CHAPTER

FOURTEEN
BANDPASS DIGITAL TRANSMISSION

Long-haul digital transmission usually requires CW modulation to generate a
bandpass signal suited to the transmission medium — be it radio, cable, or what-
ever. Just as there are a multitude of modulation methods for analog signals, so
too there are many ways of impressing digital information upon a carrier wave.
This chapter applies concepts of baseband digital transmission and CW modula-
tion to the study of bandpass digital transmission.

We begin with waveforms and spectral analysis of digital CW modulation for
binary and M-ary modulating signals. Then we focus on the demodulation of
binary signals in noise to bring out the distinction between coherent
(synchronous) detection and noncoherent (envelope) detection. The last section
deals with quadrature-carrier and M-ary systems, leading to a comparison of
modulation methods with regard to spectral efficiency, hardware complexity, and
system performance in the face of corrupting noise.

14.1 DIGITAL CW MODULATION

A digital signal can modulate the amplitude, frequency, or phase of a sinusoidal
carrier wave. If the modulating waveform consists of NRZ rectangular pulses,
then the modulated parameter will be-switched or keyed from one discrete value
to another. Figure 14.1-1 illustrates binary amplitude-shift keying (ASK),
Jrequency-shift keying (FSK), and phase-shift keying (PSK). Also shown, for con-
trast, is the waveform produced by DSB modulation with Nyquist pulse shaping
at baseband. Other modulation techniques combine amplitude and phase modu-
lation, with or without baseband pulse shaping,
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Figure 14.1-1 Binary modulated waveforms. (a) ASK; (b} FSK; (c) PSK; (d) DSB with baseband
pulse shaping.

In this section we’ll define specific types of digital modulation in terms of
mathematical models and/or transmitter diagrams. We'll also examine their
power spectra and estimate therefrom the transmission bandwidth required for a
given digital signaling rate. As preparation, we first develop a technique for spec-
tral analysis of bandpass digital signals.

Spectral Analysis of Bandpass Digital Signals
Any modulated bandpass signal may be expressed in the quadrature-carrier form
x(t) = A.[x[t) cos (o, t + ) — x,(t) sin (w, t + 6)] H

The carrier frequency f,, amplitude 4., and phase 8 are constant, while the time-
varying i (in-phase) and ¢ (quadrature) components contain the message. Spectral
analysis of x(t) is relatively easy when the i and q components are statistically
independent signals and at least one has zero mean. Then, from the superposition
and modulation relations in Sect. 5.2, the power spectrum of x (¢} becomes

2
GA) = S5 TG ~£) + GAS + 1) + G = f) + G + 1)
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where G f) and G(f) are the power spectra of the i and ¢ components. For a
more compact expression, we define the equivalent lowpass spectrum

G f) £ G(f) + G(f) (2)

so that
AZ
Gl f) = 55 LGS =1 + Gl + 1] ()

Thus, the bandpass spectrum is obtained from the equivalent lowpass spectrum
by simple frequency translation.
Now suppose that the i component is an M-ary digital signal, say

x{t) =Y a,p{t — kD) (4a)
k
where a, represents a sequence of source digits with rate r = 1/D. We assume
throughout that source digits are equiprobable, statistically independent, and
uncorrelated. Consequently, Eq. (11), Sect. 11.1, applies here and

Gify=0lrIPUNE +(mn* Y | Pr)|* 8(f— nr) (4b)
Similar expressions hold when the g component is another digital waveform.

The pulse shape p(t) in Eq. (4a) depends on the baseband filtering, if any, and
on the type of modulation. Keyed modulation involves NRZ rectangular pulses
and we'll find it convenient to work with pulses that start at ¢ = kD, rather than
being centered at t = kD as in Chap. 11. Accordingly, let

1 O<t<D

t) 2 ut) — ut — D) =
polt) £ u(t) — u(t — D) {O othervise (5a)
whose Fourier transform yields
2 2 o2 1. .f
| P f)|? = D* sinc fD=r2 sinc - (5b)

If p(t) = pp(t) in Eq. (4a), then the continuous spectral term in Eq. (4b) will be pro-
portional to | Pp(f)|% Since sinc? (f/r) is not bandlimited, we conclude from Egs.
(2} and (3) that keyed modulation requires f, > r in order to produce a bandpass
signal.

Amplitude Modulation Methods

The binary ASK waveform illustrated in" Fig. 14.1-1a could be generated simply
by turning the carrier on and off, a process described as on-off keying (OOK). In
general, an M-ary ASK waveform has M — 1 discrete “on” amplitudes as well as
the “ off " state. Since there are no phase reversals or other variations, we can set
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the ¢ component of x (t) equal to zero and take the i component to be a unipolar
NRZ signal, namely

x{t)=3 applt —kD) a4 =0,1,.... M -1 (6a)
]

The mean and variance of the digital sequence are
- M- 1 T3 2_MZ«—I 6b
ma=ak=—2_— 0, = 4 m, = 12 ( )

Hence, the equivalent lowpass spectrum is
M—1 L f (M-=1

G/p(.f) = Gl{f) = 12r sinc 7 + _—4— 5(.[) (7)

obtained with the help of Egs. (2), (4b), and (5b).

Figure 14.1-2 shows the resulting bandpass spectrum G (f)for f > 0. Most of
the signal power is contained within the range f, + r/2, and the spectrum has a
second-order rolloff proportional to | f — f.|~* away from the carrier frequency.
These considerations suggest the estimated transmission bandwidth to be By = r.

If an M-ary ASK signal represents binary data at rate r, = r log, M, then By ~
ry/log, M or

ry/Br = log, M bps/Hz (8)

This ratio of bit rate to transmission bandwidth serves as our measure of modu-
lation “speed " or spectral efficiency. Binary OOK has the poorest spectral effi-
ciency since r,/B; ~ 1 bps/Hz when M = 2.

Drawing upon the principle of quadrature-carrier multiplexing, quadrature-
carrier AM (QAM) achieves twice the modulation speed of binary ASK. Figure
14.1-3a depicts the functional blocks of a binary QAM transmitter with a polar
binary input at rate r,. The serial-to-parallel converter divides the input into twc

G(f) 4

..'

0 fo-r A fo+r

Figure 14.1-2 ASK power spectrum.
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Figure 14.1-3 Binary QAM. (a) Transmitter; (b) signal constellation.

streams consisting of alternate bits at rate r = r,/2. Thus, the i and ¢ modulating
signals are represented by

xit) = Z Az pplt — kD) x(t) = Z a3+ Pplt — kD)
x %

where D = 1/r = 2T, and g, = + 1. The peak modulating values are x; = x, =
+ 1 during an arbitrary interval kD <t < (k + 1)D. Figure 14.1-3b conveys this
information as a two-dimensional signal constellation. The four signal points have
been labeled with the corresponding pairs of source bits, known as dibits.

Summing the modulated carriers finally yields the QAM signal in the form of
Eq. (1). The i and g components are independent but they have the same pulse
shape and the same statistical values, namely, m, = 0 and ¢2 = 1. Thus,

Gof) =2 x rI Py f)1? = 2 sinc? &L ©

Ty Ty

where we’ve used Eqs. (4b) and (5b) with r = r,/2. Binary QAM achieves r,/B; ~

2 bps/Hz because the dibit rate equals one-half of the input bit rate, reducing the
transmission bandwidth to By x r,/2.

Keep in mind, however, that ASK and QAM spectra actually extend beyond
the estimated transmission bandwidth. Such spectral “spillover” outside B,
becomes an important concern in radio transmission and frequency-division
multiplexing systems when it creates interference with other signal channels.
Bandpass filtering at the output of the modulator controls spillover, but heavy fil-
tering introduces ISI in the modulated signal and should be avoided.

Spectral efficiency without spillover is achieved by the vestigial-sideband
modulator diagrammed in Fig. 14.1-4a. This VSB method applies Nyquist pulse
shaping to a polar input signal, as covered in Sect. 11.3, producing a bandlimited
modulating signal with B =(r/2) + fy. The VSB filter then removes all but a
vestige of width B, from one sideband, so G.(f) looks something like Fig.
14.1-4b— a bandlimited spectrum with By = (r/2) + By + By . Therefore, if r =
r,/ log, M, then

ry/Br <2log, M (10

and the upper bound holds when f « rand 8, «r.
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Figure 14.1-4 Digital VSB. (a) Transmitter; (b) power spectrum.

Exercise 14.1-1 Binary data is to be transmitted on a 1-MHz carrier. Spill-
over is not a concern, but By must satisfy the fractional bandwidth constraint
By/f. < 0.1. Estimate the maximum possible bit rate r, when the modulation
is: (a) OOK, (b) binary QAM, (c) VSB with M = 8.

Phase Modulation Methods

The binary PSK waveform back in Fig. 14.1-1c contains phase shifts of +n
radians, often described as phase-reversal keying (PRK). An M-ary PSK signal
has phase shift ¢, in the time interval kD < t < (k + 1)D, expressed in general by

x(t)= A, Y cos (w.t + 8 + ¢)pylt — kD) an
x

Trigonometric expansion of the cosine function yields our desired quadrature-
carrier form with

x{t) =3 Lpplt — kD) x(t) =Y. Q ppit — kD) (12a)
k k

where
I, = cos ¢, Q, = sin ¢, (12b)

To ensure the largest possible phase modulation for a given value of M, we'll take
the relationship between ¢, and q, to be

¢ =12, + NYM a4, =0,1,.... M — 1 (13)

in which N is an integer, usually 0 or 1.

Examples of PSK signal constellations are shown in Fig. 14.1-5, including the
corresponding binary words in Gray code. The binary words for adjacent signal
points therefore differ by just one bit. The PSK signal with M = 4and N = 0 rep-
resented in Fig. 14.1-5a is designated quaternary or quadriphase PSK (QPSK).
Had we taken QPSK with N = 1, the signal points would have been identical to
binary QAM (Fig. 14.1-3b). Indeed, you can think of binary QAM as two PRK
signals on quadrature carriers. M-ary PSK differs from M-ary ASK, of course,
since an ideal PSK waveform always has a constant envelope.
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Figure 14.1-5 PSK signal constellations. (a) M = 4;(b) M = 8.

PSK spectral analysis becomes a routine task after you note from Egs. (12b)
and (13) that

I_k=Q_k=0 E=@=1/2 Iij=O

Hence, the i and ¢ components are statistically independent, and
r 1 .
Goff) =2 x 51 P )1 =+ sine? L (14

Comparison with Eq. (7) reveals that G (f) will have the same shape as an ASK
spectrum (Fig. 14.1-2) without the carrier-frequency impulse. The absence of a
discrete carrier component means that PSK has better power efficiency, but the
spectral efficiency is the same as ASK.

Some PSK transmitters include a BPF to control spillover. However,
bandpass filtering produces envelope variations via the FM-to-AM conversion
effect discussed in Sect. 7.2. (Remember that a stepwise phase shift is equivalent to
an FM impulse.) The typical nonlinear amplifier used at microwave carrier fre-
quencies will flatten out these envelope variations and restore spillover — largely
negating the function of the BPF. A special form of QPSK called staggered or
offset-keyed QPSK (OQPSK) has been devised to combat this probiem. The
OQPSK transmitter diagrammed in Fig. 14.1-6 delays the quadrature signal such

‘] ryi2 v\
X(f) Data xc(')

converter BPF |+
ry'2
Delay

Ts

Figure 14.1-6 Offset-keyed QPSK transmitter.

14.1 DIGITAL CW MODULATION 519

that modulated phase shifts occur every D/2 = T, seconds but they never exceed
+ 7/2 radians. Cutting the maximum phase shift in half results in much smaller
envelope variations after bandpass filtering.

When envelope variations are allowable, combined amplitude-phase keying
(APK) is an attractive family of modulation methods. APK has essentially the
same spectral efficiency as PSK, but it can achieve better performance with
respect to noise and errors. Further discussion is postponed to Sect. 14.4.

Exercise 14.1-2 Draw the signal constellation for binary PSK with ¢, =
n(2a, — 1)/4 and a, = 0, 1. Then determine the lowpass equivalent spectrum
and sketch G.(f).

Frequency Modulation Methods

There are two basic methods for digital frequency modulation. Frequency-shift
keying (FSK) is represented conceptually by Fig. 14.1-7a, where the digital signal
x(t) controls a switch that selects the modulated frequency from a bank of M
oscillators. The modulated signal is therefore discontinuous at every switching
instant ¢ = kD unless the amplitude, frequency, and phase of each oscillator has
been carefully adjusted. Discontinuities are avoided in continuous-phase FSK
(CPFSK) represented by Fig. 14.1-7b, where x(t) modulates the frequency of a
single oscillator. Both forms of digital frequency modulation pose significant diffi-
culties for spectral analysis, so we'll limit our consideration to some selected
cases.

First, consider M-ary FSK. Let all oscillators in Fig. 14.1-7a have the same
amplitude 4, and phase 6, and let their frequencies be related to a, by

fi=fi+foaw  aq=11,1£3,.., M- (15a)
which assumes that M is even, Then
x(t) = 4. Y cos (.t + 0 + wga, t)pp(t — kD) (15b)
k
where w, = 2nf,. The parameter f; equals the frequency shift away from f, when

a, = +1, and adjacent frequencies are spaced by 2f;. Continuity of x() at
t = kD is assured if 2w, D = 2aN where N is an integer.

x(t) x.t) x(1) Frequency x (1)
- modulator
(a) (b)

Figure 14.1-7 Digital frequency modulation. (a} FSK; (b) continuous-phase FSK.
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We'll analyze a version of binary FSK known as Sunde’s FSK, defined by the
foregoing relations with M =2 D = T,=1/r,, and N =1. Then pplt) = u(r)
—uf{t — kT,) and

Ja=ry/2 (16)
After trigonometric expansion of x_(t), we use the fact that a, = +1to write
COS a1 = COs wy! Sin W, t = a, sin wyt
The i component thereby reduces to
x{t) = cos nr,t {17a)
independent of a,. The ¢ component contains a, in the form

X = ; a sin (nr, )[u(t — kT,) — w(t — kT, — T;)]

=Y 0Pl — kT Q= (—1fa, (176)
k

where
plt) = sin (nr, O[u(t) — u(t — T,)] (17¢)

The intervening manipulations are left to you as an instructive exercise.

Once again, we have independent i and q components. The i component,
being a sinusoid, just contributes spectral impulses at + r,/2 in the equivalent
lowpass spectrum. The power spectrum of the q component contains no impulses

since 0, = 0, whereas Q2 = a = 1. Thus,

Gedf) = [5 (f— ’3) + 5<f+ %}] + | P (184)

where

! 2
|P()? = — [sinci:m+sincf jr(r,,/z)]

ar} ry ry
_ 4 [ cos(nr,) T
T [(2f/r,,)2 Z 1] (185)

The resulting bandpass spectrum is shown in Fig. 14.1-8.

Observe that the impulses correspond to the keyed frequencies f, + f, = f.
+ ry/2, and that the spectrum has a fourth-order rolloff. This rapid rolloff means
that Sunde’s FSK has very little spillover for | f—f.| > r,. We therefore take
By x r,, even though the central lobe of G,( f) is 50% wider than the central lobe

of a binary ASK or PSK spectrum.
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Figure 14.1-8 Power spectrum of binary FSK with f, = r,/2.

Another special case is M-ary orthogonal FSK, in which the M keyed fre-
quencies are equispaced by 2f; = 1/2D = r/2. Without attempting the spectral
analysis, we can surmise that By > M x 2f; = Mr/2 = Mr,/(2 log, M). Therefore,

ry/By < (2 log; M)yM (19)

and the modulation speed is less than M-ary ASK or PSK for M > 4. In other
words, orthogonal FSK is a wideband modulation method.

Continuous-phase FSK may be wideband or narrowband depending on the
frequency deviation. Let x{¢) in Fig. 14.1-7b start at t = 0, so

x(t)__— Zakpﬂ([_kD) ak=il) iz""; i-(M_l)
k=0
and frequency modulation produces the CPFSK signal

H

x(t) = A, cos [w,t + 6+ wy, fx(l) d/l] t>0

0

To bring out the difference between CPFSK and FSK, consider the integral

Q

fx().) di= 3 a, | pp{d — kD) di
o kK=o

in which pp(4 — kD) = 0 except for kD < A < (k + 1)D when py(4 — kD)= 1.
Piecewise integration yields

J.x(l)di=aot O<t<D

0
=ayD + a,(t — D) D<t<2D

k-1
=(Za1)D+a,(t—kD) kD <t <(k+ 1)D

i=0
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Now we can express x.(t) in the summation form

x () =AY cos [w.t + 0 + ¢ + wsadt — kD)]pp(t — kD) (20aq)

k=0

where t > 0 and
k-1
2w, DY a (20b)
j=0

with the understanding that ¢, = 0 for k = 0.

Equation (20) shows that CPSK has a frequency shift f,a, in the interval
kD <t < (k + 1)D, just like FSK. But it also has a phase shift ¢, that depends on
the previous digits. This phase shift results from the frequency-modulation process
and ensures phase continuity for all r. Unfortunately, the past history embodied
in ¢, greatly complicates CPFSK spectral analysis. Proakis (1983, chap. 3) gives
further details and plots of G.(f) for various values of f, when M = 2, 4, and 8.
To conclude this section, we'll examine an important special case of binary CPSK
called minimum-shift keying (MSK).

Exercise 14.1-3 Carry out the details omitted in the derivation of Egs.
(17a1H17¢). Hint: Show that sin w,t = sin [wdt — kT;) + kn] = cos (kn) x
sin [wgdt — kT)].

Minimum-Shift Keyingv
Minimum-shift keying, also known as fast FSK, is binary CPFSK with

r k-1

ﬁi=_b a=t1 ¢k=12‘tzaj (21)

4 P

Notice that the frequency spacing 2f; = r,/2 is half that of Sunde’s FSK. This fact,
together with the continuous-phase property, results in a more compact spec-
trum, free of impulses. Subsequent analysis will prove that G{f) = G,(f)and

1 [ =)+ ("b/‘”jlz
sinc

G\ f) = ’_—b ) + sinc 2
_ 16 [cos 2nfiry) |? ,
~onlr, [(4f/r,,)2 - 1] 22)

The bandpass spectrum G.(f) plotted in Fig. 14.1-9 has minuscule spillover
beyond the central lobe of width 3r,/2. The rapid rolloff justifies taking B, ~
r./2, so

ro/Br = 2 bps/Hz

which is twice the modulation speed of Sunde’s FSK and accounts for the name
“fast” FSK.
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GdhH

h—Brw rol2

0 fo=Yary fo foFar, Figure 14.1-9 MSK power spectrum.

Our investigation of MSK starts with the usual trigonometric expansion to
put x.(¢) in quadrature-carrier form with

xi) = ¥ cos (s + depnt — KTy)

k=0
X

Xt = Z sin (¢, + a,c)pr,(t — kTy)

k=0
where

G &7 —kT)  pr0)=ulr) — ult ~ KT)
We'll also draw upon the behavior of ¢, versus k as displayed in the trellis
pattern of Fig. 14.1-10. This pattern clearly reveals that ¢, = 0, +n, +2=, ..., for
even values of k while ¢, = +r/2, +3#/2, ..., for odd values of k.
As a specific example, let the input message sequence be 100010111. The
resulting phase path ¢, is shown in Fig. 14.1-11a, taking a, = + 1 for input bit 1

R
3nf2 - //(\ /)
T /.‘\ X
SN S \)
w2 [~
///'(\ /X\ 4
NI NI
—m2 b \.< \,< »
~ S N 7
LN X
~N N
=3m2 - \< " Figure 14.1-10 MSK phase trellis.
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Figure 14.1-11 Hlustration of MSK. (a) Phase path; (b) i and ¢ waveforms.

and a, = —1 for input bit 0. The corresponding i and g waveforms calculated
from the foregoing expressions are sketched in Fig. 14.1-11b. We see that both
waveforms have zeros spaced by 27,, but staggered such that the zeros of x{t)
coincide with the peaks of x,(t), and vice versa. These observations will guide our
subsequent work.

Consider an arbitrary time interval between adjacent zeros of the i com-
ponent, i.e.,

k-DE <t<k+ DT,
with k being even. During this interval,
x{t)y =cos (. + ap_yc - )pp, [t — (k — DT,]
+ Co8 (@) + aycpr,it — kT,)

which we seek to combine into a single term. Since k is even, sin ¢, = 0, and
routine trigonometric manipulations yield

COS (Py + ac) = €OS Py COS (a, ¢;) = cos ¢, cos ¢,
Likewise, using

cos ¢, =0 Gi1 =& — ay_m/2 Choy = + /2
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we get

COS (@y-y + Ax_1C, 1) = —Sin Py SN (G4 (€4 y)

al_, cos ¢, Cos ¢, = COs P, €OS C;
Thus, for the interval in question,
x{t) = cos ¢, cos ¢, {pr,[t — (k — DT,] + pp(t — kT)}
= cos ¢, cos [(nry/2)t — kT))[u(t — kT, + T,) — wlt — kT, — T,)]

Summing intervals to encompass all ¢ > 0 finally yields

x{t)= 3 Iplt — kT, I, = cos ¢, (23)
k even
where
p(t) = cos (nr, t/2)[ut + T,) — u(t — T,)] (24)

This result checks out against the waveform in Fig. 14.1-11b since I, = cos ¢, =
+ 1 when & is even.

Now, for the ¢ component, we consider the interval (k — )T, <t < (k + )T,
with k odd. Similar manipulations as before lead to

xq(t) = Sin ¢k Ccos Ck{pr[t - (k - 1)7;)] + pr(t - kn)}
Thus, forallt > 0,
xdty=Y Quplt — kTy) Q@ =sin &, (25)

k odd

which also agrees with Fig. 14.1-11b. Equation (22_{ folliws from Egs. (2)—(25)
since the i and q components are independent, with I, = Q, =0and I} = Q} = 1.

14.2 COHERENT BINARY SYSTEMS

Coherent bandpass digital systems employ information about the carrier fre-
quency and phase at the receiver to detect the message— like synchronous
analog detection. Noncoherent systems don’t require synchronization with the
carrier phase, but they fall short of the optimum performance made possible by
coherent detection.

This section examines coherent binary transmission, starting with a general
treatment of optimum binary detection in the presence of additive white gaussian
noise (AWGN). The results are then applied to assess the performance of specific
binary modulation systems. We'll focus throughout on keyed modulation (OOK,
PRK, and FSK), without baseband filtering or transmission distortion that might
produce ISI in the modulated signal. The challenging problems of optimum
receiver design including ISI effects are addressed in more advanced texts such
as Proakis (1983, chap. 6).
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Optimum Binary Detection

Any bandpass binary signal with keyed modulation can be expressed in the
general quadrature-carrier form

x Aty = A, {[Z I, pft — ka)jl cos (w.t + 0)
k

- [Z Qupdt — ka)jl sin (w, ¢ + '9)}
x

For practical coherent systems, the carrier wave should be synchronized with the
digital modulation. Accordingly, we'll take 8 = 0 and impose the condition

Je=NJ/T,=N_r, h
where N_ is an integer — usually a very large integer. Then

xd0) = A, ¥ [Lpdt — KTy) cos w,(t — kT;)
k

— Qupit — kTy) sin ot — kTy)]
and we can concentrate on a single bit interval by writing
X (t) = s, (t — kT,) kT, <t <(k+ 1T, 2)
with
Sm(t) 2 A L1, pdt) cos w, 1 — Q, p(1) sin w, 1]

Here, s,(¢) stands for either of two signaling waveforms, sq(t) and s,(t), representing
the message bitsm =0and m = 1.

Now consider the received signal x,(t) corrupted by white gaussian noise. We
showed in Sect. 11.2 that an optimum baseband receiver minimizes error prob-
ability with the help of a filter matched to the baseband pulse shape. But binary
CW modulation involves two different signaling waveforms, as in Eq. (2), rather
than one pulse shape with two different amplitudes>Consequently, we must redo
our previous analysis in terms of s4(f) and s,(¢).

Figure 14.2-1 shows the proposed receiver structure labeled with the relevant
signals and noise for the interval under consideration. This bandpass receiver is
just like a baseband receiver with a BPF in place of an LPF. The filtered signal

A () = st = kT4) BPF 1) SH ylie)
h(e)

Figure 14.2-1 Bandpass binary receiver.
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plus noise y(z) is sampled at ¢, = (k + 1)T,, the end of the bit interval, and com-
pared with a threshold level to regenerate the most likely message bit /. We seek
the BPF impulse response h(t) and threshold level V for optimum binary detec-
tion, resulting in the smallest average regeneration error probability.

As in Sect. 11.2, let H, and H,, denote the hypotheses that m = 1 and m = 0,
respectively. The receiver decides between H, and H, according to the observed
value of the random variable

Y=.Y(tk)=zm+n
where

Zn £ 2,(t) = [snlt — kT3) * h(0)]

=i

th+ 1)Ty
= j sp(d — kTy)h(t, — 4) di
k

Ty
Ty

= j SAR(T, — 2) dA 3)
Q

The noise sample n = n(t,) is a gaussian r.v. with zero mean and variance o7, so
the conditional PDFs of Y given H, or H, will be gaussian curves centered at z,
or z,, portrayed by Fig. 14.2-2. With the usual assumption of equally likely zeros
and ones, the optimum threshold is at the intersection point, i.e.,

Vopl = VZ(ZI + ZO)
Then, from the symmetry of the PDFs, P, = P, and
P, =Q(|z, — z,|/20)

in which the absolute-value notation |z, — z4| includes the case of z; < zg.

But what BPF impulse response h(r) maximizes the ratio |z, — z,|/20 or,
equivalently, | z, — z4|%/46?? To answer this question, we note from Eq. (3) that
2

" [52(4) — solIMT, — 4) di (4a)

- @
where the infinite limits are allowed since s,(¢t) = 0 outside of 0 <t < T,. We also
note that

|z, _zo|2 =

a2=§r|hu)|2 dx%r |WT, — I dA (@b)

pr(yiHo) pyyIHY)

Figure 14.2-2 Conditional PDFs.
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Application of Schwarz’s inequality now yields

=z 1 (=
Tf <o 'm[s,(t) — sp(0)]? dt (5)
and the ratio is maximum if (T, — t) = K[s,(t) — s¢(t)]. Thus,
hop((t) = K[51(7L -n- SO(’I;: - t)] (6)

with K being an arbitrary constant.

Equation (6) says that the filter for optimum binary detection should be
matched to the difference between the two signaling waveforms. Alternatively,
you could use two matched filters with h,(t) = Ks,(T, — t) and ho(t) = Kso(T, — 1)
arranged in parallel per Fig. 14.2-3a; subtracting the output of the lower branch
from the upper branch yields the same optimum response. In either case, any
stored energy in the filters must be discharged after each sampling instant to
prevent ISI in subsequent bit intervals.

Another alternative, with built-in discharge, is based on the observation that
the sampled signal value from the upper branch in Fig. 14.2-3a is

Ty ,
Zilt) = j SulAh (T, — A) di
o

th+1)Ty
= f St — kKT)Ks (t — kT,) dt
kTs

and likewise for z,(f,). Hence, optimum filtering can be implemented by the
system diagrammed in Fig. 14.2-3b, which requires two multipliers, two inte-
grators, and stored copies of sy(t) and s,(r). This system is called a correlation

\"\
hi(t) = Zpifl)
Ks (T, ~ 1)
St = kTy) + Zm = 2t} — Zmolly)
SH }—»
ho(’) = - f
KSO(Tb -1 Zmalt) !
(@) { sync
{(k + T,
Sl = KT) AR I 2
i K5t — kTy) SH }—»
Sk 1T, - f
far, |
{sync
(b) Kso(t — kTs)

Figure 14.2-3 Optimum binary detection. (a) Parallel matched filters; (b) correlation detector.
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detector because it correlates the received signal plus noise with noise-free copies
of the signaling waveforms. Note that correlation detection is a generalization of
the integrate-and-dump technique for matched filtering.

Regardless of the particular implementation method, the error probability
with optimum binary detection depends upon the ratio maximized in Eq. (5). This
ratio, in turn, depends on the signal energy per bit and on the similarity of the
signaling waveforms. To pursue this point, consider the expansion

Ty
j [5,(t) —so(t)]* dt = E, + Eg — 2E 4
¢}
where
Ts Ty
E, & J‘ sitydt  Ey & f s3(t) dt
4] 0 "
I (7
E, 2 j 51(1)so(t) dt
0
We identify E, and E, as the respective energies of s,(¢t) and su(t), while E, is

proportional to their correlation coefficient. Since zeros and ones are equally
likely, the average signal energy per bit is

E, = Yo(E, + Ey)

Therefore,
z) —29\? E,+E, —2E,, E,—E,
= = (Sa)
20/ max 2n n

and

P, = Q[/(E, — E\o)/n] (8b)
Equation (8) brings out the importance of E,, relative to system performance
when E, and n are fixed.

Finally, substituting Eq. (6) into Eq. (3) yields z, = K(E, — E,,) and z, =
K(E o — Eo), s0

1 K
‘/opl=§(zl+20)=‘5(El_E0) ©)

Note that the optimum threshold does not involve E .

Exercise 14.2-1 Derive Eqgs. (5) and (6) from Egs. (4a) and (4b). Use Eq. (17),
Sect. 3.5, written in the form
2

Jw V(AW™*(A) di

— 0

= < r | V()2 dA
j | W(A)|* di o

-

and recall that the equality holds when V(1) and W(4) are proportional func-
tions.
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Coherent OOK, PRK, and FSK

Although the crude nature of ASK hardly warrants sophisticated system design, a
brief look at coherent on-off keying helps clarify optimum detection concepts.
The OOK signaling waveforms are just

510 = A pr) cos ot so(t) = 0 (10)

Our carrier-frequency condition f, = N_/T, means that s,(t — kT;) = 4, cos w,t
for any bit interval while, of course, so(t — kT,) = 0. Thus, a receiver with correla-
tion detection simplifies to the form of Fig. 14.2-4, in which a local oscillator syn-
chronized with the carrier provides the stored copy of s,(¢). The bit sync signal
actuates the sample-and-hold unit and resets the integrator. Both sync signals
may be derived from a single source, thanks to the harmonic relationship
between f, and r, .
Now we use Eqgs. (7) and (10) to obtain E, = E,, = 0 and

Ty 2 2
E1=Af'[ coszwctdt=é——T- 1 + sinc 4—f— =.A_‘_-T_”
o 2 ry 2

so E, = E,/2 = A? T,/4. Setting the threshold at ¥ = K(E, — E,)/2 = KE, yields
the minimum average error probability given by Eq. (8), namely

P, = QW/EJn) = QW/7) (11)

Not surprisingly, the performance of coherent OOK is identical to unipolar base-
band transmission.

Better performance is achieved by coherent phase-reversal keying. Let the
two phase shifts be 0 and = radians, so

BN
51(t) = A, pr,(t) cos w, t Solt) = —s,(¢) (12)
The relation sq(t) = —s,(t) defines antipodal signaling, analogous to polar base-

band transmission. It quickly follows that
Eb=El=EO=A3Tb/2 EIO:‘—Eb
so E, — E,, = 2E, and
J—
P, = Q(V2E)/m) = Q(\/2) (13)

Stk o+ DT
j L S/H
A

Q 4
Reset “? Sample

Bit sync

x A1) + noise

KA _cos wct

Carrier
sync

Figure 14.2-4 Correlation receiver for OOK or PRK.
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PRK therefore gets by with 3 dB less signal energy than OOK, other factors
being equal.

Since sq(t) = —s,(t), a coherent PRK receiver requires only one matched
filter or correlator, just like OOK. But now ¥ = 0 since E; = E,;, so the PRK
threshold level need not be readjusted if the received signal undergoes fading.
Furthermore, the constant envelope of PRK makes it relatively invulnerable to
nonlinear distortion. PRK is therefore superior to OOK on several counts, and
has the same spectral efficiency. We'll see next that PRK is also superior to
binary FSK.

Consider binary FSK with frequency shift +f, and signaling waveforms

sy(8) = A, pr(t) cos 2n(f. + fo)t
solt) = A, prft) cos 2n(f. — foht
When f, + f; » ry, Ey  A2T,/2, whereas
E o = E, sinc (4f,/r,) (15)
which depends on the frequency shift. If f, = r,/2, corresponding to Sunde’s FSK,
then E,, = 0 and the error probability is the same as OOK.
Some improvement is possible when phase discontinuities are allowed in
x/(1), but E, — E,, < 1.22E, for any choice of f;. Hence, binary FSK does not
provide any significant wideband noise reduction, and PRK has an energy

advantage of at least 10 log (2/1.22) = 2 dB. Additionally, an optimum FSK re-
ceiver is more complicated than Fig. 14.2-4.

(14)

Exercise 14.2-2 Suppose the optimum receiver for Sunde’s FSK is imple-
mented in the form of Fig. 14.2-3a. Find and sketch the amplitude response
of the two filters.

Timing and Synchronization

Finally, we should give some attention to the timing and synchronization prob-
lems associated with optimum coherent detection. For this purpose, consider the
bandpass signaling waveform and matched filter

s(t) = A, pr,(t) cos w, t L h=N.»1
h(t) = KS(T, — t) = KA, pr,(t) cos o, t
When s(t) is applied to its matched fiiter, the resulting response is

z(t) = s(t) » h{t) = KEA< T) cos w .t (16)

T,
where E = A2 T,/2. The sketch of z(¢) in Fig. 14.2-5 shows the expected maximum
value z(T,) = KE, and the response for t > T, would be eliminated by discharging
the filter after the sampling instant.



532 BANDPASS DIGITAL TRANSMISSION

Figure 14.2-5 Response of bandpass matched filter.

But suppose there’s a small timing error such that sampling actually occurs
att, = Ty(1 + €). Then

z(t,) = KE cos 0, 0, = w.T,e =2nN_ €

so the timing error reduces the effective signal level by the factor cos ,. Since
|z, — zo]* will be reduced by cos? 6,, while 62 remains unchanged, the error

probability becomes
E,—E
P,= Q(\/—i—;—l—o cos? 9£> (17)

which follows from Eq. (8). As an example of the magnitude of this probiem, take
PRK with y, =8, r, =2 kbps, and f, = 100 kHz; perfect timing gives P, =
Q(\/ﬁ) x 3 x 107 %, while an error of just 0.3% of the bit interval results in 6, =

2m(100/2) x 0.003 = 54° and P, = Q(/16 cos® 54°) ~ 10~ 2. These numbers illus-
trate why bandpass matched filter is not-a practical method for coherent detec-
tion.

A correlation detector like Fig. 14.2-4 has much less sensitivity to timing
error, since the integrated output does not oscillate at the carrier frequency. Cor-
relation detection is therefore used in most coherent binary systems. However,
the local oscillator must be synchronized accurately with the carrier, and a phase
synchronization error 6, again reduces the effective signal level by the factor
cos 0,.

In the case of PRK, the carrier sync signal can be derived from x(t)} using
techniques such as the Costas PLL system back in Fig. 8.3-4. Another approach
known as phase-comparison detection is discussed in the next section, along with
noncoherent detection of OOK and FSK.

14.3 NONCOHERENT BINARY SYSTEMS

Optimum coherent detection may not be essential if the signal is strong enough
for adequate reliability with a less sophisticated receiver. A prime example of this
situation is digital transmission over voice telephone channels, which have rela-
tively large signal-to-noise ratios dictated by analog performance standards.
There are also applications in which it would be very difficult and expensive to
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carry out coherent detection. For instance, the propagation delay on some radio
channels changes too rapidly to permit accurate tracking of the carrier phase at
the receiver, and unsynchronized or noncoherent detection becomes the only
viable recourse.

Here we examine the suboptimum performance of noncoherent OOK and
FSK systems that employ envelope detection to bypass the synchronization
problems of coherent detection. We'll also look at differentially coherent PSK
systems with phase-comparison detection. For all three cases we must first
analyze the envelope of a sinusoid plus bandpass noise.

Envelope of a Sinusoid plus Bandpass Noise

Consider the sinusoid A, cos (@, t + 6) plus gaussian bandpass noise n(r) with
zero mean and variance a2, Using the quadrature-carrier expression

n(t) = nfr) cos (w, t + 6) — n(t) sin (w, t + 6)
we write the sum as
A, cos (w t + 8) + n(t) = A(t) cos [w, t + 8 + ¢(1)]

where, at any instant ¢,

n
A= J(A +n)*+n} ¢ =arctan A—i—— (H

We recall from Sect. 9.2 that the i and ¢ noise components are independent r.v.’s
having the same distribution as n(t). Now we seek the PDF of the envelope A.

Before plunging into the analysis, let’s speculate on the nature of 4 under
extreme conditions. If 4, = 0, then A reduces to the noise envelope 4,, with the
Rayleigh distribution

An —~ Apnlj2a2
Pald) =3 e 4,20 @

At the other extreme, if A, » o, then A_ will be large compared to the noise com-
ponents most of the time, so

A=A/l +(2njA) + (nf +nd)AZ~ A +n,

which implies that A will be approximately gaussian.

For an arbitrary value of 4., we must perform a rectangular-to-polar conver-
sion following the procedure that led to Eq. (14), Sect. 4.4. The joint PDF of A
and ¢ then becomes

P,w(A, ) = 3)

A ex A? — 24, A cos ¢ + A?
2n0? P 202

for A 20 and | ¢| < n. The term A4 cos ¢ in the exponent prevents us from fac-
toring Eq. (3) as a product of the form p ,(A)p,(¢), meaning that 4 and ¢ are not
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statistically independent. The envelope PDF must therefore be found by integrat-
ing the joint PDF over the range of ¢, so

A A2+ AN\ [~ A_A cos ¢
= - ‘£ __c———.— d
PAA) 2n0? xp ( 20* ) Jixexp ( ¢* ¢

Now we introduce the modified Bessel function of the first kind and order zero,
defined by

1 T
I,(v) & o f exp (v cos ¢) d¢ (4a)
with the properties
Pauad v <1
L~ ¢ (4b)
%
We then have
A A A
pAA) = =5 e—(,41+4t2)/2a1]0( - > Az0 5

which is called the Rician distribution.
Although Eq. (5) has a formidable appearance, it easily simplifies under large-
signal conditions to

A
A~ | ~A- 4202 A . »a 6
pA( ) 27'( l‘- 0_2 € N 3 ( )

obtained from the large-v approximation in Eq. (4b). Since the exponential term
dominates in Eq. (6), we have confirmed that the envelope PDF is essentially a
gaussian curve with variance ¢ centered at A x~ A,. Figure 14.3-1 illustrates the
transition of the envelope PDF from a Rayleigh curve to a gaussian curve as A,
becomes large compared to o.

Pa A, =0
/\\A(:)U
// N\
N\
/ \
/ N A, = S0
// N
~

7 i | oSS | Alo
0 1 2 3 4 S 6 7

Figure 14.3-1 PDFs for the envelope of a sinusoid plus bandpass noise.
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Noncoherent OOK

Noncoherent on-off keying is intended to be a simple system. Usually the carrier
and data are unsynchronized so, for an arbitrary bit interval kT, <t < (k + 1T,
we write

x(t) = A appr,(t — kT cos (w .t +6)  a,=0,1 N
The signaling energies are E, = 0 and

_ AT, [l N sin 2w, T, + 26) — sin 29] AT,

E
D) 20, T, 2

where we’ve assumed that f, > r,. The average signal energy per bit is then E, =
E,/2 ~ A?}T,/4 since we'll continue to assume that 1s and Os are equally likely.

The OOK receiver diagrammed in Fig. 14.3-2 consists of a BPF followed by
an envelope detector and regenerator. The BPF is a matched filter with

h(t) = KA:: pr(t) COs w, t (8)

which ignores the carrier phase 8. The envelope detector eliminates dependence
on 0 by tracing out the dashed line back in Fig. 14.2-5. Thus, when g, = 1, the
peak signal component of the envelope () is A, = KE,. Let’s take K = A /E,
for convenience, so that A, = 4_. Then

Alje? = 4E,/n = 4y, )

where a2 is the variance of the bandpass noise at the input to the envelope detec-
tor, calculated from h(t) using Eq. (4b), Sect. 14.2.

Now consider the conditional PDFs of the random variable Y = y(t,). When
a, =0, we have a sample value of the envelope of the noise alone; hence,
p{¥| Hy) is the Rayleigh function p, (y). When g, = 1, we have a sample value of
the envelope of a sinusoid plus noise; hence, p{y| H,) is the Rician function
p.(¥). Figure 14.3-3 shows these two curves for the case of y, >» 1, so the Rician
PDF has a nearly gaussian shape. The intersection point defines the optimum
threshold, which turns out to be

A, | 2 A,
Vop(z-z— 1+-Y—bz-—2— v > 1

But we no longer have symmetry with respect to the threshold and, consequently,
P,, # P, when P, is minimum.

n2
A a, 008 (wit + 8) é BPF Env »(1)
h(r) det Regen p——®d,

B 1!

sync | 8%

Figure 14.3-2 Noncoherent OOK receiver.
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pylyHo)

piviH,)

A

=
pd
-

1074

3 6 9 12 15
¥y, dB

Figure 14.3-4 Binary error probability curves. {a) Coherent PRK; (b) DPSK; (¢) coherent QOK o1
FSK; (d) noncoherent FSK ; (¢) noncoherent OOK.
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Noncoherent QOK systems require y, » 1 for reasonable performance, and
the threshold is normally set at A./2. The resulting error probabilities are

P,, = J Pafy) dy = e AT = g7 ni2 (10a)
A2

P

Acl2 Ac o
o= | o() -

1
V 21y,

where we've introduced the asymptotic approximation for Q(\/;);) to bring out
the fact that P, « P, when y, » 1. Finally,

P, =YyP,, + P.) = Yale ™2 + Q(/ )]

x Yo 2 yp » 1

(10b)

2

e mi? 7 2> 1

(11)

which is plotted versus y, in Fig. 14.3-4 along with curves for other binary
systems.

Exercise 14.3-1 Consider the BPF output z(t) = x(¢) = h(t) when x_(t) =
A, prft) cos (.t + O)and K = 2/A_T,. Show that, for 0 <t < T,,

cos 0\ .
sin @, ¢
w,t

Then find and sketch the envelope of z(t) assuming f, » r,.

At
z(t) = —=— [cos @ cos w. t — (sin g —
T,

Noncoherent FSK

Although envelope detection seems an unlikely method for FSK, a reexamination
of the waveform back in Fig. 14.1-1b reveals that binary FSK consists of two
interleaved OOK signals with the same amplitude 4, but different carrier fre-
quengcies, f; =f. + f; and f, = f. — f;. Accordingly, noncoherent detection can be
implemented with a pair of bandpass filters and envelope detectors, arranged per
Fig. 14.3-5 where

hy(t) = KA, pr,(t) cos w,t ho(t) = KA, pr(t) cos wyt (12)
BPF Env '
i Tl det
+
x{e) Regen }—p
- LI
BPF Env Bit | |
fo det Yo synct V=0

Figure 14.3-5 Noncoherent detection of binary FSK.
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We'll take K = A./E,, noting that E, = E, = E, ~ A2T,/2. Then
Alja® = 2Ey/n = 2y, (13)

where o7 is the noise variance at the output of either filter.

We'll also take the frequency spacing f; — f, = 2f; to be an integer multiple
of r,, as in Sunde’s FSK. This condition ensures that the BPFs effectively
separate the two frequencies, and that the two bandpass noise waveforms are
uncorrelated at the sampling instants. Thus, when g, = 1, the sampled output
y1(t,) at the upper branch has the signal component 4, = KE, = 4, and a Rician
distribution, whereas y,(t,) at the lower branch has a Rayleigh distribution — and
vice versa when a, = 0.

Regeneration is based on the envelope difference Y, — ¥, = y,(t,) — yolti)-
Without resorting to conditional PDFs, we conclude from the symmetry of the
receiver that the threshold should be set at V =0, regardless of A.. It then
follows that P, = P(Y, — Y, < 0|H,)and P, = P,, = P,. Therefore,

P,=PY,> Y |H))

=L py.(¥ IHl)U Proyol Hy) d}’o:l dy,

where the inner integral is the probability of the event Y, > Y, for a fixed value of

1. Inserting the PDFS pyy(yo| H) = payo) and py,(yi} Hy) = p(y1) and per-
forming the inner integration yields

o @ a

Rather amazingly, this integral can be evaluated in closed form by letting i =
\/iy1 and a = Ac/\/i so that

; _1_e~A¢2/401 J‘w _&ie—(ll‘#al)}zﬂ <a'l) di
2 b @

The integrand is now exactly the same function as the Rician PDF in Eq. (5),
whose total area equals unity. Hence, our final result simply becomes

= tre A = Yooz (14

having used Eq. (13).

A comparison of the performance curves for noncoherent FSK and OOK
plotted in Fig. 14.3-4 reveals little difference except at small values of y,.
However, FSK does have three advantages over OOK: constant modulated
signal envelope, equal digit error probabilities, and fixed threshold level ¥ = 0.
These advantages usually justify the extra hardware needed for the FSK receiver.
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Differentially Coherent PSK

Noncoherent detection of binary PSK would be impossible since the message
information resides in the phase. Instead, the clever technique of phase-
comparison detection gets around the phase synchronization problems associated
with coherent PRK and provides much better performance than noncoherent
OOK or FSK. The phase-comparison detector in Fig. 14.3-6 looks something
like a correlation detector except that the local oscillator signal is replaced by the
PRK signal itself after a delay of T,. A BPF at the front end prevents excess noise
from swamping the detector.

Successful operation requires f, to be an integer multiple of r,, as in coherent
PRK. We therefore write

x(ty = A, pr(t —kT) cos (w .t + 0 + a.n)
a, =01 kT, <t <(k+ )T,

(15)

In the absense of noise, the phase-comparison product for the kth bit interval is

x.(t) x 2x,(t — T,) = 2A% cos (w, t + 6 + a;m)
x cos [w (it — T,) + 0 + a,_yn]
= AX{cos [(a, — a,_)7]
+cos [2w,t + 20 + (ay + a;_ )]}

where we've used the fact that w, T, = 2nN, . Lowpass filtering then yields

+ 42 a, = a,_,
= ¢ 16
2w {_Acz a4y F ay_y (16)

so we have polar symmetry and the threshold should be set at V = 0.

Since z(t,) only tells you whether g, differs from a;, _,, a PRK system with
phase-comparison detection is called differentially coherent PSK (DPSK). Such
systems generally include differential encoding at the transmitter, which makes it
possible to regenerate the message bits directly from z(t,). Differential encoding
starts with an arbitrary initial bit, say a, = 1. Subsequent bits are determined by
the message sequence m, according to the rule:a, =a,_, if m,=1,a, #a,_, if

x{t) + a(t) ¥(t)

LPF Regen |—®

Bit LR
Sync i i V=0

—— BPF

K=12

Figure 14.3-6 Differentially coherent receiver for binary PSK.
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m, ——4
i
Delay
flip-
By g ﬂop . L , . . ,
Figure 14.3-7 Logic circuit for differential encoding.
m, = 0. Thus, z(t,) = + A> means that m, = 1 and z(t,) = — A? means that m, =

0. Figure 14.3-7 shows a logic circuit for differential encoding; this circuit imple-
ments the logic equation

ak=ak_,mk®5k;lﬁk (17)

where the overbar stands for logical inversion. An example of differential encod-
ing and phase-comparison detection (without noise) is given in Table 14.3-1.

To analyze the performance of DPSK with noise, we'll assume that the BPF
performs most of the noise filtering, like the BPFs in an FSK receiver. Hence, the
carrier amplitude and noise variance at the BPF output are related by

Acz/o_z = 2E,/n =2y,

We'll also exploit the symmetry and focus on the case whena, = a, , =0, so an
error occurs if ¥{t,) < 0.

Now let the delayed i and g noise components be denoted by ni{t) = n{t — T,)
and ny(t) = n(t — T,). The inputs to the mulﬁplier during the kth bit interval
are x.(t) + n(t) = [A, + n{t)} cos (w t + 0) ~ n(t) sin (w, t + 8) and 2[x.(t — T,)
+ n(t) — T,)] = 2[A, + n{t)] cos (w. t + 60) — 2ny(t) sin (w t + 6). The LPF then
removes the high-frequency terms from the product, leaving

Y = yt,) = (4, + n)A, + nm) + non, (18)

where all four noise components are independent gaussian r.v.’s with zero mean
and variance ¢°.

Equation (18) has a quadratic form that can be simplified by a diagonal-
1zation process, resulting in

Y=o — BZ (19a)

with

= (A, +a) + o p* =pi + B (19b)
Table 14.3-1
Input message 10110100
Encoded message 110001 1 01
Transmitted phase 000 0 n
Phase-comparison sign + -+ + = 4+ - -
Regenerated message 1011 0100
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and
a & Yoln, + 1) Bi & Yyln; — )
%q 4 l/z("q + ny) B, & 1/2('%; —ny)
Note that «; is a zero-mean gaussian r.v. with variance ol =l +nhy4 =
20%/4 = 0%/2; identical conclusions hold for the other i and g components of x
and p. Therefore, « has a Rician PDF given by Eq. (5) with /2 in place of ¢*,
while 8 has a Rayleigh PDF given by Eq. (2) with 6%/2 in place of o2,
Lastly, since « and § are nonnegative, we can write the average error prob-
ability as

(19¢)

P,=P(Y <0la,=a.,) = P> <p*) = P(f > o)

and we’ve arrived at an expression equivalent to the one previously solved for
noncoherent FSK. Substituting ¢2/2 for ¢* in Eq. (14) now gives our DPSK
result

P, = l/ze—Acz/Zal — l/ze—yb (20)

The performance curves in Fig. 14.3-4 now show that DPSK has a 3-dB energy
advantage over noncoherent binary systems and a penalty of less than 1 dB com-
pared to coherent PRK at P, < 10™%.

DPSK does not require the carrier phase synchronization essential for coher-
ent PRK, but it does involve somewhat more hardware than noncoherent OOK
or FSK — including differential encoding and carrier-frequency synchronization
with r, at the transmitter. A minor annoyance is that DPSK errors tend to occur
in groups of two (why?).

Example 14.3-1 Binary data is to be sent at the rate r, = 100 kbps over a
channel with 60-dB transmission loss and noise density n = 107! W/Hz at
the receiver. What transmitted power S, is needed to get P, = 1073 for
various types of modulation and detection?

To answer this question, we first write the received signal power as S, =
Eyr, = ny,ry, = S¢/L with L = 10°. Thus,

St =Lny,r, =01y,

Next, using the curves in Fig. 14.3-4 or our previous formulas for P,, we find
the value of y, corresponding to the specified error probability and calculate
Sy therefrom.

Table 14.3-2 summarizes the results. The systems have been listed here in
order of increasing difficulty of implementation, bringing out the trade-off
between signal power and hardware complexity.

Table 14.3-2
System S, W

Noncoherent OOK or FSK 1.26
Differentially coherent PSK 0.62
Coherent PRK 0.48
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Exercise 14.3-2 Suppose the system in the previous example has a limitation
on the peak envelope power, such that LA2? < 2 watts at the transmitter. Find
the resulting minimum error probability for noncoherent OOK and FSK and
for DPSK.

144 QUADRATURE-CARRIER AND M-ARY SYSTEMS

This section investigates the performance of M-ary modulation systems with
coherent or phase-comparison detection, usually in a quadrature-carrier configu-
ration. Our primary motivation here is the increased modulation speed afforded
by QAM and related quadrature-carrier methods, and by M-ary PSK and APK
modulation. These are the modulation types best suited to digital transmission
on telephone lines and other bandwidth-limited channels. (Appendix C discusses
wideband modulation, such as M-ary FSK, which is better suited to power-
limited applications.)

As in previous sections, we continue to assume independent equiprobable
symbols and AWGN contamination. We also assume that M is a power of two,
consistent with binary to M-ary data conversion. This assumption allows a prac-
tical comparison of binary and M-ary systems.

Quadrature-Carrier Systems

We pointed out in Sect. 14.1 that both quadriphase PSK and keyed polar QAM
are equivalent to the sum of two PRK signals impressed on quadrature carriers.
Here we’ll adopt that viewpoint to analyze the performance of QPSK/QAM with
coherent detection. Accordingly, let the source information be grouped into dibits
represented by I, @,. Each dibit corresponds to one symbol from a quaternary
{M = 4) source or two successive bits from a binary source. In the latter case,
which occurs more often in practice, the dibit rate is r = r,/2and D = 1/r = 27,.
Coherent quadrature-carrier detection requires synchronized modulation, as
discussed in Sect. 14.2. Thus, for the kth dibit interval kD < t < (k + 1)D, we write

x.(t) = s{t — kD) — s (t — kD) (la)
with
sit) = A, L, pplt) cos w, ¢ I,=%1
Sty = A Qepplt)y sinw.t Q= %1

Since f, must be harmonically related to r = 1/D, the signaling energy is

(1b)

tk+1)D
f X30) di = Y, A20F + QDD = AZD
kD

and we have
E =2E, E,= AD)2 (2)

where E is the energy per dibit or quaternary symbol.
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Figure 14.4-1 Quadrature-carrier receiver with correlation detectors.

From Eq. (1) and our prior study of coherent PRK, it follows that Fhe
optimum quadrature-carrier receiver can be implemented with two correlgtnon
detectors arranged as in Fig. 14.4-1. Each correlator performs coherent binary
detection, independent of the other. Hence, the average error probability per bit is

P,. = Q(/2En) = O(/27,) 3)

where the function Q(\/Z—y,,) denotes the area under the gaussian tail —not to be
confused with Q symbolizing quadrature modulation.

We see from Eq. (3) that coherent QPSK/QAM achieves the same bit error
probability as coherent PRK. But recall that the transmission bandwidth for
QPSK/QAM is

By = r,/2

whereas PRK requires By ~ r,. This means that the additional quadrature-
carrier hardware allows you to cut the transmission bandwidth in half for a given
bit rate or to double the bit rate for a given transmission bandwidth. The error
probability remains unchanged in either case.

Equation (3) and the bandwidth/hardware trade-off also hold for minimum-
shift keying, whose i and g components illustrated back in Fig. 14.1-1 1?) suggest
quadrature-carrier detection. An MSK receiver has a structure like Fig. 14.4-1
modified in accordance with the pulse shaping and staggering of the i and g com-
ponents. There are only two significant differences between MSK and QPSK: (1)
the MSK spectrum has a broader main lobe but smaller side lobes than the spec-
trum of QPSK with the same bit rate; (2) MSK is inherently binary frequency
modulation, whereas QPSK can be viewed as either binary or quaternary phase
modulation.

When QPSK/QAM is used to transmit quaternary data, the output con-
verter in Fig. 14.4-1 reconstructs quaternary symbols from the regenerated dibits.
Since bit errors are independent, the probability of obtaining a correct symbol is

P.=(1 - P,)?
The average error probability per symbol thus becomes
P.=1- P, =20/Eln - QW/E/n)
~20(/Em  Ein>1 )

where E = 2E, represents the average symbol energy.



544 BANDPASS DIGITAL TRANSMISSION
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cos 4w cos {w t + Nm/2)

Figure 14.4-2 PLL system for carrier synchronization in a quadrature-carrier receiver.

Various methods have been devised to generate the carrier sync signals
necessary for coherent detection in quadrature-carrier receivers. Figure 14.4-2
shows a simple PLL system based on the fact that the fourth power of x () con-
tains a discrete frequency component at 4f, . However, since cos 4w, t = cos (4w, t
+ 2nN), fourfold frequency division produces cos (w.t + Nr/2) so the output has
a fixed phase error of Nn/2 with N being an integer whose value depends on the
lock-in transient. A known preamble may be transmitted at the start of the
message to permit phase adjustment, or differential encoding may be used to
nullify the phase error effects. Another carrier sync system will be described in
conjunction with M-ary PSK; additional methods are covered by Lindsey (1972).

Phase-comparison detection is also possible in quadrature-carrier systems
with differential encoding. From our study of DPSK in Sect. 14.3, you may cor-
rectly infer that differentially coherent QPSK (DQPSK) requires somewhat more
signal energy than coherent QPSK to get a specified error probability. The differ-
ence turns out to be about 2.3 dB.

Example 14.4-1 DQPSK Telephone modem Digital communication over
telephone lines has been the subject of intense effort for many years. One of
the earliest and most successful systems is the AT & T series 201 modem,
which employs DQPSK to achieve binary transmission at r, = 2400 bps
within the limitations of a voice channel. (See Table 12.4-2 for a listing of
other modems.) This modem is described here to illustrate how basic design
concepts are augmented in practical implementation.

Each modem consists of a modulator unit and a demodulator unit to
allow transmission in either direction. The modulator is diagrammed in Fig.
14.4-3a, where incoming binary digits are converted to dibits that modulate
the carrier at half the bit rate. The process of differential phase modulation
incorporates both differential encoding and phase-shift keying, as indicated
in Fig. 14.4-3b. The carrier frequency is f, = 1800 Hz, derived from the
2400-Hz clock signal.

Although the nominal transmission bandwidth for DQPSK is B; ~
ry/2 = 1200 Hz, the spectrum has considerable spillover that would exceed
the voice channel bandwidth. Synchronized envelope modulation at 600 Hz
provides pulse shaping to reduce spillover outside f, + r,/2. Bandpass filter-
ing finally yields an output spectrum confined to the range 600-3000 Hz.

Observe in Fig. 14.4-3b that the differential phase shift is never zero, so
¢, always differs from ¢, _, and there will be a phase shift in the modulated
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Figure 14.4-3 DQPSK telephone modem. (a) Modulator; (b) differential encoding table; (c) demodu-
lator.
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wave every D = 1/1200 seconds. When combined with the envelope modula-
tion, these phase shifts produce discrete frequency components at f, + 600 =
2400 Hz and f. — 600 = 1200 Hz used for regeneration timing.

The demodulator unit in Fig. 14.4-3¢ has quadrature phase-comparison
detection with outputs proportional to I, = ﬁ cos (¢, — ¢, -,) and
Q. = /2 sin (¢, — ¢, ), from which the message bits are regenerated. The
dibit sync signal is obtained by mixing the 2400- and 1200-Hz components
and selecting the 1200-Hz difference frequency. This roundabout method,
rather than directly filtering the 1200-Hz component, takes better account of
the delay distortion induced by a typical telephone channel.

Tests have shown that the resulting error probability is P,, ~ 10~ % with
y, = 15 dB. A fully optimized DQPSK system under ideal conditions would
yield the same performance with about 3 dB less energy per bit. Of course a
telephone channel or any other real channel does not provide ideal
conditions —a fact of life that must be anticipated by the design engineer.

Exercise 14.4-1 Consider a QPSK signal like Eq. (1) written as x(t) =
A, cos(w, t + ¢,) with ¢, = n/4, 3n/4, 5n/4, Tr/4. Show that x¥(r) includes an
unmodulated component at 4f, .

M-ary PSK Systems

Now let’s extend our investigation of coherent quadrature-carrier detection to
encompass M-ary PSK. The carrier is again synchronized with the modulation,
and f, is harmonically related to the symbol rate r. We write the modulated signal
for a given symbol interval as

xA{t) = s{t — kD) — s(t — kD) (5a)
with
s{t) = A, cos ¢ pplt) cos w, ¢
. . (5b)
5,(t) = A, sin ¢, pplt) sin w, ¢
where

¢ = 2na /M a=01....M—1

from Eq. (13), Sect. 14.1, taking N = 0. The signaling energy per symbol then
becomes

E ='/,Al(cos® ¢y + sin® ¢)D = ;42D (6)

equivalent to E, = E/log, M if each symbol represents log, M binary digits. The
transmission bandwidth requirement is By =~ r = r,/log, M, from our spectral
analysis in Sect. 14.1.

An optimum receiver for M-ary PSK can be modeled in the form of Fig.
14.4-4. We'll let K = A /E so, in absence of noise, the quadrature correlators
produce z(f,) = A, cos ¢, and z,(t,) = A, sin ¢, from which ¢, = arctan z,/z,.
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Figure 1444 Coherent M-ary PSK receiver.

When x_(t) is contaminated by noise, message symbol regeneration is based on
the noisy samples

yi=A. cos ¢ +nm Yy = A, sin ¢, + n,

in which the i and ¢ noise components are independent gaussian r.v.’s with zero
mean and variance

0? = K?En/2 = A2n/2E = nr (7

The generator has M angular thresholds equispaced by 2n/M, as illustrated in
Fig. 14.4-5, and it selects the point from the signal constellation whose angle is
closest to arctan y/y;. .

The circular symmetry of Fig. 14.4-5, together with the symmetry of the noise
PDFs, means that all phase angles have the same error probability. We'll there-
fore focus on the case of ¢, = 0, so

n
arctan 24 — arctan —=4— = )
; A . +n

Vi 3 i

and we recognize ¢ as the phase of a sinusoid plus bandpass noise. Since no error
results if | ¢ | < n/M, the symbol error probability can be calculated using
M

Pe=P(l¢>3>n/M)=1~J ps(®) d¢ (&)

- x/M

for which we need the PDF of the phase ¢.

Figure 14.4-5 Decision thresholds for M-ary PSK.
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The joint PDF for the envelope and phase of a sinusoid plus bandpass noise
was given in Eq. (3), Sect. 14.3. The PDF of the phase alone is found by inte-
grating the joint PDF over 0 < 4 < oc. A few manipulations lead to the awesome-
looking expression

_ 1 426 AcCOS ¢ Al sin® ¢ A cos ¢
o= A o224 o

 2na?

for —n < ¢ < . Under the large-signal condition 4, » o, Eq. (9) simplifies to

A, cos _ S
psld) = ——ﬁ- g~ UAcsin ¢1i2al || < % (10)

which, for small values of ¢, approximates a gaussian with ¢ =0 and o=
6/ A2. Equation (10) is invalid for | ¢| > n/2, but the probability of that event is
small if A, » o. Figure 14.4-6 depicts the transition of p,(¢) from a uniform dis-
tribution when A4, = 0 to a gaussian curve when A, becomes large compared to o.
(See Fig. 14.3-1 for the corresponding transition of the envelope PDF))

We'll assume that A, > ¢ so we can use Eq. (10) to obtain the error probabil-
ity of coherent M-ary PSK with M > 4. (We already have the results for M =2
and 4.) Inserting Eq. (10) with 42/¢* = 2E/n inte Eq. (8) gives

oM i~
P, x1— I \/2_E cos ¢ o~ (2Eimisin ¢)2/2 do
h' 2n —x(M n
2 L
] — = e_“/zd}. 0"
\/2—7; 0 (1
Py
i\
A, =50
N
A1)
/ \«4‘ =2
/TN
./ \ 4,20

L8 > ~—
l_ — / \ - —-{ ® Figure 14.4-6 PDFs for the phase of a sinusoid plus
) L4 bandpass noise.
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where we've noted the even symmetry and made the change of variable A=
2E/n sin ¢ so L = /2E/n sin (z/M). But the integrand in Eq. (11) is a gaussian
function, so P, ~ 1 — [1 — 2Q(L)] = 2Q(L). Hence,

P,z2Q(\/—2n£ sin? ':7) (12)

which is our final result for the symbol error probability with M > 4. We'll discuss
the equivalent bit error probability in our comparisons at the end of the chapter.

Returning to the receiver in Fig. 14.4-4, the carrier sync signals can be
derived from the Mth power of x,(t) using a modified version of Fig. 14.4-2. The
more sophisticated decision-feedback PLL system in Fig. 14.4-7 uses the estimated
phase ¢, to generate a control signal v(t) that corrects any VCO phase error. The
two delayors here simply account for the fact that ¢, is obtained at the end of the
kth symbol interval.

If accurate carrier synchronization proves to be impractical, then differen-
tially coherent detection may be used instead. The noise analysis is quite com-
plicated, but Lindsey and Simon (1973) have obtained the simple approximation

P, ~ 2Q< /9,1£ sin? ﬁ) (13)

which holds for E/n » 1 with M > 4. We see from Eqs. (12) and (13) that M-ary
DPSK achieves the same error probability as coherent PSK when the energy is
increased by the factor

sin? (z/M)

~ 2 sin? (n/2M)

This factor equals 2.3 dB for DQPSK (M = 4), as previously asserted, and it
approaches 3 dB for M » 1.

Figure 14.4-7 M-ary PSK receiver with decision-feedback system for carrier synchronization.
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Exercise 14.4-2 Derive Eq. (7) by replacing one of the correlation detectors in
Fig. 14.4-4 with an equivalent BPF, as in Fig. 14.2-3.

M-ary APK Systems

Combined amplitude-phase keying (APK) is an important new method for digital
transmission on bandpass channels having limited bandwidth. Specifically, at the
cost of more elaborate hardware, coherent APK provides lower error rates than
other M-ary systems with keyed modulation operating at the same symbol rate.
Here we’ll study the class of APK systems defined by square signal constellations,
after a preliminary treatment of suppressed-carrier M-ary ASK.

Consider M-ary ASK with synchronized modulation and suppressed carrier.
Carrier-suppression is readily accomplished by applying a polar modulating
signal. Thus, for the kth symbol interval, we write

xAt) = A I, pplt — kD) cos w, ¢ (14a)
where
IL=21, +3,..., (M- 1) {14b)

The transmission bandwidth is By = r, the same as M-ary PSK.
An optimum coherent receiver consists of just one correlation detector, since
there’s no quadrature component, and regeneration is based on the noisy samples

yi=A L +n

The noise component is a zero-mean gaussian r.v. with variance 6? = gr, as in Eq.
{7). Figure 14.4-8 shows the one-dimensional signal constellation and the corre-
sponding M — 1 equispaced thresholds when M = 4. The symbol error probability

for any even value of M is
1 A
Pe=2(1——-)Q< ‘) (15)
M=\

obtained by the same analysis used for polar M-ary baseband transmission in
Sect. 11.2.

Suppose that two of these ASK signals are transmitted on the same channel
via quadrature-carrier multiplexing, which requires no more bandwidth than one
signal. Let the information come from an M-ary source with M = u? so the
message can be converted into two u-ary digit streams, each having the same rate
r. We could describe this process as y-ary QAM, but the more common desig-
nation APK emphasizes the property that the source symbols are represented by

| ) |

i |

i I
-24, 0 2A
Thresholds Figure 14.4-8 Decision thresholds for ASK with M = 4.
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amplitude and phase modulation. Even so, the performance of APK fundamen-
tally depends upon the u-ary error rate and therefore will be superior to direct
M-ary modulation with M > 4.

Figure 14.4-9a diagrams the structure of our APK transmitter. The output
signal for the kth symbol interval is

x(t) = s{t — kD) — s,{t — kD) (16a)
s M-ary
B
(@)
[ ol Regen ——]:k-
x1) Tsync wan .
< ——>
—‘* +%° chg;lavrzner
®) -’é—’ [ b Regen O
| q |
. { L I S VI ’l .
™ E e ta @ } .
1 N
[ of 4 1 a4,
o : ® ® }
® } ® ® : ®
() I 3

Figure 144-9 APK system. (@) Transmitter; (b) receiver; (c) square signal constellation and thresholds
with M = 16.



552 BANDPASS DIGITAL TRANSMISSION

with
s{ty = A 1, ppit) cos w_t Le==+1,£3, ..., +(u—1)
sty = A, @, pplt) sin w, ¢ Q= +1, +3
The average energy per M-ary symbol is
E =", + Q)D = Y,4%* — 1D (17

since 12 = QF = (u? — 1)/3.
Coherent APK detection is performed by the receiver in Fig. 14.4-9b, whose
quadrature correlators produce the sample values

yi=Aclk+ni y.,=Ach+nq

We then have a square signal constellation and threshold pattern, illustrated in
Fig. 14.4-9¢ taking M = 4% = 16. Now let P denote the probability of error for I,
or Q,, as given by Eq. (15) with M replaced by u = \/H The error probability
per M-ary symbol is P, = 1 — (1 — P> and P, ~ 2P when P « 1. Therefore,

1 3E
P,x4(1 - — — (18)
~i(- ) et

in which we've inserted the average symbol energy from Eq. (17).

Calculations using this result confirm the superior performance of APK. By
way of example, if M =16 and E/y = 100, then P,x4 x Y x Q(\/2—0) =12
x 107°, whereas an equivalent PSK system with M = 16 would have P, =
20(,/7.6) =6 x 1073,

Comparison of Digital Modulation Systems

A performance comparison of digital modulation systems should consider several
factors, including: error probability, transmission bandwidth, spectral spillover,
hardware requirements, and the differences between binary and M-ary signaling,
To establish an equitable basis for comparison, we'll make the realistic assump-
tion that the information comes from a binary source with bit rate r,. This allows
us to compare systems in terms of the modulation speed r,/B; and the energy-to-
noise ratio y, needed to get a specified error probability per bit.

Our previous results for binary modulation systems apply directly to the
comparison at hand, especially the error probability curves back in Fig. 14.3-4,
Table 14.4-1 serves as a more abbreviated summary when ¥y is large enough to
Justify the applicable approximations. (Thus, in the case of noncoherent OOK,
almost all the errors correspond to the carrier “off” state.) The table omits coher-
ent OOK and FSK, which have little practical value, but it includes QAM and
QPSK viewed as binary rather than quaternary modulation. This listing empha-
sizes the fact that doubled modulation speed goes hand-in-hand with coherent
quadrature-carrier detection. Also recall that minimizing spectral spillover
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Table 14.4-1 Summary of binary modulation systems
Modulation Detection ry/By pP,,

OOK or FSK (f, =ry/2)  Envelope 1 Ve w2
DPSK Phase-comparison 1 Ve e
PRK Coherent 1 Q(\/Z&)
MSK, QAM, or QPSK Coherent quadrature 2 O/ 21)

requires staggered keyed modulation (MSK or OQPSK) or additional pulse
shaping.

Now consider M-ary transmission with symbol rate r and energy E per
symbol. We'll take M = 2¥ and introduce the data-conversion factor

K =log, M
which equals the number of bits per M-ary symbol. The equivalent bit rate and
energy are r, = Kr and E, = E/K, so
7 = E/Kn
The modulation speed of M-ary PSK or APK is
ro/Br = K (19)
since By ~ r = r,/K. The error probability per bit is given by
P, .~ P,/K
providing that the data converter employs a Gray code, as 'discussed %n conjunc-
tion with Eq. (24), Sect. 11.2. After incorporating these adjustments in our pre-
vious expressions, we get the comparative resuits listed in Table 14.4-2. .
All of the quadrature-carrier and M-ary systems increase modulation speed
at the expense of error probability or signal energy. Suppose, for example, that
you want to keep the error probability fixed at P,, ~ 10~ “—a common standard

for comparison purposes. The value of 7, needed for different modulation systems
with various modulation speeds then can be calculated from our tabulated

Table 14.4-2 Summary of M-ary modulation systems with
ro/Br =K =log, M
Modulation Detection P,,

DPSK Phase-comparison 2 of [aky, sin? "
M= 4 quadrature K ® M

PSK Coherent _2_ Ko, sin? n
(M =8 quadrature K Q| /2K, sin M

APK Coherent 4 - 1 ) Q( 3K 7’»)
(K even) quadrature K \/ﬁ M-1
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Figure 14.4-10 Performance comparison of M-ary modulation systems with P, = 10™*,

expressions. Figure 14.4-10 depicts the results as plots of r,/B; versus y, in dB,
and each point is labeled with the corresponding value of M. Clearly, you would
choose APK over PSK for ry/By = 4 with coherent detection. M-ary DPSK
eliminates the carrier-synchronization problems of coherent detection, but it
requires at least 7 dB more energy than APK for r/Br = 4.

As our final comparison, Table 14.4-3 combines M-ary data from Fig.
14.4-10 and calculated values for binary systems with the same error probability.
The various systems are listed here in order of increasing complexity to bring out
the trade-offs between modulation speed, signal energy, and hardware expense.

Table 14.4-3 Comparison of digital modulation systems with
Pbe - 10-4

Modulation Detection r/By ¥y, dB
OOK or FSK (f; =r,/2)  Envelope 1 123
DPSK (M =2) Phase-comparison I 9.3
DQPSK Phase-comparison quadrature 2 10.7
PRK Coherent 1 8.4
MSK, QAM, or QPSK Coherent quadrature 2 84
DPSK (M = 8) Phase-comparison quadrature 3 14.6
PSK (M = 8) Coherent quadrature 3 11.8
PSK (M = 16) Coherent quadrature 4 16.2
APK (M = 16) Coherent quadrature 4 12.2
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You should keep two points in mind when you examine this table. First, the
numerical values correspond to ideal systems. The modulation speed of an actual
system is typically about 80% of the theoretical value, and the required energy is
at least 1-2 dB higher. Second, the characteristics of specific transmission chan-
nels may impose additional considerations. In particular, rapidly changing trans-
mission delay prohibits coherent detection, while transmission nonlinearities
dictate against the envelope modulation of OOK and APK.

Other factors not covered here include the effects of interference, fading, and
delay distortion. These are discussed in an excellent paper by Oetting (1979),
which also contains an extensive list of references.
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14.1-1 Find from Eq. (7) the average power vc_f and the carrier-frequency power P, of an M-ary ASK
signal. Then form the ratio P,/x? and simplify for M = 2 and M » 1.

14.1-2 Suppose a binary ASK signal consists of RZ rectangular pulses with duration T,/2, where
ry=1/Ty« f.. (a) Find the equivalent lowpass spectrum, and sketch and label G(f) for f> 0.
{b) Sketch the signal representing the sequence 010110. Then find the ratio of the carrier-frequency
power P_to the average power x2.

14.1-3 Consider a binary ASK signal with raised-cosine pulse shaping so, from Example 2.4-2

_l ) Ll Hi P\_rsincht
P(t)-z + cos t) 2t U)“]—(Zfr)z

(a) Sketch the signal representing the sequence 010110 when 1 = T,/2. Then find the equivalent
lowpass spectrum, and sketch and labet G(f)for f> 0.

(b) Redo part a with t = 1.
14.1-4 The envelope and phase variations of a QAM signal are

Alt) = A[xF() + xX0]'? @t} = arctan [x {1)/x41)]

(a) By considering the time interval kD <t < (k + 1)D, obtain expressions for A(t) and () with
a rectangular pulse shape pt).

(b) Redo part a with an arbitrary pulse shape p(t) whose duration does not exceed D.
14.1-5 Let a polar M-ary VSB signal have Nyquist pulse shaping per Eq. (6), Sect. 11.3. Find the
equivalent lowpass spectrum before VSB filtering. Then sketch and label G.(f) for f> 0 when the
filter has B, « r.
14.1-6 Before bandpass filtering, the i and ¢ components of the OQPSK signal generated in Fig.
14.1-6 can be written as

X{) = aypit —2%T)  x0) =Y ay, ,plt - 4T, - T,)
k k

where a, = (24, — 1) is the polar sequence corresponding to the message bit sequence 4,, and p(1) =
T(t/2Ty) for NRZ rectangular pulse shaping.

(a) Sketch x 1) and x 1) for the bit sequence 10011100. Use your sketch to draw the signal con-
stellation and to confirm that the phase ¢{(1) = arctan [x(t)/x{1)] never changes by more than +n/2
rad.

(b) Find the equivalent lowpass spectrum.
14.1-7¢ Let A, B, C, denote the Gray-code binary words for the eight-phase PSK constellation in
Fig. 14.1-5b. Construct a tabie listing 4, B, C, and the corresponding values of I, and Q, expressed in
terms of @ = cos n/8 and f = sin n/8. Then write algebraic expressions for I, and @, as functions of



