
 

MPS Interrupt Lab Exercise 

 
Interrupt and Timer ISRs 

Student's name & ID: _____________________________________________________ 

Partner's name(s) & ID(s): _________________________________________________ 

Your Section number & TA's name __________________________________________ 

Notes: 

You must work on this assignment with your partner. 

Hand in a printer copy of your software listings for the team. 
Hand in a neat copy of your circuit schematics for the team. 

These will be returned to you so that they may be used for reference. 

------------------------------- do not write below this line ----------------------------- 

 

 

Grade for performance verification (50% max.) 

Grade for answers to TA's questions (20% max.) 

Grade for documentation and appearance (30% max.) 

 

POINTS     TA init. 

  

  

  

 

 

 

Grader's signature: ___________________________________________ 

Date: ______________________________________________________ 



 Page 1 

Interrupt and Timer ISRs 
 

GOAL 

By doing this lab assignment, you will learn: 
1. To use IRQ and on-chip Timer interrupts on the M68HC12. 
2. To add interrupt service routines to a C program using the Introl C cross-compiler. 
 

PREPARATION 

• Read Sections 8.1 to 8.8 from Software and Hardware Engineering by Cady & Sibigtroth. 
 (Read Sections 6.9-10 and 7.7-9 from Microcomputer Engineering by Gene H. Miller.) 
• Read Sections 10.1 to 10.8 from Software and Hardware Engineering by Cady & Sibigtroth. 
• Read Section 7 in CPU12 Reference Manual (M68HC12). 
• References:  Software and Hardware Engineering, pp. 192 & 193 
 

Software Design 
• Do a top-down design of your program. Provide a flowchart or equivalent. 
• Write C programs for each module/subroutine. Recall that interrupt service routines are not 

subroutines. Provide planning documentation for both flowchart and tests. Specify test inputs and 
expected output or other indictors of correct operation. 

• After all the submodules are operating correctly, they may be integrated to form a higher level 
module. Integrate your modules to get an assembler program that is free from syntax errors (i.e., it 
should assemble without error messages and produce a .s19 file). 

 

PROGRAMMING TASKS FOR THE MC6812 

1. Write a simple C program that responds to an IRQ interrupt (Grounding J8 pin 44 IRQ). 
2. Write a simple C program that responds to a timer interrupt to display elapsed time in tenths of a 

second. 
3. Combine the C programs from 1. and 2. to test reaction time. Flash the screen and measure the time it 

takes for the subject to react and ground the IRQ pin. (use a pull-up resistor to avoid false interrupts.) 
Compute the average of the number of trials or a moving average of the last 5 trials and display it on 
the screen. Provide a means to reset or clear the program or display, your choice. 

 
 



 Page 2 

Good programmer's tip: Design the program top-down. Then write the routines bottom-up. Write them 
one at a time and thoroughly test each one before integrating them. This way you will have isolated any 
errors to the routine that you are currently writing. Good programmers follow this method. 
 

INTRODUCTION TO INTERRUPTS - H/W BIT SETTINGS 

An interrupt in a microprocessor is a request for service by a process (a background process) that is 
running outside the direct control of the program. That is, the process is not a subroutine or other 
subprogram that is called by the program at a particular point in its execution. For example, a keyboard 
input is not controlled by the user's program but by someone pressing on the keys. In real-time 
applications, interrupts are often used to perform periodic functions such as to sample data or to update 
the error input to a servo loop. Other functions are to measure the elapsed time from a reference starting 
time or to measure the time interval between external events. In this laboratory exercise, only time-based 
interrupts are used. 

For a (background) timer process to request service, two preconditions must be present: the global 
interrupt mask bit I in the Condition Code Register, CCR, must be cleared (I = 0) and the local interrupt 
enable bit must be set. 

Global Interrupt Mask 
All the time-based interrupts are controller by the global interrupt mask bit I in the Condition Code 
Register. When I = 1, it masks, i.e., prevents, interrupts. So, for a time-based interrupt to happen, I must 
equal 0. This is done by executing the CLI, CLear I mask, instruction to enable interrupts. Note, the 
instruction SEI, Set I mask, disables interrupts. 

Local Interrupt Enable Bit 
Each time-based interrupt has its own interrupt enable bit. For example, the Free Running Timer has the 
TOI, Timer Overflow Interrupt, bit (bit 7 in the TMSK2 register at $008D). The Timer Overflow 
Interrupt is enabled by writing a 1 to the TOI bit. 

Interrupt Request Flag 
For an interrupt request to be made, the interrupting process must set its flag. When the Free Running 
Timer rolls over from $FFFF to $0000, a Timer Overflow occurs. This is indicated by setting the TOF, 
Timer Overflow Flag, bit (bit 7 in the TFLG2 register at $008F). If both preconditions are met, an 
interrupt request is made to the microprocessor. 

M68HC12 Interrupt Request Response 
The M68HC12 looks for interrupt requests after an instruction is completed and before the next 
instruction is fetched from memory. When it receives an interrupt request, the first action is to save the 



 Page 3 

status of all the working registers on the stack. That is, 9 bytes are pushed on the stack in the following 
order: Program Counter Lo-byte (PCL), PCH, Index Register Y Lo-byte (IYL), IYH, IXL, IXH, ACCA, 
ACCB, CCR. Second, the I bit is set to prevent nested interrupts. Third, the highest priority interrupt 
request is identified and the 2-byte Interrupt Vector Address in the table located between $FFCE and 
$FFFF is put into the Program Counter. This is the address of the first instruction of the Interrupt Service 
Routine for that interrupt. 

For a Timer Overflow interrupt, its Vector Address is located at $FFDE, $FFDF. The first instruction of 
the Interrupt Service Routine for the Timer Overflow Interrupt is at the Vector Address. In the D-Bug12 
monitor ROM, $FFDE, $FFDF contains the zero page address for interrupt vector 15, the number 
assigned to the Timer Overflow interrupt. The name of your ISR is defined in your program by the Introl 
compiler through the function DB12->SetUserVector(int_number, ISR_name). To assign the name of 
your routine TimerOvfInt to the IRQ interrupt (number 15), you must execute at the beginning of your 
program the statement: 

DB12->SetUserVector(IRQ, IRQInt); 

Before interrupts are enabled by the program, the user must create an ISR with this name and program 
the instructions to be executed by the interrupt service routine for the Timer Overflow. 

Interrupt Service Routine - assembly language details 
The first thing an interrupt service routine usually does is to check that the associated interrupt request 
flag is set. All timer flags are cleared by writing a 1 to the flag bit. (Writing a 0 to a flag bit that is set 
does not affect the bit.) Normally this is done using a BRCLR 0,X mm rr instruction. For the Timer 
Overflow Flag, this is BRCLR 0,X BIT7 RTN_ISR_TOV where X contains $008F. The next thing 
that is done is to clear the interrupt flag so an immediate false interrupt is no seen when returning from 
the interrupt service routine. For all timer interrupts, the flag is cleared by writing a 1 to the flag bit 
position in its flag register. This is usually done by using a BCLR 0,X mm instruction. For the Timer 
Overflow Flag, this is BCLR 0,X $7F where X contains $008F. Notice that the RTI instruction pulls 9 
bytes off the stack. This way the CCR is restored to the pre-interrupt condition and interrupts are again 
enabled. Since the Program Counter now contains the address of the next instruction in the program 
following the instruction that was completed when the interrupt request was serviced, the program 
continues as though it was not interrupted except for artifacts produced by the interrupt service routine. 
 

INTRODUCTION TO TIMERS 

The M68HC12 has three programmable timer systems: a Free-Running Counter, a Real-Time Clock, and 
a Pulse Accumulator Timer. 



 Page 4 

Free-Running Counter 
The Free-Running Counter starts running when power is first applied to the M68HC12. It runs 
continuously as long as the power is on. That is why it is called "free-running." The value of the counter 
is in the double register TCNT ($0084, $0085). TCNT is incremented with every tick of the counter. The 
counter has a programmable Prescaler that allows the clock ticks to be scaled relative to the M-clock. 
The Prescaler bits PR2, PR1, PR0 (bits 2, 1 and 0 in TMSK2) can be changed any time. The Free-
Running Counter always runs at the M-clock frequency (typically either 4 or 8 MHz) divided by 1, 2, 4, 
8, 16, or 32, depending on the prescaler value. 

The TOI is enabled by writing a 1 to TOI (bit 7 in TMSK2). With the statement: 

DB12->SetUserVector(TimerOvf, TimerOvfInt); 

the zero page ISR name for the Free-Running Timer Overflow Interrupt is TimerOvfInt(). The TOF is 
cleared by writing a 1 to TOF (bit 7 in TFLG2). 

Related to the Free-Running Counter are the eight Output Compare functions. On each M-clock cycle, 
the 16-bit value of TCNT is compared to the contents of the 16-bit TCx registers, where x = 0, …, 7. 
When a match is found, the CxF in TFLG1 is set. If CxI in TMSK1 is enabled, a local interrupt request is 
made. If the global I mask bit in the CCR is clear, the interrupt request is handled by the microprocessor.  

The output compare function can be used to obtain precise periodic interrupts. For example, if interrupts 
spaced 1 ms apart are desired, add the current 16-bit value of the TCNT to 200010 (= $07D0) and store 
the sum in the double register TCx. Each time the interrupt occurs, add $07D0 to the old value in TCx so 
the next interrupt occurs 2000 ticks later. When the sum rolls over (overflows) there is no problem since 
that is exactly what TCNT does! You can choose other intervals up to 32.77 ms. The smaller the interval, 
the better the precision when the interrupts are counted to measure 1 s, 1 min, or 1 hr intervals.  

Real-Time Clock 
The Real-Time Clock is used to generate periodic interrupts. Real time interrupts can be set to one of 
four rates that are derived from the M-clock. The RTI Rate Control bits RTR2, RTR1, RTR0 (bits 2, 1 
and 0 in RTICTL) may be written at any time. The RTI rate may be changed within a program as 
necessary. 

Real-time interrupts are governed by the I bit in the CCR. The local RTI enable bit is RTIE (bit 7 in 
RTICTL). The RTI flag is RTIF (bit 7 in RTIFLG). It is set at the end of each periodic interval as 
determined by the RTI Rate Control bits.  

With the statement: 

DB12->SetUserVector(RTI, RTIInt); 



 Page 5 

The zero page ISR name for the Real-Time Interrupt is RTIInt(). The RTIF is cleared by writing a 1 to 
RTIF (bit 7 in RTIFLG). 

Pulse Accumulator Timer 
The Pulse Accumulator can be used as a timer. This mode is called the Gated Time Accumulation mode. 
The PA timer increments every 8 µs (64/M-clock). This corresponds to an overflow every 0.524288 ms 
(8 µs·65536). The PA timer is gated, i.e., turned on and off, by the logic level on the input pin PA7. The 
Pulse Accumulator Count register (PACNT at $00A2:$00A3) is an 16-bit register. Note that it is both 
readable and writable so that PACNT can be initialized to values other than $00.  
 
 7 6 5 4 3 2 1 0  
$00A0  PAEN PAMO

D 
PEDGE CLK1 CLK0 PAOVI PAI PACTL 

RESET 
= 

0 0 0 0 0 0 0 0  

Setting PAEN enables the Pulse Accumulator system. Setting PAMOD selects the gated time 
accumulation mode. To enable the timer when PT7 is high, PEDGE = 0. To enable the timer when PT7 is 
low, PEDGE = 1.  

The Pulse Accumulator is governed by the I bit in the CCR. The local PA timer enable bit is PAOVI (bit 
1 in PACTL). The PA timer overflow flag is PAOVF (bit 1 in PAFLG). It is set each time PACNT rolls 
over from $FFFF to $0000, i.e., overflows. The PAOVF is cleared by writing a 1 to PAOVF (bit 1 in 
PAFLG). 
 

 


