?
1 A similar statement holds with respect to Z in terms of the dimensions of m.
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p°. Thus x° and p® must be related by a linear transformation. This trans-
formation may be expressed by

p° = Kx0 — v (8.4-4)

where K is a square matrix of time-varying gains and v is a time-varying
vector. Substitution of Eq. 8.4-4 into the second of Eqgs. 8.4-3 yields

Kx® + Kx®— %= —Qx* — ATEx? + ATV’ + Qx*

Then substituting for x° from the first of Eqs. 8.4-3 and using Eq. 8.4-4
results in

(K + KA + ATK — KBZ'BYK + Q)x°
=¥ 4+ (AT — BZ'BT)¥ -+ Qx*
Since this expression must be valid for all possible x, the conditions are
K + KA + ATK — KBZ'B7K + Q = [0]

8.4-5
¥+ (AT — KBZBTW' + Qx4 = 0 (8:4-5)

The first of Eqs. 8.4-5 is a set of first order nonlinear differential equations
of the Riceati type.®® The second of Eqs. 8.4-5 is a set of linear, time-vary-
ing, first order differential equations.f In the case of unspecified terminal
conditions on x°%, p°(z,) = 0. Thus the boundary conditions on K and v°
for this case are that each of the elements of K and v* is zero at ¢t = ¢,, as
indicated by Eq. 8.4-4.

Once K and v* are determined, the control law for the optimum system
is given by substituting Eq. 8.4-4 inte Eq. 8.4-2 to obtain

m’ = —ZBT(Ex" — v) (8.4-6)

Thus, for this case, the control law is linear, and the controller feedback
gains K are independent of the state of the controlled elements. Further-
maore, since the control law is independent of the initial conditions of the
state variables, the system configuration as defined by Eq. 8.4-6 is optimum
for all initial conditions. Merriam, who first noted this property, refers to
this as the optimum configuration’* Figure 8.4-1 illustrates this configura-
tion for the general linear case.
Once m° is determined, the response of the optimum system can be
obtained from
%’ = (A — BZ'BTK)x’ 4+ BZ'BTY (8.4-7)

which results from substituting Eq. 8.4-6 into Eq. 8.4-1. Thus the two-
point boundary value problem has been converted into two one-point

T These equations are adjoint to the equations of the closed-loop (controlled) system.
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boundary value problems. These are the solution of Eq. 8.4-5 backward in
time from ¢ = #, to ¢ = ¢, and subsequently solving Eq. 8.4-7 forward in
time from ¢ = fyto £ = £,

Inthe nonlinear case, where the controlled elements are nonlinear and/or
the performance index is nonquadratic, it is not possible to convert the
two point boundary value problem in the above manner. Also, the opti-
mum control law is not linear. These aspects then generally demand com-
puter solution of the equations defining the optimum system, as is
considered in later sections.

Example 8.4-1. Determine the optimum controiler according to the performance index
tr
I= %f feson @y + rnlipm] dt
ty

for the first order controlled elements described by 2,(t) = ayw,(t) -+ bym(t). The
system is assumed to be a regulator, so that x,2 = 0. 2(r,) is unspecified.

For x? = 0, Eq. 8.4-5 indicates v° == 0. Therefore m*(r) = — £, b,k (0)2,%¢), where
k3,(2) is given by the solution to

, byg®
kys + 2kqa0, — ('Eg")kua ‘wy =0 ku)=0
1z

from Eqs. 8.4-6 and 8.4-5. In order to determine k;(2), let+ = £, — fand by, (¢, — 7) =
ku%7). Then

. B1g®)

ks = 23k, ~ (Z"i“ )kn“ + o, k%0) =0

11

Lot k%) = L3:#/bys%, which yields

wyyby®
—vrriias 7
{a

This is & linear differential equation with constant coefficients; # can be solved by
classical or transform methods. The solution is z = ¢,e*17 & 6437, where ¢; and ¢, are
constants, and 4 = ay, + 5, A, = ay; — 5, and

2\WE
8= (‘1’112 + wy; {J“u“)

=0

E - 2ay,2 —

gll
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Thus
gu(chzeﬁ T+ PzCzEm‘s )
by e, - 0y ET)

k%) ==

Since £,%(0) = 0, ¢, = —cdsfd.. Then

oty — @,y $inh fr
kutr) B cosh fr — a;, sinh fr
Therefore
k) = cwy, siah f{t; — 1)
H B cosh Bz, —~ £} — ay, sinh f(t; — ¢)
and m*(¢) is given by
wubn sinh p, — 1
iy = — —— I 9,
0 {ia [ﬁcosh B(t, — 1) = ayysinh Bz, — 1) =)

The resultant regulator is shown in Fip. 8.4-2.

W =0 ~ bt n{t) » ~ I x7
3 i 11 +$T/
azl
k11(t)
Fig. 8.4-2

If ¢, is a constant, the terminal time of the performance index becones nearer as real
time advances, assuming ¢t < f,. Inthis so-called shrinking interval problem, the optimum
system is time-varying. If 7, is a fixed time T'in the future relative to real time, ie,t =
t + T, the terminal time of the performance index slides ahead in time as real time
advances. This is called a sliding interval problem, and, if x4, £, Z, and the linear
controlled elements are time-invariant, the resultant system is stationary. A special case
of these is given. by infinite £,. ‘This is the infinite interval problem.t 1fx% 8, Z, and the
controlled elements are time-invariant, the resultant system designed according to an
infinite interval performance criterion is stationary. In this example, m; %t} becomes

@1y
POt} s 27(f)
' LB — an) !
corresponding to a stationary system.
For the case in which the controlled elements consist of an integrator without feed-

back, a;; = 0. Then, for the infinite interval case, »m;°(f) is

i1

14
m(e) = — (fg——) o,0(1)

As wy,ff; is increased, so that the performance index emphasizes the system error
relative to the cost of reducing it, the loop gain increases. Also, the speed of response as

t These names were coined by Merriam.

Sec. 8.4 Linear Optimization Problems 561

indicated by
14

() = =%t} exp [——bu (c-,—;ﬂ) {t — zg)]

increases. This agrees with one’s intuition based on conventional feedback control
theory.

If the optimum system is stationary, K-== [0] and the Riccati equation
given in Eq. 8.4-3 reduces to a set of nonlinear algebraic equations
defining the elements of K. Even in this special case, however, it generally
is not possible to determine K in closed form for controlled elements above
second order. Thus the preceding discussion was presented to indicate
that the control law of Eq. 8.4-6 exists for the linear case, rather than to
provide a general method of determining it. Since the control law is of the
form of Eq. 8.4-6, it is important to choose, as the state variables, variables
which can be measured with available sensors.

In the general case, analytical determination of the optimum system
makes use of direct solution of the two-point boundary value problem,
rather than converting it to two one-point boundary value problems.

The Time-Invariant Case

If A, B, &, and Z are time-invariant, Eq. 8.4-3 can be solved by means
of Laplace transforms. Assuming ¢, = 0, the transform of Eq. 8.4-3 is

[ I «:»(S)Bz-lnf} [xﬂ(s)] [ $(5)x%0) ]
e BT (—5) I PYs))  L—®T(—9)[p'0) + QX%s)]
where ®(5) = (sI — Ay and —®T(—s) = (51 + AT, and X%s), Ps)
and X%s) are vectors. ®(s)and —P(—s) are the Laplace transforms of the
stafe transmission matrices for Eq. 8.4-1 and its adjoint, respectively.

Since
[ 1 dlz]_l_ [ (I — otyp099) 7" —(I— “12“21)“10112:]
(1 — otgy0tp)loy I — ogoyy)?
X%s) and P°(s) can be written as
X'(s) = [ + P(s)BZT'BT®T(—5)Q]™
x D(s){x°(0) + BZ*BYD7(—5)[p%0) + QX (s)]}
PU(s) = [I 4 ®T(-s)QRP()BZ BT
X BT ~sHQB(s)x(0) — [p°(0) + LX)}
Equations 8.4-8 and 8.4-2 can be utilized to determine the optimum control

law and the response of the optimum system. However, the procedure is
less direct than the previous method.

oy 1

(8.4-8)
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Example 3.4-2. Repeat Example 8.4-1, using the Laplace teansform method.
For this case,

RE) =1 — Al =

§ = dyz
and X4(s) == 0. Then

Wbt “Il: 1 ] i:mnxlu(o) :l
P =—|1— — P20
v [ Laals = a5 + au):| s+an|l s—an 20

- wy:%,%0) P;O(G)(S — 1)
B —F s+ Hs—F

where § is defined in Example 8.4-1. Inverse fransformation leads to

G R wnag"(()) sinh fr -+ £ "‘;0) (B cosh Bt — a3, sinh Bt}

The boundary condition on p;°(¢) is p,°(¢,) = 0. Since the problem is linear, this may be
accomplished by adjustment of p,%0). Thus

wy,2,°(0) sinh By,
B cosh ft, — a,, sinh Sz,

Pii(0) ==
Then p,°(¢) can be written as

o _ QO sinh B¢,(8 cosh Bt — a,, sinh B}
P = | S B R By, — s B
In a similar fashion,
f# cosh §(t, — £) — ay, sinh §Z, — 1)
Oy — 2.9
=) == (G)[ f cosh ft; — ay sinh fiz,

This expression can be solved for ©,%0), and the result substituted for «,°%(©0) in the
equation for p,%(z). This yields
wy, sinh Bt — £)
0(F) = 9y
P [5coshﬁ(t, TH —ansmn G, = O
Then, from Eq. 8.4-2,

my 2y =

_ C’-‘ubu[ sinh fi(z, — ¢) jlx 9()

Lix | Bcosh Blr, — &) — aysinh e, — )|
which is the result previously obtained by the more direct method. This result is also
illustrated by Fig. 8.4-2.

Example 8.4-3. Determine the optimum system for the controlled elements of Fig.
8.4-3. The performance index is described by

] e
0 0 0 L

and #, is infinite, corresponding to an infinite interval problem. Again a regulator
problem is assumed, so that x4z} = 0. Also, x(7,) is unspecified.

-

my =% .{ Xz = X f X1

Fig. 8.4-3
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Since Z is singular, the first of Eqs. 8.4-8 cannot be used directly. The factor Z-* in
Eqs. 8.4-8 is due to solving

Zm® + Bp® = ¢ (8.4-9)

for m® and substituting the result into Eq. 8.4-1. Tn this case, Z is as given above anc

2=l 1)

Thus the only information contained in Eq. 84-9 is my" = —{(p,°f{2). But, by the
problem definition, ,° = 0. Then Eq. 8.4-9 is unchanged if Z is replaced by

ael) ]
PO L

Therefore Eqs. 8.4-8 can be used if Z is replaced by Z,7*.1 Then since
o0 ki
5} =
0 s
@y

—s5F -5 V g
w;l[ ]x@(o) — L2 [PY(0)
s i

Ps) can be determined to be

sZ __sﬂ
5%+ (y,f 820}
where p*(0} is to be adjusted so that p*(co) == 0. But 5% + (wq,/Ls) = G(HG(—s), where

% 1
G(s) = 52 + ()4 (“;—) ot (“’—)

22 522

This shows that P%s) has two right-half-plane poles and two left half-plane poles,
symmetrically located with rtespect to the origin. In order to bave p®(w) == 0, the
resiclue in the right half-plane poles must be zero. A partial fraction expansion of either
Py %5} or Py"s) reveals that the requirements on p%0) for zero residue in each of the
right half-plane poles of P%s) are

pHO) = [@wllagzz)% (0033 La)¥E ] ")

PYs) =

X
(1 5e)4E (Fw £aa®H

Since
2 5%
P —s5
Wiy 240 + Le? (0}
— S 5 —gt
[

X(s) =

5% (w3 {a0)

T Note that Z; is positive definite and hence the resulting linear optimum system is
asymptotically stable, since the other requirements previously given for this are also
satisfied.

An obvious alternative to this procedure is to rederive Eq. 8.4-8, but for the case in
which B is a vector.
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x%(¢), for the above values of p°(0), is X%(¢) = P(r)x*(0), where

w -
(2)¥ sin (az + E) =t sin ot

b(1) = et
-2 sin «r —(2)¥ sin (mt - g)

and « = (@,;/445,)%4. Similarly,
T 2,
ML) = — e ip0(t) == mzaze—at[—m1°{0}(2)% S (oct — Z} Sk © sin (af + g)}

4
Substitution of x*(0) == $-1{#)x%¢) yields
m®(t) = —2ofom Xe) + ()]

This is the control law for the controlled elements of Fig. 8.4-3. As expected, itisa
hnear function of the state variables.

As « is increased, the performance index emphasizes the error relative to the cost of
reducing it. From ¢(#) or G{s), it can be seen that the effect is to increase the speed of
response and the natural frequency of the system. The damping ratio, however, remains
constant at 0.707. Increased damping would have been obtained if wy, > O had been

chosen in the performance index.

The Time-Varying Case®

If any of the elements of A, B, &, or Z are time-varying, a time-domain
solution of Eq. 8.4-3 is generally necessary. The solution of Eq. 8.4-3 is
given by its state transition matrix, which is defined by

] { A ﬂBZ‘lBT}
‘i)(ts ID) - msz —-A.T ¢(ta tﬂ)

The state transition matrix has 2z rows and 2» columns and can be parti-
tioned into four {m x 1} submatrices

Puits to)  ralt, Lo)
:tO ==
e Lbncr, D bl ro]

Pt t0) = Poalfos to) = 1
$alto, to) = Darlte, 1) = [0}
In termas of (1, #,), the solution of Eq. 8.4-3 is

x%(t) x%(t0) bi(t, t)
= &, + 8.4-11
Lf’(r)} P f")[pm] Lau, re)} @41

¢ 0
[b‘(t’ t")} =J (1, T)[ } dr (8.4-12)
by(t, t5) fo Q(T)Xd("")

(3.4-10)

Since &z, £) = L,

where
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Substitution of $(z, 7) yields
t
b,(2, 1) wf ba(t, IRUTIXH) dr
o

ba(t, 1) ”Jj‘bzz(ta TQUmxHr) dr

For unspecified terminal conditions on x%(¢t), the terminal boundary
conditions are p*(z,) = 0. Thus

PY(ty) = Pailly, 10X (t0) + Doalty, 20)P%(t0) + bty 1) = ©
Solving for p%(¢,),
Pt = a1ty L) [Pty L)X} + bylty, 20)] (8.4-13)
Substitution of ¢ for ¢, yields
PUE) = — g2y, D parlty, X2 + bolty, 1)]
Then, from Eq. 8.4-2, the definition of by(z,, 1), and the fact that
Doz (2, DPoa(ty, 7) = Poa(t, 7)

the control faw for unspecified terminal conditions on x%(7) is
m’(f) = Z7'BT [d;zz”l(tf, oty X0

+ _L "t VRN dq-} (8.4-14)

The resulting response x°(f) can be found from Eqgs. 8.4-11 and 8.4-13.
_For specified terminal conditions on x(2), Le., x%(t;) = x(;), Eq. 8.4-11
gives
- Xty) = py(ty, 1005t} + Prally, 20000 + byt 1)
en

(o) = — D (E, Lty t)X(te) — X°(2) + by(ty, 1)1 (8.4-15)

Substituting ¢ for £, using Eq. 8.4-2, the definition of by(¥;, ¢) and the fact
that

b1zt DPralty, 7) = 4’120, )
yields for the control law, in the case of specified terminal conditions on
x(),

m(s) = Z“BT{@;’(@, Hldbulty, () — X(t)]

i
‘i‘f b1, HRUTX(7) d"f‘} (8.4-16)
¢
The resulting response x°(f} can be found from Egs. 8.4-11 and 8.4-15.
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The reader should note that these control laws are of the form of Eq.
8.4-6, where
K= —y 11, Doty 1)
for unspecified x%z,), and
K = —¢p 1y, )ity 1)
for specified x°(z,). Also, the control law requires knowledge of x* in the

future interval of control, ie., x¥(r) for ¢t < v < £, This is a general
requirement for optimization according to this performance criterion.

Example 8.4-4. Repeat Example 8.4-3 in the time domain.

Let
¢ -1 g 0
A — Z—-J.B.T’ G 0 ; 0 522—1
G= l: :! S S E—
r i
-2 —A ©n 0]0 0
o oit o
50 that (z, t,) = Fl—%t, Use of the Cayley-Hamilton technique gives
ot — t3) ot — Lo} : Lot — tg)  —LpeTota(r — 20)
—wygler ot — fo) oot - £} Loa ot — tg)  — Lon™ a2 ~ 2g)
¢(t3 I 0) = :
=301 (F — fa) —a 0t — 1} l oot — 15} @33 Lpgotg{t = 2y}
0y 30{E — Lo W0t — fg) oyt — ) ap{t -~ 2g)
where

tylf) == cosh of COs af
sinh of cos ot -+ cosh of sim ocf

wylf) = 7

sinh oo sin ot
™

cosh «f sin ar — sinh of cos of
q(F) = e

and o is as defined in Example 8.4-3. Substitution into Eq. 8.4-14 yields, for infinite #,,
m®(t) = —2afu,"(1) + 2:%¢)]
the same result obtained in Example 8.4-3,

Example 8§.4-5. Determine the optimum system for the controlied elements character-
ized by

1 P 1 t 1
The gerformance index is

ty
[ = %f (z® -+ myf) dt
g

and z, %) == 0, The terminul conditions are unspecified.
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From the problem statement,
A —BZB" —tF g
G E= = d
-2 —A* -1 -
Then the components $.:(%, 7,) and é,:{¢, £} of Pz, 7,) must satisfy

, 1
Pralt, L) = — 7 P, te) — ‘;:g Paalt, 2o}

forlt, o) == —u(t, 1) + §¢al(r, to)
Solving for ¢;:,(t, t,) in the second equation and substituting the result into the first
yields
Fault, to) — % $aalty 203 =0
This is a form of Euler’s equation, considered in Example 2.8-2, The change of variable

t =e* giVCS
21 (€%, €0} — oy (€7, €70) = fyy(eF, 70} = Q

where the primes denotes differentiation with respect to 2. The differential equation
for (€%, ¢*¢) has the solution
1—+5
2%
2

$as(e®, €0) = ky(zy) exp (‘/5 +1

z) + ko) exp (
so that

Paalt, f) = ex(te)ttYHIE ey ) V)2
Similarly,

Pults ) = e (1 WZVE) HVERR calta) (1 +2‘\/5) (VB2

Since $ulte, 6} = 1 and dalfs, fo} = 0, c;{te) and ¢,(#,) can be determined to be

1 -
1y} = — — f{t~VE)2
e3{fo) v 15

1 -
e5lte) = 75' £§24y8)3

Then
bots ) = V5 — 1\ /t, —€¢§«1;Iz+ VS e 1\ e\ (VB
ALCH - = - —_— -
Vs H 2v5 t
and
fy [T \(VE-1)12 By (2\~(VEr1)/2
t fo} = ——| = S i
) Vs(t) ‘/5(!)
Similarly,

£ (E\VE-aE 2l (v
Z, 1 &= = = Rl 2
Pral2, £0) ‘\/5(1) +1’/5(r)

Guults 1) = (‘/5 - 1) (E)’“”g"”” + (’/5 + 1) (fﬂ)‘ﬁ“’”
2vs [\t 2vs /7




568 Introduction to Optimization Theory

From Eq. 8.4-14,
1 ¢ulty, 1)

1 %{t) == P Pl 23 ;%)
Thus Ve
1—avs jl .
] o — — . - 4
0 2[0/5 + D+ (Y5 = Dafrve =0

In the infinite interval problem, ¢; is infinite. Then

2
m(t) = - T %)

In this case, a time-invariant control law is obtained, even though the controlled
are time-varying.

Example 8.4-6. Determine the optimaum system for the controlied elements of Example
8.4-5, if the performance index is

tr
I= éJ. my? dt
ty

and the terminal condition #;%(f,) == 0 is specified.
For this case,
—_— r—i — twﬂ
G =
o

(2, 45} is the solution to cfa(t, ty) == G{s, £,). The equations can be integrated by
separation: of variables to yield

to 1 1
ot f
¢(t, ) =
£
?(; tg
From Eq. 8.4-16,
H
o) = «-[ ]mlﬂtr)
2y e 2
The resuiting response, as found from Eqgs. 8.4-11 and 8.4-15, is
tolty — 1)
() = oL 2,9(2
@) = 1) #,%2,)

The response does satisfy the terminal condition #,%(#) = 0. Fors > £, the response s
not zero, however. This is to be expected, since the performance index does ot consider

this part of the response. o _
Although the time-varying feedback gain becomes infinite at £ = 7, m.%(} Is always

finite. In fact, from the expressions for m; %) and 2,°(f),

fo

p %,%t5)

() = = —
r o
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a constant, For infinite ¢, corresponding to an infinite interval problem, m;°(t) = 0,
Thus the system is open-loop, and the response is the open-loop initial condition re-
sponse %) = {#,/£)5,%(%,). This response satisfies all the requirements in the infinite
interval case and obviously has the smaliest possible value for the performance index.
The system would be undesirable, however, owing to its poor performance with respect
to unwanted disturbances.

The controlled elements in the examples of this section are rather
simple, and yet considerable effort is required in some cases to determine
the optimum system. This is true in spite of the fact that the systems are
linear. In practical situations systems are nonlinear, and analytical
determination of optimum systems is virtually impossible. For the most
part, optimization theory is practical only when used in conjunction with
computers, as considered later in this chapter.

8.3 SELECTION OF CONSTANT WEIGHTING FACTORS

The examples of the previous section indicate that the control law and
system response are greatly influenced by the weighting factors Q and Z
chosen in the performance index. Selection of these weighting factors is a
difficult task, since the relationships between the weighting factors and
the optimum system parameters or the system response are generally
very complex. However, Ellert has developed a technique for the selection
of weighting factors in the time-invariant case.1®

Consider, as an example, the second order linear controlled elements

described by
. {:ali ala} [0 0 }
== X + m
Dyy  dgg 0 by

The performance index is the one of Section 8.4, with infinite t, and

Q:[wll Ojl ZE[O 0:|

0 oy 0 1

Using the method of Egs. 8.4-5, the optimum control law is found to be
(1) = = bagl ey, () + kg™ (1)] + bayty(t) (8.5-1)

where the &'s are defined by

g+ 2ayskoy + 215K — baokae® =
oy + 2anky + 2apky — bpthy® =0 (8.5-2)
Agrkay + ok + @iike; -+ Grakyy — bga®Kopkny = 0
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and P is defined by

; ) 2 9
— 8,0 = %" + gty + Gaty” — boa®Kgqty (8.5-3)

N 2 0
— 0y =y + ayo,” + a110,° — bty

Since this is a linear, time-invariant system, the closed-loop transfer
function can be determined to be

X,%0) _ @y’ (8.5-4)
V(s)  5*+ zwps + @
where
g = byy ko — a1y — g
oo = 4y (@yp — Dyy?Ray) + @1a(bye’hay — don)
3125222
V(s) = == Vi(s)
Wy

and ¥y(s) is the Laplace transform of the system input.
With these definitions, ky, and k,; can be written as

ke = —15 (21000 + ayy + )
Doz (8.5-5)

2
(wuz + 43210 + Ayg69; + G31)

kg = b2
1002

From Eqgs. 8.5-2 and 8.5-5,

Wy == ‘_22““”2' [wo* + 3ayz0¢° + a3 + Dwy® + 461,710
Uy Ugp
' + (244010001055 + 2011 G100y F arg’as” + an"] (8.5-6)

1 2 %
Doz == = [(2" — Dwy® — agy” ~ ds0" — 207000]
22
These expressions determine w;; and wg,, once values of z; and w, have

ected. 3
beeE?E:ﬁ’s procedure is to choose z, to provide the desiri‘:d relative stablht.y
of the system, assuming that none of the system vs%nab}es exceed their
prescribed limits. @, is then chosen in accordance With t}l}.e system band-
width requirements or any limits on my(t). The relationship _between my(t)
and w, is given by substituting Bq. 8.5-5 into Eq. 8.5-1. Itis

L [wg’ 4 )iz
my(t) = — —i— =) + z5(1) + @41} (7100
bgstagy 53

“ (_01_12 + a2l) z,(8) + (ay, -+ azz)xz(t)} + byvi (1) (8.5-7)

iz
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Specification of the maximum available value of m,(2), worst case values
of #,(t) and 2,(?), and solution of Eq. 8.5-3 permits Eq. 8.5-7 to be solved
for wy.

When # and wg have been determined, the weighting factors w,, and Wy
are given by Eqs. 8.5-6. Since the performance index should be convex,
wyy and wy, must be non-negative. This requirement, in a sense, tests the
compatibility of the design requirements, assuming that a quadratic
performance index with constant weighting factors is a reasonable choice.!8

For controlled elements of higher order, Eq. 8.5-4 becomes

Xa(s) _ N(s)

1 ) (8.5-8)
V() s 4 zpawps™ ™ A - 4 2wl s + g™
where
N(5) = o
N(s) = zjwg™'s + wy"
or

N(s) = 2,00 7°" 4 230707 %5 + op"
for types one, two, or three systems, respectively, i.e., systems with zero
steady-state error to a unit step input, zero steady-state error to a unit
ramp input, etc., respectively. Ellert’s procedure for selection of the
performance index weighting factors can be applied to these higher order
cases, if the z’s can be determined without undue trial and error. Criteria
for selecting the 2’s to obtain acceptable responses have been presented
in the literature. In fact, tabulations of numerical values of the z’s, called
standard forms, can be found.®19% Whiteley’s standard forms for the
characteristic equations are given in Table 8.5-1.% The corresponding step
responses are shown in Fig. 8.5-1. Since many practical control systems

Table §.5-1
Maximum,
System Percent

Type Standard Forms Overshoot
Zero {a) -5% b LAwes + 0,2 5
position (&) 4 Zees? 4 2wgls 4 wy? 8
error (© 5+ 2608 + 5.40,55% + 2,60y - top? 10
Zero () 5%+ 2.5w,5 + gt 10
velocity {e} 5% F 5.1ws? 4 6.3wg%s + @ 10
“rror ') st ob 720085 + 160635 + 1200,% -+ 10
(gy 5% 4 Gengst b 29004%% + 380yTs% + 180055 4+ 0,5 10
) 5% 4 11wys® + 43wy’ + B3m%s® + T3ewghs? + 25,5 + w,® 10
Zeto () 3%+ 6.Twgs® + 6.7005%5 b wy? Hi
acceleration (j) 5 4 TBenes® -+ 150,25 -k T.900% + g 20
error (&) 5% 18wys® 4 69wy + 69w st 4 [8ayts 4 cvy® 20

) 5% b 36wys® -+ 251ag%st - 48500,%5° + 251wets® + 36cwy%s +ew,® 20
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have transfer functions of the form of Eq. 8.3-8, Whiteley’s standard
forms can often be used, in conjunction with Ellert’s procedure, to
determine the performance index weighting factors which satisfy the
subjective design requirements. Objective design requirements, such as
limits on the control signals or state variables, must be approached in a
different fashion. This is considered in the next section.

8.6 PENALTY FUNCTIONS

The design specifications on most control systerns require that some of
the variables be constrained between prescribed limits. Such constraints
may be imposed by saturation-type limits in the controlled elements, or
they may be due to the mission requirements associated with the application
of the system. For example, the maximum allowable stagnation tera-
perature on the nose of a re-entry vehicle is often given as 3500° Fahrenheit.
The temperature constraint, as stated, is a **hard” constraint, in the sense
that it is a value not to be exceeded. Both “hard” and “soft™ constraints
are often stated, but in practice most constraints really are soft. For
example, a temperature of 3600° would probably also be acceptable, since
safety factors are usually included in such figures. No design procedure or
subsequent implementation is precise, nor can any design procedure
consider the uncertainties associated with the ultimate operation of the
system. Although hard constraints are conceptually useful from a mathe-
matical viewpoint, they normally do not physically exist. Furthermore,
hard constraints cause considerable difficulty in obtaining computer
solutions to optimization problems, and in controller realization. For
these reasons, constraints are treated here by means of penalfy functions.
One can approach a hard constraint by making the penalty more severe,

A penalty function is a performance index term which increases the
value of the index when the constrained variable approaches its limit.
For example, the second and fourth terms of Eq. 8.2-2 are penalty
function terms. Many other penalty functions have been proposed in the
{iterature.23-%

Weighting factors, as contained in the first and third terms of Eq. 8.2-2,
are selected to satisfy the subjective design requirements. This was
discussed in the preceding section. Once the weighting factors are selected,
the penalty functions may be selected to satisfy the constraints. If this is
done, the systern response satisfies the relative stability and speed of
response specifications when none of the variables are at their limits, and,
furthermore, the variables are properly constrained when they attempt to
exceed these limits. This is the basis for Ellert’s design philosophy.



